移植相关性血栓性微血管病临床研究
Clinical Study of Transplant-Associated Thrombotic Microangiopathy
DOI: 10.12677/ACM.2022.12111564, PDF, HTML, XML, 下载: 284  浏览: 412 
作者: 张赵光:山东第一医科大学,山东 济南;董 琳*:山东第一医科大学第一附属医院(山东省千佛山医院)血液病学,山东 济南
关键词: 造血干细胞移植造血干细胞移植相关性血栓微血管病补体激活Hematopoietic Stem Cell Transplantation Hematopoietic Stem Cell Transplant-Associated Thrombotic Microangiopathy Complement Activation
摘要: 造血干细胞移植(Hematopoietic stem cell transplant HSCT)相关血栓性微血管病(Hematopoietic stem cell transplant-associated thrombotic microangiopathy TA-TMA)是公认的移植后出现的严重并发症。其特征是微血管病性溶血性贫血、原因不明的血小板减少症、乳酸脱氢酶(Lactate dehydrogenase, LDH)升高和内皮损伤所致相关器官衰竭为特征,如高血压、慢性肾病、肺动脉高压、胃肠道或中枢神经系统疾病。TA-TMA的临床表现与血栓性血小板减少性紫癜(thrombotic thrombocytopenic purpura, TTP)和非典型溶血性尿毒症综合征(atypical haemolytic uraemic syndrome, aHUS)相似,后两者以微血管病性溶血性贫血、血小板消耗、微循环纤维蛋白沉积以及最终的终末器官损伤为特征。由于该病起病隐匿,进展迅速,对其认识不足,经常造成漏诊和误诊。我们应该及早发现,及早干预,降低患者死亡风险。
Abstract: Hematopoietic stem cell transplant (HSCT)-associated thrombotic microangiopathy TA-TMA is rec-ognized as a serious complication after transplantation. It is characterized by microangiopathic he-molytic anemia, unexplained thrombocytopenia, elevated lactate dehydrogenase (LDH), and related organ failure due to endothelial damage, such as hypertension, chronic kidney disease, pulmonary hypertension, gastrointestinal or central nervous system diseases. The clinical manifestations of TA-TMA were correlated with thrombotic thrombocytopenic purpura (TTP) and atypical haemolytic uraemic syndrome (aHUS), characterized by microangiopathic hemolytic anemia, platelet depletion, microcirculating fibrin deposition, and eventual end-organ damage. Due to the hidden onset, rapid progress and insufficient understanding of the disease, it often leads to missed diagnosis and misdiagnosis. We should make early detection and intervention to reduce the risk of death.
文章引用:张赵光, 董琳. 移植相关性血栓性微血管病临床研究[J]. 临床医学进展, 2022, 12(11): 10863-10869. https://doi.org/10.12677/ACM.2022.12111564

1. TA-TMA病因

目前有关TA-TMA的病因及危险因素并不特别明确,有文献报道,化疗相关因素、全身照射、急性GVHD (graft-versus-host disease)、同种移植、感染(细菌、真菌和病毒)、钙调神经磷酸酶抑制剂等被认为是TA-TMA的危险因素。Victoria Van Benschoten等 [1] 人做了一项关于TA-TMA危险因素的荟萃分析,在对过去17年的文献进行的系统回顾表明在所找到的研究分析中,其中14项研究中提出TA-TMA最常见的危险因素是2~4级急性移植物抗宿主病。事实上,移植后预测因素(如急性GVHD或全身感染)与TA-TMA具有相关性。许多移植前的危险因素使患者容易发生移植物抗宿主病或感染,进而导致内皮损伤和TA-TMA的发展。Li A [2] 等人的一项病例对照研究发现,在造血干细胞移植患者中出现aGVHD时,其sC5b9和ANG2水平升高与TMA的发展和可能的死亡率相关。最终,所有这些因素都会导致内皮损伤,最终导致TMA。 [3]

