卵巢子宫内膜异位症恶变及Wnt信号通路在这一过程中的研究进展
Research Progress on Malignant Transformation of Ovarian Endometriosis and Wnt Signal Pathways in This Process
DOI: 10.12677/ACM.2022.12111541, PDF, HTML, XML, 下载: 185  浏览: 267 
作者: 宋冰冰, 娄 翔:威海市妇幼保健院,山东 威海;赵孔媛:青岛大学,山东 青岛;王黎明*:青岛大学附属医院,山东 青岛
关键词: 子宫内膜异位症卵巢疾病卵巢肿瘤Wnt信号通路Endometriosis Ovarian Disease Ovarian Neoplasms Wnt Signaling Pathway
摘要: 卵巢子宫内膜异位症(ovarian endometriosis, OE)作为临床上最常见的妇科疾病之一,目前在世界各地约有1.76亿名女性受到该病影响。OE虽然是良性疾病,但其却具备浸润、转移等恶性病变的特征,恶变作为临床上OE最严重的并发症,虽然发生率低,但由于OE患病女性基数较大,OE恶变的病例总数相当可观,因此在国内外受到许多学者的高度重视。目前,许多研究认为,非典型卵巢子宫内膜异位症(atypical endometriosis, aEM)是子宫内膜异位症相关性卵巢癌(endometriosis associated ovarian cancer, EAOC)的癌前病变,OE病变组织中的良性异位子宫内膜细胞可在一定条件下转化为异位子宫内膜非典型增生,且可继续转化为异位子宫内膜恶性病变,但目前OE与EAOC之间的关系未有明确的研究及阐述。目前对EAOC的临床及基础性研究发现雌激素、氧化应激、慢性炎症等因素在其发生发展过程中发挥了重要作用,且PTEN、ARID1A、PIK3CA、miRNA等多种生物信号通路及因子也起到了重要作用。Wnt信号通路是人体细胞增殖凋亡及器官形成过程中的重要细胞信号传导通路,该通路的异常表达可促进人体多种恶性肿瘤的发生与进展。本文通过对OE恶变的研究进展及Wnt信号传导通路在这一过程中的作用进行综述,以期为EAOC的早期筛查、完善该病的分类管理、实现精准的个体化治疗方案等方面提供一定的理论依据,为潜在EAOC患者的早期诊断、早期医疗干预以及改善已确诊EAOC患者的预后提供新思路。
Abstract: Ovarian endometriosis (OE) is one of the most common gynecological diseases in clinical practice. At present, about 176 million women around the world are affected by this disease. Although OE is a benign disease, it has the characteristics of invasion, metastasis and other malignant diseases. As the most serious complication of OE in clinical practice, malignant transformation has a low inci-dence, but due to the large number of women with OE, the total number of cases of malignant trans-formation of OE is considerable, so it has been highly valued by many scholars at home and abroad. At present, many studies believe that atypical ovarian endometriosis (aEM) is a precancerous lesion of endometriosis associated ovarian cancer (EAOC). Benign ectopic endometrial cells in OE lesions can be transformed into atypical hyperplasia of ectopic endometrium under certain conditions, and can continue to be transformed into malignant lesions of ectopic endometrium, However, there is no clear research and elaboration on the relationship between OE and EAOC. At present, clinical and basic studies on EAOC have found that estrogen, oxidative stress, chronic inflammation and other factors play an important role in the occurrence and development of EAOC, and PTEN, ARID1A, PIK3CA, miRNA and other biological signal pathways and factors also play an important role. Wnt signaling pathway is an important cellular signal transduction pathway in the process of human cell proliferation, apoptosis and organ formation. The abnormal expression of this pathway can promote the occurrence and progression of various human malignant tumors. This article reviews the research progress of OE canceration and the role of Wnt signal transduction pathway in this process, with a view to providing some theoretical basis for early screening of EAOC, improving the classification management of the disease, achieving accurate individualized treatment scheme, etc., and providing new ideas for early diagnosis, early medical intervention and improving the prognosis of patients with diagnosed EAOC.
文章引用:宋冰冰, 赵孔媛, 娄翔, 王黎明. 卵巢子宫内膜异位症恶变及Wnt信号通路在这一过程中的研究进展[J]. 临床医学进展, 2022, 12(11): 10701-10710. https://doi.org/10.12677/ACM.2022.12111541

1. 引言

卵巢子宫内膜异位症(ovarian endometriosis, OE)作为临床上最常见的妇科疾病之一,有10%~15%的育龄期女性确诊该病 [1],其定义为具有生物活性的子宫内膜间质或腺体侵犯卵巢的现象。OE的临床特点包括不孕、盆腔疼痛、多次手术以及对患者社会心理健康和生活质量高低产生严重的负面效应 [2]。OE虽为良性疾病,但其却具有恶性疾病的生物学特征,例如转移、浸润、复发等,且其具有恶变的倾向,有研究表明,子宫内膜异位症(endometriosis, EM)恶变率为0.7%~1% [3],其中80%发生于卵巢 [4]。近年来,大量的研究表明EM患者未来患卵巢恶性肿瘤的风险较其他女性明显增高,且早期诊断EM及长期患有EM的女性患病率更为显著,计算标准化发病率高达2.01和2.23 [5] - [10]。其实早在1952年,Sampson [11] 就率先论述了EM与卵巢癌之间的关系,提出并制定了子宫内膜异位症相关性卵巢癌的诊断标准,随后,Scott [12] 于1953年对其诊断标准给予了进一步补充,并一直沿用至今。卵巢子宫内膜样腺癌(ovarian endometrioid caicinoma, OEC)和卵巢透明细胞癌(ovarian clear cell carcinoma, OCC)是卵巢子宫内膜异位症相关性卵巢癌(endometriosis associated ovarian carcinoma, EAOC)最常见的病理类型,且与OE关系密切 [13]。OE作为卵巢癌发生的高危因素之一 [14],使OCC的患病风险提高了3倍、使OEC的患病风险提高了2倍 [15]。有研究发现,EAOC患者在连续经历了由异位正常子宫内膜转化为异位非典型子宫内膜,其再继续转化为异位子宫内膜恶变致EAOC的过程 [16] [17]。根据此转化过程,可以在临床上积极干预治疗非典型卵巢子宫内膜异位(atypical endometriosis, aEM),以期降低EAOC的发病率,并为EAOC患者的早期诊治及预后的改善提供指导。

