|
[1]
|
Liu, J., Fang, Q., Lin, H., Yu, X., Zheng, H. and Wan, Y. (2020) Alginate-Poloxamer/Silk Fibroin Hydrogels with Co-valently and Physically Cross-Linked Networks for Cartilage Tissue Engineering. Carbohydrate Polymers, 247, Article ID: 116593. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Yu, J., Lee, S., Choi, S., Kim, K.K., Ryu, B., Kim, C.Y., Jung, C.R., Min, B.H., Xin, Y.Z., Park, S.A., Kim, W., Lee, D. and Lee, J. (2020) Fabrication of a Polycaprolactone/Alginate Bipartite Hybrid Scaffold for Osteochondral Tissue Using a Three-Dimensional Bioprinting System. Polymers, 12, Article No. 2203. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Nahanmoghadam, A., Asemani, M., Goodarzi, V. and Ebrahimi-Barough, S. (2021) Design and Fabrication of Bone Tissue Scaffolds Based on PCL/PHBV Containing Hydroxyapatite Nanoparticles: Dual-Leaching Technique. Journal of Biomedical Materials Research Part A, 109, 981-993. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Li, H., Hu, C., Yu, H. and Chen, C. (2018) Chitosan Composite Scaffolds for Articular Cartilage Defect Repair: A Review. RSC Advances, 8, 3736-3749. [Google Scholar] [CrossRef]
|
|
[5]
|
Sacco, P., Cok, M., Scognamiglio, F., Pizzolitto, C., Vecchies, F., Marfoglia, A., Marsich, E. and Donati, I. (2020) Glycosylated-Chitosan Derivatives: A Systematic Review. Molecules, 25, Article No. 1534. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
George, S.M., Nayak, C., Singh, I. and Balani, K. (2022) Multi-functional Hydroxyapatite Composites for Orthopedic Applications: A Review. ACS Biomaterials Science & Engineering, 8, 3162-3186. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Velasco, M.A., Narváez-Tovar, C.A. and Garzón-Alvarado, D.A. (2015) Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering. BioMed Research International, 2015, Article ID: 729076. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Holt, B.D., Wright, Z.M., Arnold, A.M. and Sydlik, S.A. (2017) Graphene Oxide as a Scaffold for Bone Regeneration. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology, 9, e1437. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Bo, L. (2015) Process Aspects in Combus-tion and Gasification Waste-to-Energy (WtE) Units. Waste Management, 37, 13-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Pighinelli, L. and Kucharska, M. (2013) Chi-tosan-Hydroxyapatite Composites. Carbohydrate Polymers, 93, 256-262. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Pistone, A., Celesti, C., Piperopoulos, E., Ashok, D., Cembran, A., Tricoli, A. and Nisbet, D. (2019) Engineering of Chitosan-Hydroxyapatite-Magnetite Hierarchical Scaffolds for Guided Bone Growth. Materials, 12, Article No. 2321. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Nazeer, M.A., Yilgör, E. and Yilgör, I. (2017) Intercalated Chi-tosan/Hydroxyapatite Nanocomposites: Promising Materials for Bone Tissue Engineering Applications. Carbohydrate Polymers, 175, 38-46. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Osmond, M.J. and Krebs, M.D. (2021) Tunable Chi-tosan-Calcium Phosphate Composites as Cell-Instructive Dental Pulp Capping Agents. Journal of Biomaterials Science, Polymer Edition, 32, 1450-1465. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Radwan, N.H., Nasr, M., Ishak, R.A.H., Abdeltawab, N.F. and Awad, G.A.S. (2020) Chitosan-Calcium Phosphate Composite Scaffolds for Control of Post-Operative Osteomye-litis: Fabrication, Characterization, and in vitro-in vivo Evaluation. Carbohydrate Polymers, 244, Article ID: 116482. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Boukari, Y., Qutachi, O., Scurr, D.J., Morris, A.P., Doughty, S.W. and Billa, N. (2017) A Dual-Application Poly (Dl-Lactic-co-Glycolic) acid (PLGA)-Chitosan Composite Scaffold for Potential Use in Bone Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 28, 1966-1983. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Lu, J.Y., He, Y.S., Cheng, C., Wang, Y., Qiu, L., Li, D. and Zou, D.R. (2013) Self-Supporting Graphene Hydrogel Film As an Experimental Platform to Evaluate the Potential of Graphene for Bone Regeneration. Advanced Functional Materials, 23, 3494-3502.