2. TA-TMA发病机制

典型的TMA包括血栓性血小板减少性紫癜(TTP)和溶血性尿毒症综合征(hemolytic uremic syndrome,HUS)。但TA-TMA与TTP病理机制不同,后者ADAMTS1318水平降低,而TA-TMA为正常水平 [4]。内皮损伤是TA-TMA的发病基础,内皮损伤的血浆标志物包括血栓调节蛋白(thrombomodulin)、纤溶酶原激活物抑制剂-1 (plasminogen-activator inhibitor-1)和可溶性细胞间粘附分子-1 (plasminogen-activator inhibitor-1)。HSCT后患者导致TMA的出现可大致分为三个阶段:起始阶段、进展阶段和溶血阶段。

起始阶段的原因可以为:1) 钙调磷酸酶抑制剂(calcineurin inhibitors, CNIs)与西罗莫司的联合使用造成内皮细胞受损。西罗莫司可显著升高肾内CNI浓度,并降低血管内皮生长因子(vascularendothelial growth factor VEGF)水平,从而增加TMA的风险 [5]。2) 预处理治疗时,使用大剂量化疗,与内皮细胞损伤导致TA-TMA密切相关 [6]。3) 病毒感染单核细胞、T淋巴细胞时,肿瘤坏死因子α、白介素-1和其他细胞因子释放造成内皮受损。4) GVHD可通过激活T淋巴细胞损害内皮细胞,从而促进TA-TMA的发展。进展阶段:内皮细胞破裂,向血液中释放微小囊泡,称为内皮微粒,这些微粒可诱导血小板聚集并促进微血栓形成,促进了TA-TMA的发展。NO和VEGF有保护作用 [5]。NO引起局部血管扩张,保护循环细胞因子(例如TNF-α),抑制Weibel-Palade小体的胞吐进而抑制血管性血友病因子和P-选择素的释放。TA-TMA患者过度溶血会释放游离血红蛋白,使其与NO结合,使NO保护作用无效,并促进血管内皮进一步损伤。受损的内皮细胞暴露出损伤相关分子模式,激活C3,以启动替代补体途径。正常条件下,循环因子H (Factor H )作为因子I (Factor I)的辅助因子,可抑制C3转化酶,调节补体活性。之前的一项研究报道了6名在HSCT后发生TA-TMA的患者中,其中3有补体因子H (CFH)自身抗体。 [7] Qi J [8] 等人研究中发现高水平的低氧诱导因子-1α (hypoxia-inducible factor-1α, HIF-1α)可以抑制补体调节蛋白CFH的水平并且导致补体激活,促进内皮损伤并刺激微血栓的形成。证实了CFH突变在TA-TMA发病中的重要作用。若抗因子H的自身抗体存在,使得因子H活性降低,则导致替代补体途径不受控制的激活。补体因子H相关(Complement Factor H-related, CFHR)蛋白调节C5转化酶活性,CFHR蛋白编码基因缺失可导致补体激活失调。激活的补体对内皮细胞造成弥漫性损伤 [9]。溶血期:补体系统激活导致内皮细胞损伤,从而导致多器官微血管内血栓 [10]。这些微血栓导致血小板减少、器官衰竭和红细胞机械性破坏引起的血管内溶血。Tingting Pan等对15名确诊为TA-TMA的患者进行研究,发现TA-TMA患者的血浆血红素加氧酶-1 (heme oxygenase-1, HO-1)水平显著降低。HO-1是一种应激诱导的胞质细胞保护蛋白。在氧化应激反应中,保护内皮细胞 [11]。此外,它还通过激活补体调节蛋白来调节补体途径 [12],HO-1增加衰变加速因子(decay-accelerating factor, DAF)的水平,抑制C3和C5转化酶的合成。DAF保护内皮细胞免受补体介导的细胞毒性,在TA-TMA患者的内皮表面下调。研究证实在TA-TMA患者中因存在微血管病变和内皮损伤,使得HO-1缺乏,造成了内皮细胞进一步受损,并使得补体途径激活,最后形成内皮细胞表面裂解膜攻击复合物(C5b-9),进一步加剧内皮细胞损伤。有研究表示,SC5B-9的早期升高,作为末梢补体通路激活标记物,可以成为临床有用的预测指标来预测轻度至中度TA-TMA。 [13] 另外还有研究证明了中性粒细胞胞外陷阱(NETs)水平升高与TA-TMA的发展有关,表明NET水平升高可能是一个有用的预测。 [14]