OEC和OCC作为EAOC最常见的病理组织学类型。2019年,郎景和等 [18] 通过研究69例EAOC患者,比较两种最常见的EAOC病理组织学类型与患者年龄、生活背景、相关临床数据及诊治预后等方面后发现,两组患者的年龄、肿瘤侧别、肿瘤大小、始发症状、FIGO分期和铂耐药患者所占比例等方面差异均无统计学意义。2022年,赵飞等 [19] 通过对50例EAOC患者的研究中也发现,不同病理组织学类型在细胞信号通路中蛋白的表达上无统计学意义。这些研究可以说明,EAOC虽然有各种的病理组织学类型,但其可能有着类似的基因和遗传学改变 [15] [20]。所以在我们研究过程中可以将其统一归为同类疾病,为EAOC的研究提供了方便。

近年来的研究表明,EAOC作为特殊类型的上皮性卵巢癌,相比较其他类型的卵巢癌,多具有发病年龄小、FIGO分期较早、无瘤生存期较长等特点 [21] [22] [23] [24] [25]。目前临床上对EAOC的诊断在遵照Sampson、Scott [12]、Klein及Hunter [26] 等理论基础上提炼出的四条诊断标准:1) 同一侧卵巢中同时存在OE病变组织及卵巢恶性肿瘤组织;2) OE和卵巢恶性肿瘤具有相似的病理组织学关系;3) 卵巢恶性肿瘤起源于OE,排除其他转移性恶性肿瘤;4) 镜下可见正常OE组织向卵巢恶性肿瘤转化的组织病理学证据。然而有研究表明,在实际的临床诊治过程中,EAOC患者的确诊率较实际确诊率偏低,推测其原因有:1) 部分患者病史较长,快速生长的恶性肿瘤细胞燃尽了早期的OE病灶;2) 病理取材有限或经验不足,未取得有OE病变的组织样本;3) 病理科医师在确诊卵巢恶性肿瘤后,忽视或省略了对OE病灶的检查 [1] [16]。因此,若想克服组织病理学对EAOC诊断时存在主观性强及不典型表型等缺点,对其进行有关的分子生物学研究或许可降低对OE恶变诊断的局限性,在临床上不仅可以协助诊断EAOC,并且可以帮助我们找到EAOC早期筛查的可靠生物学因子指标。

2. 发病机制

对于EAOC的发病机制,目前尚未明确,但有研究已证实多种临床因素、生物学因子及细胞信号传导通路参与了OE恶变的过程,如炎症反应、雌激素、PTEN基因、ARID1A基因突变、氧化应激反应、CTNNB1基因突变、P53基因突变等。本文将就上述方面的研究进展进行论述。

2.1. 炎症反应

EAOC的发生及发展与患者机体的炎症反应有关。一方面,既往研究表明,长期慢性炎症反应可刺激机体内的免疫细胞释放如白细胞介素-6、白细胞介素-1β、肿瘤坏死因子-α等细胞活性因子,而这些细胞因子长期的异常释放可导致肿瘤的发生、发展和转移 [27]。目前有研究发现,在OE及EAOC患者的病变组织中均可观察到上述细胞活性因子的表达增加 [28] [29]。实际上OE可通过相关促炎细胞活性因子的异常释放促进炎症小体的合成,进而诱发机体炎症,长期慢性炎症反应可导致炎症小体有关的细胞因子及致癌基因过度表达,从而促使EAOC的发生 [30]。另一方面,长期的慢性炎症也降低了机体免疫细胞的功能,进而抑制了患者机体对肿瘤细胞的监测与清除,最终使机体免疫功能不同程度的降低,有研究解释其机制可能与慢性炎症导致了细胞氧化剂/抗氧化剂状态失衡,即氧化剂减少和抗氧化剂增加,促进卵巢癌的进展,血红蛋白、血红素和铁诱导的慢性氧化应激可使HO-1和Nrf2基因过表达,持续诱导子宫内膜异位细胞恶性转化及其DNA损伤 [31]。

2.2. 雌激素作用

OE和EAOC的发生均与患者体内雌激素的变化有关。OE作为一种雌激素依赖性疾病,患者机体内雌酮/雌二醇明显降低,该比值的降低可导致17β-羟基类固醇脱氢酶-2的低表达,也可导致β-雌激素受体及芳香化物酶的高表达,进而引起机体内雌激素水平的进一步升高 [32]。当患者体内的孕激素不能有效拮抗雌激素的作用时,OE病灶处的微环境将有利于病变细胞发生基因突变 [33]。因OE患者机体内中高水平的雌激素可引起某些细胞活性因子的异常表达而使正常异位内膜细胞发生迁移、侵袭和增殖,并可能使OE病灶细胞发生基因突变及DNA损伤的可能性升高,促使其向恶性肿瘤转化,最终导致EAOC的发生 [34]。