|
|
[17]
|
Yu, L., Huang, J., et al. (2015) Antler Collagen/Chitosan Scaffolds Improve Critical Calvarial Defect Healing in Rats. Journal of Biomaterials and Tissue Engineering, 5, 774-779. [Google Scholar] [CrossRef]
|
|
[18]
|
Saravanan, S., Chawla, A., Vairamani, M., Sastry, T.P., Subramanian, K.S. and Selvamurugan, N. (2017) Scaffolds Containing Chitosan, Gelatin and Graphene Oxide for Bone Tissue Regeneration in Vitro and in Vivo. International Journal of Biological Macromolecules, 104, 1975-1985. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Chen, Y.H., Tai, H.Y., Fu, E. and Don, T.M. (2019) Guided Bone Regeneration Activity of Different Calcium Phosphate/Chitosan Hybrid Membranes. International Journal of Biological Macromolecules, 126, 159-169.
|
|
[20]
|
Zhou, K., Yu, P., Shi, X., Ling, T., Zeng, W., Chen, A., Yang, W. and Zhou, Z. (2019) Hierarchically Porous Hydroxyapatite Hybrid Scaffold Incorporated with Reduced Graphene Oxide for Rapid Bone Ingrowth and Repair. ACS Nano, 13, 9595-9606. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Cao, H.Q., Zhang, L., Zheng, H. and Wang, Z. (2010) Hydroxyap-atite Nanocrystals for Biomedical Applications. The Journal of Physical Chemistry C, 114, 18352-18357.
|
|
[22]
|
Di Silvio, L., Gurav, N. and Sambrook, R. (2004) The Fundamentals of Tissue Engineering: New Scaffolds. Medical Journal of Malaysia, 59, 89-90.
|
|
[23]
|
Khan, S.N., Tomin, E. and Lane, J.M. (2000) Clinical Applications of Bone Graft Substitutes. Orthopedic Clinics of North America, 31, 389-398. [Google Scholar] [CrossRef]
|
|
[24]
|
Feng, W, Liang, G, Feng, S, Qi, Y. and Tang, K. (2015) Preparation and Characterization of Collagen-Hydroxyapatite/ Pectin Composite. International Journal of Biological Macromolecules, 74, 218-223. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Song, Y., Wu, H., Gao, Y., Li, J., Lin, K., Liu, B., Lei, X., Cheng, P., Zhang, S., Wang, Y., Sun, J., Bi, L. and Pei. G. (2020) Zinc Silicate/Nano-Hydroxyapatite/Collagen Scaffolds Promote Angiogenesis and Bone Regeneration via the p38 MAPK Pathway in Activated Monocytes. ACS Applied Materials & Interfaces, 12, 16058-16075. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Uezono, M., Takakuda, K., Kikuchi, M., Suzuki, S. and Moriyama, K. (2013) Hydroxyapatite/Collagen Nanocomposite-Coated Titanium Rod for Achieving Rapid Osseointegration onto Bone Surface. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 101, 1031-1038. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Fang, R., Zhang, E., Xu, L. and Wei, S. (2010) Electrospun PCL/PLA/HA Based Nanofibers as Scaffold for Osteoblast-Like Cells. Journal of Nanoscience and Nanotechnology, 10, 7747-7751. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Liu, S., Zheng, Y., Liu, R. and Tian, C. (2020) Preparation and Characterization of a Novel Polylactic Acid/Hydroxyapatite Composite Scaffold with Biomimetic Micro-Nanofibrous Porous Structure. Journal of Materials Science: Materials in Medicine, 31, Article No. 74. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yao, Q., Wei, B., Liu, N., Li, C., Guo, Y., Shamie, A.N., Chen, J., Tang, C., Jin, C., Xu, Y., Bian, X., Zhang, X. and Wang, L. (2015) Chondrogenic Regeneration Using Bone Marrow Clots and a Porous Polycaprolactone-Hydroxyapatite Scaffold by Three-Dimensional Printing. Tissue Engineering Part A, 21, 1388-1397. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Furtos, G., Rivero, G., Rapuntean, S. and Abraham, G.A. (2017) Amoxicillin-Loaded Electrospun Nanocomposite Membranes for Dental Applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105, 966-976. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Freedman, S.L., Banerjee, S., Hocky, G.M. and Dinner, A.R. (2017) Aversatile Framework for Simulating the Dynamic Mechanical Structure of Cytoskeletal Networks. Biophysical Journal, 113, 448-460.