3. TA-TMA临床表现

肾脏是受TA-TMA影响最常见的器官,临床表现主要为肾功能减退,如肾小球滤过率下降、大量蛋白尿、高血压等。当怀疑TA-TMA时,尿蛋白与胰蛋白酶之比可作为一个容易获得的有用的生物标志物,用于治疗过程的监测。相比之下,血清肌酐水平对于肾功能受损不敏感。因此,血清肌酐升高不在作为TA-TMA损伤肾脏的诊断。文献报道,造血干细胞移植(HSCT)患者出现肾脏损伤时,在肾脏活检及尸检中有TA-TMA的组织学证据,肾脏小动脉出现补体C4d沉积,表明经典补体途径参与血管内皮损伤。所以,肾穿刺行C4d免疫组化染色可作为血管内皮损伤的诊断,用于TA-TMA诊断。 [15] [16] [17]

TA-TMA累及肺脏时,主要表现为肺动脉高压。其主要机制可能为肺小动脉内皮剥脱、损伤、微血栓形成和破碎细胞渗到肺间质中。由于造成肺动脉高压的病因有很多,在造血干细胞移植后出现肺动脉高压时,需要鉴别是否由TA-TMA引起。在对100例患者进行研究中发现,在对造血干细胞移植后患者出现TA-TMA,通过心脏超声心动图可以在HSCT后 + 7天右心室压力升高与后来TA-TMA的发展显著相关(p = 0.004)。 [16] 可能提示血栓性微血管病患者肺早期血管损伤。 [15] [16] [17]

对胃肠道的影响,越来越多的证据表明TA-TMA影响胃肠道的小血管,患者常表现为腹痛、恶心等。由于移植后患者出现消化道症状也有可能为移植物抗宿主病(GVHD)所致,因此对于鉴别GVHD和TA-TMA至关重要。有文献报道,通过结肠镜取活检行组织学检查,可见微血管病变的组织学征象包括小血管内皮肿胀或剥落,非炎症性隐窝变性,分离上皮细胞凋亡、楔状节段性损伤、间质水肿伴出血或红细胞碎块 [18]。El-Bietar等人提出了8个有助于识别肠道TA-TMA与肠道GVHD鉴别诊断的组织学特征 [19]。通过临床表现及组织学活检,对于诊断由TA-TMA引起的肠道病变将有一定的帮助。

对于中枢神经系统的影响,患者可出现精神错乱、头痛、幻觉、癫痫等症状。其原因可能是急性不可控的TA-TMA致高血压,导致中枢神经系统出血。所以应积极治疗高血压及脑出血是提高患者预后良好水平的关键 [17]。

另外,TA-TMA还可以引起多浆膜腔积液,患者可以出现顽固性心包积液,胸腔积液,腹腔积液。异基因造血干细胞移植后出现多浆膜腔积液常被认为是慢性GVHD的表现 [20] [21]。但不除外由TA-TMA导致全身血管损伤引起。TA-TMA患者除了上述临床变现外,应还有微血管病性贫血、蛋白尿和高血压、乳酸脱氢酶升高,这些征象能帮助我们进行鉴别 [22]。

4. TA-TMA的诊断标准

组织学检查是诊断TA-TMA的金标准,但在移植后患者中操作较为困难。TA-TMA的目前的诊断有:骨髓移植临床试验网络委员会(The Bone Marrow Transplant Clinical Trials Network, BMT-CTN)标准 [23],欧洲骨髓组织国际工作组移植标准(International Working Group of the European Group for Bone Marrow Transplantation criteria, IWG-EBMT) [18] 和Overall-TMA标准(O-TMA) [19] 等。Overall-TMA标准包含了BMT-CNT和IWG-EBMT的所有诊断指标,但是以上实验室检查必须同时进行,并需要至少2次连续阳性,易导致诊断和治疗的延误。因此2021年我国针对TA-TMA诊断提出了专家共识,其诊断标准为:(1) 乳酸脱氢酶超过正常值上限;(2) 蛋白尿(随机蛋白尿超过正常值上限或随机蛋白尿/肌酐 ≥ 2 mg/mg);(3) 高血压(年龄 < 18岁:血压高于同年龄、性别和身高的健康人群血压正常参考值上限;年龄 ≥ 18岁:血压 ≥ 140/90 mmhg);(4) 新发的血小板减少(血小板计数 < 50 × 10^9/L或血小板计数较基线水平减少≥50%);(5) 新发的贫血(血红蛋白值低于正常参考值下限或输血需求增加);(6) 微血管病变证据(外周血中存在破碎红细胞或组织标本的病理学结果提示微血管病);(7) 终末补体活化(血浆sC5b-9值高于健康人群正常值上限)。(1)、(2)、(3):考虑TA-TMA的诊断,需要密切监测;(2)、(7)提示预后较差,考虑及早干预。 [24] 蛋白尿、高血压以及乳酸脱氢酶升高可以作为早期出现TA-TMA的标志物,尽早进行干预,可改善预后。当蛋白尿 > 30 mg/dL和sC5b-9升高的患者应考虑临床干预 [25]。