2.3. 氧化应激反应失调

有研究表明,因氧化应激反应与抗氧化应激反应的拮抗失调,EM患者机体内氧化应激反应占据了主导地位 [9]。OE患者随月经周期变化,病变部位可因反复出血、溶血而积累大量含铁丰富的囊液,而囊液中的铁可经过Fenton反应形成大量的活性氧(Reactive oxygen species, ROS),例如羟基自由基 [35]。正常情况下,机体可通过抗氧化剂降低ROS的浓度来减少OCC的发生,但在恶性转化发生后,抗氧化剂反而有利于OCC病变细胞的存活 [36]。且有研究发现,OE病变处的囊壁细胞可因ROS的反复刺激而发生氧化应激反应致使细胞凋亡,并可引起基因突变、细胞因子失活、DNA损伤等现象,进而导致EAOC的发生 [37] [38]。

2.4. 致癌基因与抑癌基因

2.4.1. Kirsten大鼠肉瘤病毒癌基因(Kirsten rat Sarcoma Viral Oncogene, KRAS)

KRAS基因是一种可以编码小分子鸟苷三磷酸酶-KRAS蛋白的抑癌基因,作为RAS样GTP酶超家族的成员,可参与调节细胞分裂,因此KRAS基因若发生突变,可导致病变细胞增殖失调。有研究发现,低级别OEC患者中有29%发生了KRAS基因突变,而在未合并有OE的肿瘤患者中发生KRAS基因突变的概率仅为3% [39]。Bastu E [40] 等研究发现,10%~20%的EAOC患者存在KRAS基因突变,且主要发生于病理组织学类型为OCC的患者,其在OE组织中的高表达可促进OE向OCC转化。所以,KRAS基因可能是预测OE恶变的生物学指标。

2.4.2. 人第10号染色体缺失的磷酸酶及张力蛋白同源基因(Phosphatase and Tensin Homologue Deleted on Chromosome 10, PTEN)

PTEN作为一种抑癌基因,可通过维持基因组稳定、调节细胞增殖、侵袭、凋亡等而发挥作用。其通过合成脂质磷酸酶,将磷脂酰肌醇-3,4,5-三磷酸去磷酸化为磷脂酰肌醇-4,5-二磷酸,进而对PI3K-Akt-mTOR信号通路起到抑制作用 [41]。2005年Dinulescu DM [42] 等在对小鼠生物模型中的研究发现,K-Ras基因突变联合PTEN基因突变可使继发性卵巢癌的发生率增加。近年来有研究发现,PTEN在EAOC组织中的基因突变率明显高于aEM及EM组织 [44]。而叶云 [45] 等研究发现PTEN在OEC患者的表达率降低,且明显低于卵巢浆液性癌。Lv J [46] 等研究发现,PTEN的低表达可导致OE细胞血管生成的增加;而其高表达则可抑制细胞周期并导致细胞凋亡的发生。因此PTEN的表达失调可能是OE恶变的前期启动因素,并可能联合其他基因的异常表达共同导致了EAOC的发生。

2.4.3. AT丰富结合域1A基因(AT-Rich Interaction Domain 1A, ARID1A)

ARID1A作为一种抑癌因子,可编码BAF250a蛋白,其可在细胞增殖、分化及DNA修复等风险发挥重要作用。当ARID1A发生基因突变,可出现终止密码子,导致BAF250a蛋白表达缺失,进而影响细胞功能及肿瘤抑制 [47]。既往有研究发现,46%~57% OCC和30% OEC中发现ARID1A基因突变 [8] [48]。另有研究也发现,47%低级别OEC、60%高级别OEC中出现ARID1A突变 [39] [49]。Wiegand [50] 等研究发现aEM中也常发生ARID1A基因突变,后通过静默ARID1A基因的表达,造成BAF250a蛋白缺失,通过比较卵巢癌的发病率,结果发现ARID1A突变确实可导致EM的恶变。因此ARID1A突变导致BAF250a蛋白表达缺失可能推动了OE的恶变,造成EAOC的形成。

2.4.4. 磷脂酰肌醇-3-激酶催化亚单位α (Phosphatidylinositol-3-Kinase Catalytic Subunit α, PIK3CA)

目前的研究发现,40%的OCC患者中出现了PIK3CA基因突变 [51]。而另两项研究中,PIK3CA基因突变率在OCC患者的比例高达40%~67%,且在EM患者中也发现该基因的突变 [40] [52]。有研究表明,PIK3CA基因突变可激活PIK3-ATK-mTOR信号通路,且雌激素也可对该信号通路起到激活作用,EM作为一种雌激素依赖性疾病,且长期处于慢性炎症状态,该信号通路的异常激活可能导致EM病变的进展 [53]。Suda K等在研究中发现,仅在OCC及癌旁OE组织中检测到PIK3CA细胞拷贝数的改变,说明该基因突变导致等位基因特异性失衡可能是OE恶变的另一个重要因素 [52]。因此,PIK3CA基因突变为产生EAOC过程中的始发事件,可能是引起EM的恶变重要因素 [54]。

2.4.5. p53基因

P53基因作为目前与人类肿瘤关联性最高的抑癌基因 [55],其可编码P53蛋白,其可在控制细胞生长及抑制恶性细胞增殖等方面起到重要作用 [32]。目前有研究发现,P53蛋白在EAOC患者中的阳性率明显高于aEM及EM [56]。另有研究发现,仅患有EM的患者并未发现P53基因突变,而诊断EM合并OCC的部分患者却发现该基因突变 [57]。因此,P53基因突变可能导致了OCC的发生。刘丽丹等在对卵巢上皮性恶性肿瘤的研究中发现,病理分期越晚、组织学分期越早,P53蛋白的阳性表达率就越高 [58],提示P53基因的异常表达可能与EAOC的预后有关。