|
|
[32]
|
Li, .J, Jahr, H., Zheng, W. and Ren, P.G. (2017) Visualizing Angiogenesis by Multiphoton Microscopy in Vivo in Genetically Modified 3D-PLGA/nHAp Scaffold for Calvarial Critical Bone Defect Repair. Journal of Visualized Experiments, 127, e55381. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Dalgic, A.D., Alshemary, A.Z., Tezcaner, A., Keskin, D. and Evis, Z. (2018) Silicate-Doped Nano-Hydroxyapatite/ Graphene Oxide Composite Reinforced Fibrous Scaffolds for Bone Tissue Engineering. Journal of Biomaterials Applications, 32, 1392-1405. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Prakash, J., Prema, D., Venkataprasanna, K.S., Balagangadharan, K., Selvamurugan, N. and Venkatasubbu, G.D. (2020) Nanocomposite Chitosan Film Containing Graphene Ox-ide/Hydroxyapatite/Gold for Bone Tissue Engineering. International Journal of Biological Macromolecules, 154, 62-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Jiao, D., Zheng, A., Liu, Y., Zhang, X., Wang, X., Wu, J., She, W., Lv, K., Cao, L. and Jiang, X. (2020) Bidirectional Differentiation of BMSCs Induced by a Biomimetic Procallus Based on a Gelatin-Reduced Graphene Oxide Reinforced Hydrogel for Rapid Bone Regeneration. Bioactive Materials, 6, 2011-2028. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Qi, Y.Y., Tai, Z.X., Sun, D.F., et al. (2013) Fabrication and Characterization of Poly (Vinyl Alcohol)/Graphene Oxide Nanofibrous Biocomposite Scaffolds. Journal of Applied Polymer Science, 127, 1885-1894. [Google Scholar] [CrossRef]
|
|
[37]
|
Díez-Pascual, A.M. and Díez-Vicente, A.L. (2016) Poly(Propylene Fumarate)/Polyethylene Glycol-Modified Graphene Oxide Nanocomposites for Tissue Engineering. ACS Applied Mate-rials & Interfaces, 8, 7902-7914. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Liang, C., Luo, Y., Yang, G., Xia, D., Liu, L., Zhang, X. and Wang, H. (2018) Graphene Oxide Hybridized nHAC/ PLGA Scaffolds Facilitate the Proliferation of MC3T3-E1 Cells. Nanoscale Research Letters, 13, Article No. 15. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Wang, W., Liu, Y., Yang, C., Qi, X., Li, S., Liu, C. and Li, X. (2019) Mesoporous Bioactive Glass Combined with Graphene Oxide Scaffolds for Bone Repair. International Journal of Biological Sciences, 15, 2156-2169. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Ahn, J.H., Kim, I.R., Kim, Y., Kim, D.H., Park, S.B., Park, B.S., Bae, M.K., Kim, Y.I. (2020) The Effect of Mesoporous Bioactive Glass Nanoparticles/Graphene Oxide Composites on the Differentiation and Mineralization of Human Dental Pulp Stem Cells. Nanomaterials, 10, Article No. 620. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Xiong, K., Wu, T., Fan, Q., Chen, L. and Yan, M. (2017) Novel Re-duced Graphene Oxide/Zinc Silicate/Calcium Silicate Electroconductive Biocomposite for Stimulating Osteoporotic Bone Regeneration. ACS Applied Materials & Interfaces, 9, 44356-44368. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Liu, S., Li, Z., Wang, Q., Han, J., Wang, W., Li, S., Liu, H., Guo, S., Zhang, J., Ge, K. and Zhou, G. (2021) Graphene Oxide/Chitosan/Hydroxyapatite Composite Membranes Enhance Os-teoblast Adhesion and Guided Bone Regeneration. ACS Applied Bio Materials, 4, 8049-8059. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Ji, M., Li, H., Guo, H., Xie, A., Wang, S., Huang, F., Li, S., Shen, Y. and He, J. (2020) A Novel Porous Aspirin- Loaded (GO/CTS-HA)n Nanocomposite Films: Synthesis and Multifunction for Bone Tissue Engineering. Carbohydrate Polymers, 153, 124-132. [Google Scholar] [CrossRef] [PubMed]
|