因此在造血干细胞移植后,若患者出现蛋白尿、乳酸脱氢酶升高等异常,应及早完善相关检查,及早发现并诊断TA-TMA。

5. TA-TMA治疗

1) 首先,应该消除潜在因素,比如减少钙调磷酸酶抑制剂的使用,治疗可能促进TA-TMA发展的疾病,如急性GVHD和感染,积极控制高血压,对于出现肾功能损害的患者,通过持续静脉血液滤过和其他形式的肾脏替代治疗进行肾脏支持。 [13] [17] [18]

2) 血浆置换(TPE):TA-TMA与TPP的区别之一是TA-TMA与ADAMTS-13的正常活性有关,而大多数TPP患者缺乏ADAMTS-13的活性,并具有ADAMTS-13抗体。通过血浆置换对于TPP的治疗是有效的。有研究表明,早期开始TPE可能对一些患者有益,因为它可以替代功能失调的补体调节因子,清除抗H因子抗体或炎症细胞因子,并清除内皮损伤的促进剂,如循环内皮细胞、内皮微粒和从受损红细胞中释放的与NO结合的循环游离血红蛋白。由于缺乏随机对照研究,根据一些个案报道,PTE有效率低于50%,TA-TMA死亡率仍然高于80%。鉴于在TA-TMA患者中使用TPE相关的高死亡率和严重并发症风险,可以在以下情况下考虑TPE:如果存在H因子自身抗体证据;如果由于任何原因不能给予较新的药物,如依库珠单抗;如果TPE可以早期时使用,即在TA-TMA诊断后2~3周内。使用TPE时,应该认真考虑风险收益比。 [4] [13] [18] [26]

3) 利妥昔单抗:在TPP中经常使用的利妥昔单抗,已在TA-TMA患者中作为单药治疗或与血浆置换联合使用。确切的机制尚不清楚,推测其可耗竭CD20+B细胞前体,减弱T细胞活化并减少细胞因子释放。 [4] [27] [28] [29]

4) 依库珠单抗:高剂量化疗、CNI、病毒和GVHD等引发的直接内皮组织损伤可导致补体途径的失调,最终导致终末补体激活和细胞溶解膜攻击复合物的形成。依裤珠单抗阻止末端补体系统的激活,从而阻止膜攻击复合物的形成。其一开始用于治疗非典型HUS的补体阻断药物。在一项研究中,Jodele等人将接受依库珠单抗治疗的TA-TMA患者与接受其他治疗的类似患者进行了比较,结果是使用依裤珠单抗治疗的TA-TMA患者存活率有所提高。所有患者决定使用依库珠单抗治疗是基于符合该组定义的标准:存在蛋白尿、激活的终末补体和多器官损害。所有存活的患者都能够在不复发TA-TMA的情况下停止依库珠单抗治疗。 [17] [30] [31] [32] [33]

5) 去纤维蛋白多核苷酸:去纤肽是一种聚脱氧核糖核苷酸盐,阻断纤溶酶原激活物抑制剂-1并减弱肿瘤坏死因子的作用。通过其抗血栓和溶栓作用保护内皮。有研究报告指出去纤肽(作为单一疗法或/和与其他疗法联合)有55%的有效率。但仍需要注意出血风险。 [17] [27] [34] [35] [36]