2.5. miRNA

miRNA是一类具有调控细胞功能的非编码RNA,其可以在细胞凋亡、增殖、分化等过程中发挥至关重要的作用。miRNA的异常表达可通过促进细胞恶性增殖、影响细胞信号传导通路、阻止细胞凋亡等方面导致机体内恶性肿瘤的发生。Wu RL [59] 等在对EAOC的研究中发现,相对于EM患者,在EAOC患者中发现了9种miRNA的异常表达。而在Gaia-Oltean AI等的研究中却发现,某些miRNA的异常表达在OE和卵巢癌中均可出现 [60]。目前EAOC与miRNA异常表达之间的关系尚未明确。多项研究发现,EM及EAOC患者中均发现miR-191的表达增高,其异常的高表达在EM恶变过程中起着重要作用 [61] [62]。另有研究发现,miR-141的高表达、miR-205和miR-125b的低表达在EM恶变过程中发挥了至关重要的作用 [60]。Marí-Alexandre J等在研究中发现,miRNA还可以与氧化应激相互配合作用于EAOC发生的多个环节 [63]。因此,临床上若能及时发现miRNA的异常表达并尽早干预,可有效阻止OE恶变及EAOC的发生。

2.6. 刺猬信号通路(Hedgehog Signaling Pathway)

刺猬信号通路作为机体重要的信号通路之一,参与并调控多种细胞功能,例如:细胞增殖、分化、凋亡等。目前已证实该通路中的部分因子表达异常与多种人体恶性肿瘤的发生、发展密切相关。有研究表明,刺猬信号通路的部分组成成分可在卵巢肿瘤,特别是卵巢恶性肿瘤中的表达明显升高 [64]。另一研究却发现,该通路的部分组成成分在正常卵巢上皮组织内呈低表达或不表达 [65]。赵飞等通过研究发现,该通路中GLi1及Shh的高表达可能与OE恶变为EAOC有关,且表达越高,EAOC患者的预后越差。因此,刺猬信号通路的功能异常可能导致OE的恶变,且与EAOC患者的预后密切相关。

3. Wnt信号通路

Wnt家族是一组与诸多细胞功能相关的蛋白家族,参与调控器官形成、干细胞自我更新、细胞增殖和凋亡等生物过程。目前研究已阐明,Wnt信号转导通路在人类机体发育过程中起重要作用,可促进细胞的增殖、分化以及粘附等过程,且已证实Wnt/β-catenin经典信号通路在卵巢上皮癌中具有促进肿瘤发展的作用 [66]。该途径也可促进肿瘤细胞的迁移和侵袭,诱导肿瘤细胞抵抗治疗药物,并可能参与肿瘤组织的血管生成和免疫抑制 [67]。当Wnt/β-catenin信号通路失调时不仅可能导致肿瘤的形成,还可能导致肿瘤的复发 [68]。近年来有研究发现,Wnt信号通路的相关因子参与了OE的发生 [69]。但该通路是否参与OE的恶变过程尚不清楚,可以通过检测该信号通路的关键因子在OE恶变过程中的表达情况,进而了解该通路是否参与OE恶变的发生,且在临床上结合OE病理图像中aEM的出现,可以为EAOC的早期诊治提供新思路。

3.1. β-连环蛋白(β-Catenin)

β-连环蛋白是经典Wnt通路的重要介质。其能够有效促进癌细胞的迁移、侵袭及增殖等,并能够明显阻断癌细胞的凋亡 [66]。在缺乏Wnt配体的情况下,β-catenin可被破坏复合物降解,该破坏复合物的核心组成成分包括酪蛋白激酶1 (CK1)、轴蛋白(AXIN)、糖原合成酶激酶3β (GSK-3β)等 [70]。但在某些病理因素的作用下,可异常激活Wnt信号通路,β-catenin因不可被裂解而致胞浆中含量升高。Nguyen [66] 等研究发现,16%~54%的OEC患者中发生了β-catenin蛋白基因CTNNB1突变,进而导致β-catenin表达上调。另有多项研究发现,部分类型的卵巢癌中可发现Wnt级联蛋白的基因突变,该基因突变也可导致βcatenin含量升高。Goldsberry [70] 等在对DC小鼠生物模型的研究中发现,因体内缺乏β-catenin,其卵巢肿瘤的生长速度较慢。由此可见,β-catenin作为Wnt信号通路的重要组成,其含量异常可能与EAOC的发生、发展有关。

3.2. 轴蛋白(AXIN)

AXIN是一种支架蛋白,它与多种蛋白质(包括GSK3β、CK1等)具有相互作用的位点 [71]。由此看来,AXIN对β-catenin破坏复合体的组成至关重要,并Wnt该信号转导通路中对β-cantenin的降解起到了关键性的作用。既往研究 [72] 显示,AXIN2基因沉默可通过调节线粒体相关凋亡信号通路从而减少细胞的凋亡,并通过调节细胞中Wnt/β-catenin信号通路的分子来增强细胞的增殖。有研究表明,AXIN作为Wnt信号转导通路的重要组成,是卵巢癌发生发展的关键因素。陶玲 [73] 等通过对50例卵巢恶性肿瘤的研究中发现,组织分级越高,FIGO分期越早,Axin的阳性率就越高,且与卵巢癌的发生发展及癌组织的浸润转移有一定的关联性。另一研究发现,AXIN在良性卵巢肿瘤的阳性表达率明显高于卵巢癌,且与FIGO分期、组织分化级别及淋巴结转移密切相关 [74]。EAOC作为特殊类型的卵巢上皮性癌,同样受到Wnt信号通路的调控,AXIN作为该通路的重要组成因子,其异常表达可能导致EAOC的形成,并影响疾病的发展及预后。

