B-矩阵线性互补问题解的误差界的新估计式
A New Estimator of Error Bounds for B-Matrix Linear Complementary Problems
DOI: 10.12677/AAM.2022.1111877, PDF, HTML, XML, 下载: 169  浏览: 244 
作者: 李玲玲, 莫宏敏*, 李慧君:吉首大学数学与统计学院,湖南 吉首
关键词: 严格对角占优M-矩阵B-矩阵误差界估计式Strictly Diagonally Dominant M-Matrix B-Matrix Error Bound Estimator
摘要: 利用严格对角占优M-矩阵逆矩阵的无穷大范数范围,综合运用不等式放缩技巧,得到了B-矩阵线性互补问题解的误差界的一个新估计式。理论证明新估计式改进了现有文献的有关结果,数值例子说明了新估计式的可行性和有效性。
Abstract: By using the infinite norm range of the strictly diagonally dominant M-matrix inverse matrix, a new estimator of the error bounds of the solutions of B-matrix linear complementarity problems is ob-tained by using the inequality reduction technique. It is proved that the new estimation improves the results of the existing literature. Numerical examples show the feasibility and effectiveness of the new estimation.
文章引用:李玲玲, 莫宏敏, 李慧君. B-矩阵线性互补问题解的误差界的新估计式[J]. 应用数学进展, 2022, 11(11): 8290-8298. https://doi.org/10.12677/AAM.2022.1111877

1. 引言

线性互补问题在许多领域具有广泛的应用,例如二次规划问题、市场均衡问题、最优控制问题等 [1] [2] [3]。线性互补问题的数学模型为求 x R n ,满足

x 0 , M x + q 0 , ( M x + q ) T x = 0 ,

简记为 L C P ( M , q ) 。其中 M = ( m i j ) R n × n 为给定的实矩阵, q R n 为给定的实向量。

线性互补问题的解很大程度上取决于矩阵M的性质。若矩阵MP-矩阵,则线性互补问题有唯一解。2006年,文 [4] 给出结果:设M是P-矩阵,则有

x x max d [ 0 , 1 ] n ( I D + D M ) 1 r ( x ) ,

其中 x L C P ( M , q ) 的解, r ( x ) = min { x , M x + q } , D = d i a g ( d 1 , d 2 , , d n ) , ( 0 d i 1 ) 。近年来,国内外学者在此基础上给出了很多特殊矩阵类线性互补问题解的误差界估计式 [5] - [15]。本文将继续讨论P-矩阵的子类B-矩阵线性互补问题解的误差界,给出B-矩阵线性互补问题解的误差界的一个新估计式,并通过理论分析和数值实例说明新估计式的有效性和可行性。

2. 预备知识

N + 表示全体正整数的集合, A = ( a i j ) R n × n ,若

| a i i | > j = 1 , j i n | a i j | , i N = { 1 , 2 , , n }

则称A为严格对角占优矩阵;若 a i j 0 , i j , i , j N ,则称A为Z-矩阵 [11];若A为Z-矩阵且 A 1 0 ,则称A为M-矩阵 [11]。

定义1 [3] 设 A = ( a i j ) R n × n , x R n ,若A满足 max x i ( A x ) i 0 , x 0 则称A为P-矩阵。

定义2 [12] 设 A = ( a i j ) R n × n ,若对任意的 i , j N

k N a i k > 0 , 1 n ( k N a i k ) > a i j , j i .

则称A为B-矩阵。

2009年,文 [6] 给出:设 M = ( m i j ) R n × n 是B-矩阵, M = B + + C ,这里

B + = ( b i j ) = ( m 11 r 1 + m 1 n r 1 + m n 1 r n + m n n r n + ) , C = ( r 1 + r 1 + r n + r n + ) , (1)

r i + = max { 0 , m i j | j i }

max d [ 0 , 1 ] n ( I D + D M ) 1 n 1 min { β , 1 } (2)

其中 β = min i N { β i } ,且 β i = b i i j i | b i j |

2016年,文 [9] 给出了优于(2)式的新估计式:设 M = ( m i j ) R n × n 是B-矩阵, M = B + + C ,其中 B + = ( b i j ) 形如(1)式,则有

max d [ 0 , 1 ] n ( I D + D M ) 1 i = 1 n n 1 min { β ¯ i , 1 } j = 1 i 1 ( 1 + 1 β ¯ j k = j + 1 n | b j k | ) (3)

其中

β ¯ i = b i i j = i + 1 n | b i j | l i ( B + ) , (4)

l k = max k i n { 1 | b i i | j = k , i n | b i j | } , j = 1 i 1 ( 1 + 1 β ¯ j k = j + 1 n | b j k | ) = 1 , i = 1

2016年,文 [10] 又给出了新的估计式:设 M = ( m i j ) R n × n 是B-矩阵,且 M = B + + C ,其中 B + = ( b i j ) 形如(1)式,则有:

max d [ 0 , 1 ] n ( I D + D M ) 1 i = 1 n n 1 min { β ˜ i , 1 } j = 1 i 1 ( b j j β ˜ j ) (5)

其中 β ˜ i = b i i j = i + 1 i 1 | b i j | > 0 ,且 j = 1 i 1 b j j β ˜ j = 1 ( i = 1 ) (6)

3. 主要结果

引理1 [9] 设 γ > 0 η 0 ,则对任意的 x [ 0 , 1 ]

1 1 x + γ x 1 min { γ , 1 } , η x 1 x + γ x η γ

引理2 [10] 设 A = ( a i j ) R n × n a i i > j = i + 1 n | a i j | , i N ,则对任意的 x i [ 0 , 1 ] , i N

1 x i + a i i x i 1 x i + a i i x i j = i + 1 n | a i j | x i a i i a i i j = i + 1 n | a i j | .