6. 总结

TA-TMA为造血干细胞移植后一个较为严重的并发症,其发生率为1%~76%之间,严重TA-TMA患者的死亡率超过80%。 [13] 主要机制为补体系统激活造成血管内皮系统损伤。临床上,我们应该结合患者临床表现及化验结果,及早发现TA-TMA。通过SC5b-9的检测,对于我们预测TA-TMA的发生有指导意义。根据患者自身情况,合理选择治疗方法,提高患者预后水平。

NOTES

*通讯作者。

参考文献

[1] Van Benschoten, V., Roy, C., et al. (2022) Incidence and Risk Factors of Transplantation-Associated Thrombotic Microangiopathy: A Systematic Review and Meta-Analysis. Transplantation and Cellular Therapy, 28, 266.e1-266.e8.
https://doi.org/10.1016/j.jtct.2022.01.009
[2] Li, A., Bhatraju, P.K., Chen, J., et al. (2021) Prognostic Biomarkers for Thrombotic Microangiopathy after Acute Graft-versus-Host Disease: A Nested Case-Control Study. Transplantation and Cellular Therapy, 27, 308.e1-308.e8.
https://doi.org/10.1016/j.jtct.2020.12.010
[3] Punatar, S., Kalantri, S.A., Chichra, A., et al. (2021) Pre-Transplant Use of Tyrosine Kinase Inhibitors and Transplant Associated Thrombotic Microangiopathy—A Single Centre Analysis of Incidence, Risk Factors and Outcomes. Bone Marrow Transplantation, 56, 1558-1562.
https://doi.org/10.1038/s41409-021-01213-0
[4] Khosla, J., Yeh, A.C., Spitzer, T.R. and Dey, B.R. (2018) Hematopoietic Stem Cell Transplant-Associated Thrombotic Microangiopathy: Current Paradigm and Novel Therapies. Bone Marrow Transplantation, 53, 129-137.
https://doi.org/10.1038/bmt.2017.207
[5] Goldberg, R.J., Nakagawa, T., Johnson, R.J. and Thurman, J.M. (2010) The Role of Endothelial Cell Injury in Thrombotic Microangiopathy. American Journal of Kidney Diseases, 56, 1168-1174.
https://doi.org/10.1053/j.ajkd.2010.06.006
[6] Willems, E., Baron, F., Seidel, L., et al. (2010) Comparison of Thrombotic Microangiopathy after Allogeneic Hematopoietic Cell Transplantation with High-Dose or Nonmyeloablative Conditioning. Bone Marrow Transplantation, 45, 689-693.
https://doi.org/10.1038/bmt.2009.230
[7] Jodele, S., Licht, C., Goebel, J., Dixon, B.P., Zhang, K., Sivakumaran, T.A., et al. (2013) Abnormalities in the Alternative Pathway of Complement in Children with Hematopoietic Stem Cell Transplant-Associated Thrombotic Microangiopathy. Blood, 122, 2003-2007.
https://doi.org/10.1182/blood-2013-05-501445
[8] Qi, J., Pan, T., You, T., et al. (2022) Upregulation of HIF-1α Contributes to Complement Activation in Transplantation-Associated Thrombotic Microangiopathy. British Journal of Haematology, 199, 603-615.
https://doi.org/10.1111/bjh.18377
[9] Ricklin, D. and Cines, D.B. (2013) TMA: Beware of Complements. Blood, 122, 1997-1999.
https://doi.org/10.1182/blood-2013-07-512707
[10] Jan, A.S., Hosing, C., Aung, F. and Yeh, J. (2019) Ap-proaching Treatment of Transplant-Associated Thrombotic Microangiopathy from Two Directions with Eculizumab and Transitioning from Tacrolimus to Sirolimus. Transfusion, 59, 3519-3524.
https://doi.org/10.1111/trf.15534
[11] Zhao, Y., Zhang, L., Qiao, Y., et al. (2013) Heme Oxygenase-1 Prevents Cardiac Dysfunction in Streptozotocin-Diabetic Mice by Reducing Inflammation, Oxidative Stress, Apoptosis and En-hancing Autophagy. PLOS ONE, 8, e75927.
https://doi.org/10.1371/journal.pone.0075927
[12] Tu, C.F., Tai, H.C., et al. (2010) The in Vitro Protection of Human Decay Accelerating Factor and hDAF/Heme Oxygenase-1 Transgenes in Porcine Aortic Endothelial Cells against Sera of Formosan Macaques. Transplantation Proceedings, 42, 2138-2141.