4. 结语与展望

可为早期诊断治疗EMT恶变及探索EAOC的发生的机制提供更多的证据,最终将为EAOC治疗时临床靶向治疗提供有力支撑。

EAOC作为卵巢上皮性癌的特殊类型,病理类型主要包括OEC、OCC等等,虽然该病发病率较低,临床上少见,但我国作为人口基数大国,临床上的发病人数相当可观。根据目前国内外的研究来看,雌激素、氧化应激反应、ARID1A、miRNA等等是OE恶变为EAOC的重要因素,且部分因素与EAOC的FIGO分期、组织学分级及患者的预后等有着明显的相关性,未来可能成为EAOC的预测标志物。但目前各因素之间的相互作用未研究明确,亟待更多大型综合类研究项目予以探明。细胞信号转导通路作为近年来的研究热点,Wnt信号通路已被证明在多种人体恶性疾病中发挥重要作用,如胃癌、肝癌、淋巴癌等。现多组研究已证明,Wnt信号通路中AXIN与β-catenin的异常表达与卵巢恶性肿瘤有关,但尚无研究明确该通路在OE恶变为EAOC中的具体机制,因此深入性的研究Wnt信号通路中关键因子(如AXIN、β-catenin等)在OE恶变过程中的作用机制,并结合实际临床数据进行分析,以期为EAOC早期筛查、及时阻断OE恶变、改善EAOC患者预后等方面做出积极指导意义。