https://doi.org/10.1016/j.transproceed.2010.05.104
[13] Elemary, M., Sabry, W., Seghatchian, J. and Goubran, H. (2019) Transplant-Associated Thrombotic Microangiopathy: Diagnostic Challenges and Management Strategies. Transfusion and Apheresis Science, 58, 347-350.
https://doi.org/10.1016/j.transci.2019.04.022
[14] Mezö, B., Horváth, O., Sinkovits, G., et al. (2020) Validation of Early Increase in Complement Activation Marker sC5b-9 as a Predictive Biomarker for the Development of Thrombotic Microangiopathy after Stem Cell Transplantation. Frontiers in Medicine (Lausanne), 7, Article ID: 569291.
https://doi.org/10.3389/fmed.2020.569291
[15] Jodele, S., Laskin, B.L., Dandoy, C.E., et al. (2015) A New Para-digm: Diagnosis and Management of HSCT-Associated Thrombotic Microangiopathy as Multi-System Endothelial In-jury. Blood Reviews, 29, 191-204.
https://doi.org/10.1016/j.blre.2014.11.001
[16] Dandoy, C., Davies, S.M., Hirsch, R., Chima, R.S., Paff, Z., Cash, M., et al. (2014) Abnormal Echocardiography Seven Days after Stem Cell Transplant May Be an Early Indicator of Thrombotic Microangiopathy. Biology of Blood and Marrow Transplantation, 21, 113-118.
https://doi.org/10.1016/j.bbmt.2014.09.028
[17] El-Bietar, J., Warren, M., Dandoy, C., et al. (2015) Histologic Features of Intestinal Thrombotic Microangiopathy in Pediatric and Young Adult Patients after Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 21, 1994-2001.
https://doi.org/10.1016/j.bbmt.2015.06.016
[18] Dhakal, P. and Bhatt, V.R. (2017) Is Complement Blockade an Acceptable Therapeutic Strategy for Hematopoietic Cell Transplant-Associated Thrombotic Microangiopathy? Bone Marrow Transplantation, 52, 352-356.
https://doi.org/10.1038/bmt.2016.253
[19] Cho, B.S., Yahng, S.A., Lee, S.E., et al. (2010) Validation of Recently Proposed Consensus Criteria for Thrombotic Microangiopathy after Allogeneic Hematopoietic Stem-Cell Transplantation. Transplantation, 90, 918-926.
https://doi.org/10.1097/TP.0b013e3181f24e8d
[20] Laskin, B.L., Goebel, J., Davies, S.M., et al. (2011) Early Clinical Indicators of Transplant-Associated Thrombotic Microangiopathy in Pediatric Neuroblastoma Patients Undergo-ing Auto-SCT. Bone Marrow Transplantation, 46, 682-689.
https://doi.org/10.1038/bmt.2010.182
[21] Ishikawa, Y., Nishio, S., Sasaki, H., et al. (2011) Transplanta-tion-Associated Thrombotic Microangiopathy after Steroid Pulse Therapy for Polyserositis Related to Graft-versus-Host Disease. Clinical and Experimental Nephrology, 15, 179-183.
https://doi.org/10.1007/s10157-010-0376-y
[22] Ruutu, T., Barosi, G., Benjamin, R.J., et al. (2007) Diagnostic Criteria for Hematopoietic Stem Cell Transplant-Associated Microangiopathy: Results of a Consensus Process by an International Working Group. Haematologica, 92, 95-100.
https://doi.org/10.3324/haematol.10699
[23] Rudoni, J., Jan, A., Hosing, C., Aung, F. and Yeh, J. (2018) Eculizumab for Transplant-Associated Thrombotic Microangiopathy in Adult Allogeneic Stem Cell Transplant Recipients. European Journal of Haematology, 101, 389-398.
https://doi.org/10.1111/ejh.13127