NOTES

*通讯作者Email: wlmqingyi@163.com

参考文献

[1] 郎景和. 对子宫内膜异位症认识的历史、现状与发展[J]. 中国实用妇科与产科杂志, 2020, 36(3): 193-196.
[2] DiVasta, A.D., Vitonis, A.F., Laufer, M.R. and Missmer, S.A. (2018) Spectrum of Symptoms in Women Diagnosed with Endometriosis during Adolescence vs Adulthood. American Journal of Obstetrics & Gynecology, 218, e1-324.
https://doi.org/10.1016/j.ajog.2017.12.007
[3] 郎景和. 子宫内膜异位症的研究与设想[J]. 中华妇产科杂志, 2003, 38(8): 478-480.
https://doi.org/10.3760/j.issn:0529-567X.2003.08.018
[4] Krawczyk, N., Banys-Paluchowski, M., Schmidt, D., Ulrich, U. and Fehm, T. (2016) Endometriosis-Associated Malignancy. Geburtshilfe und Frauenheilkunde, 76, 176-181.
https://doi.org/10.1055/s-0035-1558239
[5] Melin, A., Sparén, P., Persson, I. and Bergqvist, A. (2006) Endometriosis and the Risk of Cancer with Special Emphasis on Ovarian Cancer. Human Reproduction, 21, 1237-1242.
https://doi.org/10.1093/humrep/dei462
[6] Melin, A., Sparén, P. and Bergqvist, A. (2007) The Risk of Cancer and the Role of Parity among Women with Endometriosis. Human Reproduction, 22, 3021-3026.
https://doi.org/10.1093/humrep/dem209
[7] Brinton, L.A., Gridley, G., Persson, I., Baron, J. and Bergqvist, A. (1997) Cancer Risk after a Hospital Discharge Diagnosis of Endometriosis. American Journal of Obstetrics & Gyne-cology, 176, 572-579.
https://doi.org/10.1016/S0002-9378(97)70550-7
[8] Brinton, L.A., Sakoda, L.C., Sherman, M.E., et al. (2005) Relationship of Benign Gynecologic Diseases to Subsequent Risk of Ovarian and Uterine Tumors. Cancer Epidemiology, Biomarkers & Prevention, 14, 2929-2935.
https://doi.org/10.1158/1055-9965.EPI-05-0394
[9] Kobayashi, H. (2016) Potential Scenarios Leading to Ovarian Cancer Arising from Endometriosis. Redox Report, 21, 119-126.
https://doi.org/10.1016/S0002-9378(15)30003-X
[10] Bounous, V.E., Ferrero, A., Fuso, L., et al. (2016) Endo-metriosis-Associated Ovarian Cancer: A Distinct Clinical Entity? Anticancer Research, 36, 3445-3449.
[11] Sampson, J.A. (1927) Metastatic or Embolic Endometriosis, due to the Menstrual Dissemination of Endometrial Tissue into the Venous Circulation. The American Journal of Pathology, 3, 93-110.
[12] Scott, R.B. (1953) Malignant Changes in Endometriosis. Obstetrics & Gynecology, 2, 283-289.
[13] Sampson, J.A. (1927) Peritoneal Endometriosis due to the Menstrual Dissemination of Endometrial Tissue into the Peritoneal Cavity. American Journal of Obstetrics & Gynecology, 14, 422-469.
https://doi.org/10.1016/S0002-9378(15)30003-X
[14] Kvaskoff, M., Mahamat-Saleh, Y., Farland, L.V., et al. (2021) Endometriosis and Cancer: A Systematic Review and Meta-Analysis. Human Reproduction Update, 27, 393-420.
https://doi.org/10.1093/humupd/dmaa045
[15] Yachida, N., Yoshihara, K., Yamaguchi, M., Suda, K., Tamura, R. and Enomoto, T. (2021) How Does Endometriosis Lead to Ovarian Cancer? The Molecular Mechanism of Endometriosis-Associated Ovarian Cancer Development. Cancers, 13, Article No. 1439.
https://doi.org/10.3390/cancers13061439
[16] 王姝, 郎景和. 子宫内膜异位症相关性卵巢癌的研究现状及展望[J]. 中国实用妇科与产科杂志, 2017, 33(4): 360-364.
[17] Varga, J., Reviczká, A., Háková, H., Švajdler, P., Rabajdová, M. and Ostró, A. (2022) Predictive Factors of Endometriosis Progression into Ovarian Cancer. Journal of Ovarian Research, 15, Article No. 5.
https://doi.org/10.1186/s13048-021-00940-8
[18] 孙婷婷, 王姝, 刘玉婷, 郎景和. 子宫内膜异位症相关性卵巢透明细胞癌与子宫内膜样癌的临床及预后特点[J]. 生殖医学杂志, 2019, 28(4): 321-330.
[19] 赵飞, 于新平, 赵涵, 宋冰冰, 吕广伟, 张世红, 王黎明. GLI1及Shh在卵巢型子宫内膜异位症恶变过程中的表达及其意义[J]. 中华妇产科杂志, 2022, 57(2): 125-132.
[20] Li, Q., Sun, Y., Zhang, X., et al. (2019) Endometriosis-Associated Ovarian Cancer Is a Single Entity with Distinct Clinicopathological Characteristics. Cancer Biology & Therapy, 20, 1029-1034.
https://doi.org/10.1080/15384047.2019.1595278
[21] Davis, M.,Rauh-Hain, J.A., Andrade, C., et al. (2014) Comparison of Clinical Outcomes of Patients with Clear Cell and Endometrioid Ovarian Cancer Associated with En-dometriosis to Papillary Serous Carcinoma of the Ovary. Gynecologic Oncology, 132, 760-766.
https://doi.org/10.1016/j.ygyno.2014.01.012
[22] Scarfone, G., Bergamini, A., Noli, S., et al. (2014) Characteris-tics of Clear Cell Ovarian Cancer Arising from Endometriosis: A Two Center Cohort Study. Gynecologic Oncology, 133, 480-484.
https://doi.org/10.1016/j.ajog.2012.12.004
[23] Wang, S., Qiu, L., Lang, J.H., et al. (2013) Clinical Analysis of Ovarian Epithelial Carcinoma with Coexisting Pelvic Endometriosis. American Journal of Obstetrics & Gynecology, 208, 413.E1-413.E5.
https://doi.org/10.1016/j.ajog.2012.12.004
[24] Ye, S., Yang, J., You, Y., et al. (2014) Comparative Study of Ovarian Clear Cell Carcinoma with and without Endometriosis in People’s Republic of China. Fertility and Sterility, 102, 1656-1662.
https://doi.org/10.1016/j.fertnstert.2014.08.008
[25] Zhang, X., Li, M., Tang, Z., Li, X. and Song, T. (2021) Dif-ferentiation between Endometriosis-Associated Ovarian Cancers and Non- Endometriosis-Associated Ovarian Cancers Based on Magnetic Resonance Imaging. The British Journal of Radiology, 94, Article ID: 20201441.
https://doi.org/10.1259/bjr.20201441
[26] Moss, L.D. and Runals, A.L. (1948) Carcinoma of the Ovary Arising in an Endometrial Cyst. New York State Journal of Medicine, 48, 401-406.