[24] 中华医学会血液学分会造血干细胞应用学组. 造血干细胞移植相关血栓性微血管病诊断和治疗中国专家共识(2021年版) [J]. 中华血液学杂志, 2021, 42(3): 177-184.
[25] Jodele, S., Davies, S.M., Lane, A., et al. (2014) Diagnostic and Risk Criteria for HSCT-Associated Thrombotic Microangiopathy: A Study in Children and Young Adults. Blood, 124, 645-653.
https://doi.org/10.1182/blood-2014-03-564997
[26] Fuge, R., Bird, J.M., Fraser, A., et al. (2001) The Clinical Features, Risk Factors and Outcome of Thrombotic Thrombocytopenic Purpura Occurring after Bone Marrow Trans-plantation. British Journal of Haematology, 113, 58-64.
https://doi.org/10.1046/j.1365-2141.2001.02699.x
[27] Au, W.Y., Ma, E.S., Lee, T.L., et al. (2007) Successful Treatment of Thrombotic Microangiopathy after Haematopoietic Stem Cell Transplantation with Rituximab. British Journal of Haematology, 137, 475-478.
https://doi.org/10.1111/j.1365-2141.2007.06588.x
[28] Carella, A.M., D’Arena, G., Greco, M.M., Nobile, M. and Cascavilla, N. (2008) Rituximab for Allo-SCT-Associated Thrombotic Thrombocytopenic Purpura. Bone Marrow Transplantation, 41, 1063-1065.
https://doi.org/10.1038/bmt.2008.25
[29] Dhakal, P., Giri, S., Pathak, R. and Bhatt, V.R. (2017) Eculizumab in Transplant-Associated Thrombotic Microangiopathy. Clinical and Applied Thrombosis/Hemostasis, 23, 175-180.
https://doi.org/10.1177/1076029615599439
[30] Rudoni, J., Jan, A., Hosing, C., et al. (2018) Eculizumab for Transplant-Associated Thrombotic Microangiopathy in Adult Allogeneic Stem Cell Transplant Recipients. European Journal of Haematology, 101, 389-398.
https://doi.org/10.1111/ejh.13127
[31] Kim, S.S., Patel, M., Yum, K., et al. (2015) Hematopoietic Stem Cell Transplant-Associated Thrombotic Microangiopathy: Review of Pharmacologic Treatment Options. Transfusion, 55, 452-458.
https://doi.org/10.1111/trf.12859
[32] Jodele, S., Fukuda, T., Vinks, A., et al. (2014) Eculizumab Ther-apy in Children with Severe Hematopoietic Stem Cell Transplantation-Associated Thrombotic Microangiopathy. Biology of Blood and Marrow Transplantation, 20, 518-525.
https://doi.org/10.1016/j.bbmt.2013.12.565
[33] Corti, P., Uderzo, C., Tagliabue, A., et al. (2002) Defibrotide as a Promising Treatment for Thrombotic Thrombocytopenic Purpura in Patients Undergoing Bone Marrow Transplantation. Bone Marrow Transplantation, 29, 542-543.
https://doi.org/10.1038/sj.bmt.1703414
[34] Uderzo, C., Bonanomi, S., Busca, A., et al. (2006) Risk Factors and Severe Outcome in Thrombotic Microangiopathy after Allogeneic Hematopoietic Stem Cell Transplantation. Trans-plantation, 82, 638-644.
https://doi.org/10.1097/01.tp.0000230373.82376.46
[35] Devadas, S.K., Toshniwal, M., Bagal, B., et al. (2018) Successful Treatment of Transplant Associated Thrombotic Microangiopathy (TA-TMA) with Low Dose Defibrotide. Indian Journal of Hematology and Blood Transfusion, 34, 469-473.
https://doi.org/10.1007/s12288-017-0904-y
[36] Laberko, A., Aksenova, M., Shipitsina, I., et al. (2020) Serious Hemorrhagic Complications after Successful Treatment of Hematopoietic Stem Cell Transplantation-Associated Thrombotic Microangiopathy with Defibrotide in Pediatric Patient with Myelodysplastic Syndrome. Frontiers in Pedi-atrics, 8, Article No. 155.
https://doi.org/10.3389/fped.2020.00155