[27] Huang, X., Wu, B., Li, J., et al. (2019) Anti-Tumour Effects of Red Blood Cell Membrane-Camouflaged Black Phosphorous Quantum Dots Combined with Chemotherapy and Anti-Inflammatory Therapy. Artificial Cells, Nanomedicine, and Biotechnology, 47, 968-979.
https://doi.org/10.1080/21691401.2019.1584110
[28] Furuya, M., Tanaka, R., Miyagi, E., et al. (2012) Impaired CXCL4 Expression in Tumor-Associated Macrophages (TAMs) of Ovarian Cancers Arising in Endometriosis. Cancer Biology & Therapy, 13, 671-680.
https://doi.org/10.4161/cbt.20084
[29] Riccio, L.D.G.C., Santulli, P., Marcellin, L., et al. (2018) Immunology of Endometriosis. Best Practice & Research Clinical Obstetrics & Gynaecology, 50, 39-49.
https://doi.org/10.1016/j.bpobgyn.2018.01.010
[30] Su, K.M., Wang, P.H., Yu, M.H., Chang, C.-M. and Chang, C.-C. (2020) The Recent Progress and Therapy in Endometriosis-Associated Ovarian Cancer. Journal of the Chinese Medical Association, 83, 227-232.
https://doi.org/10.1039/C7NR04990K
[31] Wang, Z., Liang, C., Shi, F., et al. (2017) Cancer Vaccines Using Supramolecular Hydrogels of NSAID-Modified Peptides as Adjuvants Abolish Tumorigenesis. Nanoscale, 9, 14058-14064.
https://doi.org/10.1039/C7NR04990K
[32] 魏巧红, 武晓红. 子宫内膜异位症相关性卵巢癌的研究进展[J]. 肿瘤研究与临床, 2022, 34(3): 227-230.
[33] Guo, S.W. (2020) Cancer-Associated Mutations in En-dometriosis: Shedding Light on the Pathogenesis and Pathophysiology. Human Reproduction Update, 26, 423-449.
https://doi.org/10.1093/humupd/dmz047
[34] Bulun, S.E., Wan, Y. and Matei, D. (2019) Epithelial Mutations in Endometriosis: Link to Ovarian Cancer. Endocrinology, 160, 626-638.
https://doi.org/10.1155/2015/848595
[35] Iwabuchi, T., Yoshimoto, C., Shigetomi, H. and Kobayashi, H. (2015) Oxidative Stress and Antioxidant Defense in Endometriosis and Its Malignant Transformation. Oxidative Medicine and Cellular Longevity, 2015, Article ID: 848595.
https://doi.org/10.1155/2015/848595
[36] Amano, T., Murakami, A., Murakami, T. and Chano, T. (2021) Anti-oxidants and Therapeutic Targets in Ovarian Clear Cell Carcinoma. Antioxidants, 10, Article No. 187.
https://doi.org/10.3892/or.2018.6946
[37] Kobayashi, H., Yamada, Y., Kawahara, N., Ogawa, K. and Yoshimoto, C. (2019) Integrating Modern Approaches to Pathogenetic Concepts of Malignant Transformation of Endometriosis. Oncology Reports, 41, 1729-1738.
https://doi.org/10.3892/or.2018.6946
[38] Xie, H., Chen, P., Huang, H.W., Liu, L.P. and Zhao, F. (2017) Reactive Oxygen Species Down-Regulate ARID1A Expression via Its Promoter Methylation during the Pathogenesis of Endometriosis. European Review for Medical and Pharmacological Sciences, 21, 4509-4515.
[39] Stewart, C.J., Leung, Y., Walsh, M.D., et al. (2012) KRAS Mutations in Ovarian Low-Grade Endometrioid Adenocarcinoma: Association with Concurrent Endometriosis. Human Pathology, 43, 1177-1183.
https://doi.org/10.1016/j.ejogrb.2018.09.026
[40] Bastu, E., Onder, S., Demiral, I., et al. (2018) Distinguishing the Progression of an Endometrioma: Benign or Malignant? European Journal of Obstetrics & Gynecology and Re-productive Biology, 230, 79-84.
https://doi.org/10.1016/j.ejogrb.2018.09.026
[41] Sansal, I. and Sellers, W.R. (2004) The Biology and Clinical Relevance of the PTEN Tumor Suppressor Pathway. Journal of Clinical Oncology, 22, 2954-2963.
https://doi.org/10.1200/JCO.2004.02.141
[42] Dinulescu, D.M., Ince, T.A., Quade, B.J., Shafer, S.A., Crowley, D. and Jacks, T. (2005) Role of K-ras and Pten in the Development of Mouse Models of Endometriosis and Endometrioid Ovarian Cancer. Nature Medicine, 11, 63-70.
https://doi.org/10.1038/nm1173
[43] Ma, X., Hui, Y., Lin, L., Wu, Y., Zhang, X. and Qin, X. (2016) Possible Relevance of Tumor-Related Genes Mutation to Malignant Transformation of Endometriosis. European Journal of Gynaecological Oncology, 37, 89-94.
[44] 叶云, 黄紫艳, 陈颖. 雌激素受体PTEN及环氧合酶-2在子宫内膜异位症相关性卵巢癌患者中的表达[J]. 中国妇幼保健, 2021, 36(5): 1168-1171.
https://doi.org/10.19829/j.zgfybj.issn.1001-4411.2021.05.062
[45] Lv, J., Zhu, Q., Jia, X., Yu, N. and Li, Q. (2016) In Vitro and in Vivo Effects of Tumor Suppressor Gene PTEN on Endometriosis: An Experimental Study. Medical Science Monitor, 22, 3727-3736.
https://doi.org/10.12659/MSM.901091
[46] Trizzino, M., Barbieri, E., Petracovici, A., et al. (2018) The Tumor Suppressor ARID1A Controls Global Transcription via Pausing of RNA Polymerase Ⅱ. Cell Reports, 23, 3933-3945.
https://doi.org/10.1126/science.1196333
[47] Jones, S., Wang, T.L., Shih, I.-M., et al. (2010) Frequent Mutations of Chromatin Remodeling Gene ARID1A in Ovarian Clear Cell Carcinoma. Science, 330, 228-231.
https://doi.org/10.1126/science.1196333
[48] Kurman, R.J. and Shih, I.-M. (2011) Molecular Pathogenesis and Extraovarian Origin of Epithelial Ovarian Cancer—Shifting the Paradigm. Human Pathology, 42, 918-931.
https://doi.org/10.1016/j.humpath.2011.03.003
[49] Wiegand, K.C., Hennessy, B.T., Leung, S., et al. (2014) A Functional Proteogenomic Analysis of Endometrioid and Clear Cell Carcinomas Using Reverse Phase Protein Array and Mutation Analysis: Protein Expression Is Histotype-Specific and Loss of ARID1A/BAF250a Is Associated with AKT Phosphorylation. BMC Cancer, 14, Article No. 120.
https://doi.org/10.1186/1471-2407-14-120
[50] Yamamoto, S., Tsuda, H., Takano, M., Tamai, S. and Matsubara, O. (2012) Loss of ARID1A Protein Expression Occurs as an Early Event in Ovarian Clear Cell Carcinoma Development and Frequently Coexists with PIK3CA Mutations. Modern Pathology, 25, 615-624.
https://doi.org/10.1038/modpathol.2011.189
[51] Suda, K., Cruz Diaz, L.A., Yoshihara, K., et al. (2020) Clonal Lineage from Normal Endometrium to Ovarian Clear Cell Carcinoma through Ovarian Endometriosis. Cancer Science, 111, 3000-3009.
https://doi.org/10.1111/cas.14507
[52] Madanes, D., Bilotas, M.A., Bastón, J.I., et al. (2020) PI3K/AKT Pathway Is Altered in the Endometriosis Patient’s Endometrium and Presents Differences According to Severity Stage. Gynecological Endocrinology, 36, 436-440.
https://doi.org/10.1055/s-0036-1597120
[53] Wilbur, M.A., Shih, I.M., Segars, J.H. and Fader, A.N. (2017) Can-cer Implications for Patients with Endometriosis. Seminars in Reproductive Medicine, 35, 110-116.
https://doi.org/10.1055/s-0036-1597120
[54] 魏娜, 韩萍. P53、ki-67的表达与上皮性卵巢癌预后相关性分析[J]. 华北理工大学学报(医学版), 2019, 21(6): 454-459.
https://doi.org/10.19539/j.cnki.2095-2694.2019.06.007
[55] 王丽宏, 叶霞, 吕家峰. 卵巢子宫内膜异位症恶性变过程中p53蛋白的表达变化[J]. 基层医学论坛, 2015, 19(33): 4614-4615, 4616.
[56] Akahane, T., Sekizawa, A., Purwosunu, Y., Nagatsuka, M. and Okai, T. (2007) The Role of p53 Mutation in the Carcinomas Arising from En-dometriosis. International Journal of Gynecological Pathology, 26, 345-351.
https://doi.org/10.1097/pgp.0b013e31802b41a8
[57] 刘丽丹. 蛋白激酶CK2β及抑癌基因蛋白p53在卵巢癌组织中的表达[J]. 中国妇幼保健, 2017, 32(19): 4818-4821.
[58] Wu, R.L., Ali, S., Bandyopadhyay, S., et al. (2015) Comparative Analysis of Differentially Expressed miRNAs and their Downstream mRNAs in Ovarian Cancer and its Associated Endometriosis. Journal of Cancer Science & Therapy, 7, 258-265.
[59] Gaia-Oltean, A.I., Braicu, C., Gulei, D., et al. (2021) Ovarian Endometriosis, a Precursor of Ovarian Cancer: Histological Aspects, Gene Expression and microRNA Alterations (Review). Experimental and Therapeutic Medicine, 21, 243-243.
https://doi.org/10.3892/etm.2021.9674
[60] Pavone, M.E. and Lyttle, B.M. (2015) Endometriosis and Ovarian cancer: Links, Risks, and Challenges Faced. International Journal of Women’s Health, 7, 663-672.
https://doi.org/10.2147/IJWH.S66824
[61] Braicu, O.L., Budisan, L., Buiga, R., et al. (2017) miRNA Expression Profiling in Formalin-Fixed Paraffin-Embedded Endometriosis and Ovarian Cancer Samples. OncoTargets and Therapy, 10, 4225-4238.
https://doi.org/10.2147/OTT.S137107
[62] Marí-Alexandre, J., Carcelén, A.P., Agababyan, C., et al. (2019) In-terplay between microRNAs and Oxidative Stress in Ovarian Conditions with a Focus on Ovarian Cancer and Endo-metriosis. International Journal of Molecular Sciences, 20, Article No. 5322.
https://doi.org/10.3390/ijms20215322
[63] 杨永彬, 刘玲, 王炎秋, 杨懿霞, 万小平. 卵巢和卵巢肿瘤中Hedgehog信号通路的表达[J]. 上海交通大学学报(医学版), 2009, 29(4): 426-430.
[64] 朱奕晓, 王艳. Hedgehog信号通路与常见妇科恶性肿瘤的研究进展[J]. 医学综述, 2017, 23(12): 2364-2369.
[65] Deb, B., Uddin, A. and Chakraborty, S. (2018) miRNAs and Ovarian Cancer: An Overview. Journal of Cellular Physiology, 233, 3846-3854.
https://doi.org/10.1002/jcp.26095
[66] Nguyen, V.H.L., Hough, R., Bernaudo, S. and Peng, C. (2019) Wnt/β-Catenin Signalling in Ovarian Cancer: Insights into Its Hyperactivation and Function in Tumorigenesis. Journal of Ovarian Research, 12, Article No. 122.
https://doi.org/10.1186/s13048-019-0596-z
[67] 李孝琼, 肖云峰, 吴妮莎, 徐黎明, 罗博, 周国俊, 冷政伟. 肿瘤干细胞及Wnt/β-catenin信号通路在结直肠癌肝转移中的作用[J]. 中华肝脏外科手术学电子杂志, 2019, 8(4): 377-378.
[68] Adamson, G.D., Kennedy, S.H. and Hummelshoj, L. (2010) Creating Solutions in Endometriosis: Global Collaboration through the World Endometriosis Research Foundation. Journal of Endometriosis and Pelvic Pain Disorders, 2, 3-6.
https://doi.org/10.1177/228402651000200102
[69] 范晓杰, 王心然, 岳萌, 等. PD-L1在三阴性乳腺癌组织中表达及其与脉管生成的关系[J]. 中国肿瘤生物治疗杂志, 2019, 26(11): 1229-1234.
[70] Goldsberry, W.N., Me-za-Perez, S., Londoño, A.I., Katre, A.A., Mott, B.T., Roane, B.M., Goel, N., Wall, J.A., Cooper, S.J., Norian, L.A., Randall, T.D., Birrer, M.J. and Arend, R.C. (2020) Inhibiting WNT Ligand Production for Improved Immune Recogni-tion in the Ovarian Tumor Microenvironment. Cancers, 12, Article No. 766.
https://doi.org/10.3390/cancers12030766
[71] Stamos, J.L. and Weis, W.I. (2013) The β-Catenin Destruction Complex. Cold Spring Harbor Perspectives in Biology, 5, a007898.
https://doi.org/10.1101/cshperspect.a007898
[72] Fu, F., Deng, Q., Li, R., Wang, D., Yu, Q.X., Yang, X., Lei, T.Y., Han, J., Pan, M., Zhen, L., Li, J., Li, F.T., Zhang, Y.L., Li, D.Z. and Liao, C. (2020) AXIN2 Gene Silencing Re-duces Apoptosis through Regulating Mitochondria-Associated Apoptosis Signaling Pathway and Enhances Proliferation of ESCs by Modulating Wnt/β-Catenin Signaling Pathway. European Review for Medical and Pharmacological Sciences, 24, 418-427.
[73] 陶玲, 于春霞, 李霞, 周琦. β-连环蛋白、轴蛋白在卵巢上皮细胞癌组织中的表达及意义[J]. 中国妇幼保健, 2015, 30(15): 2356-2358.
[74] 李艳, 马玲, 张伊莉, 蒋涛, 毕国斌, 邵晨. β-catenin、Axin在卵巢上皮细胞癌组织中的表达及临床意义[J]. 现代中西医结合杂志, 2017, 26(26): 2871-2873, 2957.