引理3 [10] H : = ( h 1 , h 2 , , h n ) T e , e = ( 1 , 1 , , 1 ) , h 1 , h 2 , , h n 0 , ( I H ) 1 n 1

引理4 [16] 设 A = ( a i j ) R n × n 是严格对角占优M-矩阵,则有

A 1 max { i = 1 n [ 1 a i i i < k n | a i k | m k i j = 1 i 1 u j 1 u j p j ] , i = 1 n p i a i i i < k n | a i k | m k i j = 1 i 1 1 1 u j p j }

为叙述方便起见,本文引入以下符号:

u i ( A ) = 1 | a i i | j = i + 1 n | a i j | , b k ( A ) = max { j i + k , k j n | a i + k , j | | a i + k , i + k | , i = 1 , 2 , , n k } , k = 1 , 2 , , n ,

p k ( A ) = max { | a i + k , k | + h = k + 1 , h i + k n | a i + k , h | b k ( A ) | a i + k , i + k | , i = 1 , 2 , , n k } , k = 1 , 2 , , n ,

d k ( A ) = max { j i + k 1 , k j n n | a i + k 1 , j | | a i + k 1 , i + k 1 | , i = 1 , 2 , , n k + 1 } , k = 1 , 2 , , n ,

r l i ( A ) = | a l i | | a l l | k l , i | a l k | , l i , r i ( A ) = max l i { r l i ( A ) } , i N ,

m j i ( A ) = | a j i | + k j , i | a j k | r i ( A ) | a j j | , j i , i N .

3.1. 定理1

M = ( m i j ) R n × n 是B-矩阵,且 M = B + + C , B = ( b i j ) 形如(1)式,则有:

max d [ 0 , 1 ] n ( I D + D M ) 1 max { i = 1 n [ n 1 min { β ^ i , 1 } j = 1 i 1 k = j + 1 n | b j k | α j ( B + ) ] , i = 1 n [ ( n 1 ) p i ( B + ) min { β ^ i , 1 } j = 1 i 1 | b j j | α j ( B + ) ] } . (7)

其中,

β ^ i = | b i i | k i | b i k | m k i ( B + ) , α i ( B + ) = | b i i | k = i + 1 n | b i k | p i ( B ) . (8)

证明:令 M D = I D + D M 。则有

M D = I D + D M = I D + D ( B + + C ) = B D + + C D .

其中 B D + = I D + D B + , C D = D C ,由文献 [6] 中定理2.2的证明可知 B D + 是主对角元素为正的严格对角占优M-矩阵,于是由引理3可得:

M D 1 ( I + ( B D + ) 1 C D ) 1 ( B D + ) 1 ( n 1 ) ( B D + ) 1 . (9)

由引理4可得:

( B D + ) 1 max { i = 1 n [ 1 1 d i + b i i d i i < k n | b i k | d i m k i j = 1 i 1 u j 1 u j p j ] , i = 1 n [ p i 1 d i + b i i d i i < k n | b i k | d i m k i j = 1 i 1 1 1 u j p j ] } . (10)

由引理1可得:

b k ( B D + ) = max { j i + k , k j n | b i + k , j | d i + k 1 d i + k + b i + k , i + k d i + k } max { j i + k , k j n | b i + k , j | | b i + k , i + k | } = b k ( B + ) ,

p k ( B D + ) = max { | b i + k , k | d i + k + h = k + 1 , h i + k n | b i + k , h | d i + k b k ( B D + ) 1 d i + k + b i + k , i + k d i + k } max { | b i + k , k | + h = k + 1 , h i + k n | b i + k , h | b k ( B D + ) | b i + k , i + k | } = p k ( B + ) ,

u i ( B D + ) = 1 1 d i + b i i d i j = i + 1 n | b i j | d i 1 | b i i | j = i + 1 n | b i j | = u i ( B + ) ,

r l i ( B D + ) = | b l i | d l ( 1 d l + b l l d l ) k l , i | b l k | d l | b l i | | b l l | k l , i | b l k | = r l i ( B + ) ,

r i ( B D + ) = max l i { r l i ( B D + ) } max l i { r l i ( B + ) } = r i ( B + ) ,

m j i ( B D + ) = | b j i | d j + k j , i | b j k | d j r i ( B D + ) 1 d j + b j j d j | b j i | + k j , i | b j k | r i ( B D + ) | b j j | = m j i ( B + ) ,

进而,由引理2可得:

1 ( 1 d i + b i i d i ) i < k n | b i k | d i m k i ( B D + ) 1 min { | b i i | i < k n | b i k | m k i ( B + ) , 1 } = 1 min { β ^ i , 1 } ,

p i ( B D + ) ( 1 d i + b i i d i ) i < k n | b i k | d i m k i ( B D + ) p i ( B + ) min { β ^ i , 1 } ,

1 1 u j ( B D + ) p j ( B D + ) = 1 d j + b j j d j 1 d j + b j j d j k = j + 1 n | b j k | d j p j ( B D + ) | b j j | | b j j | k = j + 1 n | b j k | p j ( B + ) = | b j j | α j ( B + ) ,

u j ( B D + ) 1 u j ( B D + ) p j ( B D + ) = k = j + 1 n | b j k | d j ( 1 d j + b j j d j ) k = j + 1 n | b j k | d j p j ( B D + ) k = j + 1 n | b j k | | b j j | k = j + 1 n | b j k | p j ( B + ) = k = j + 1 n | b j k | α j ( B + ) ,

由此可得:

( B D + ) 1 max { i = 1 n [ 1 min { β ^ i , 1 } j = 1 i 1 k = j + 1 n | b j k | α j ( B + ) ] , i = 1 n [ p i ( B + ) min { β ^ i , 1 } j = 1 i 1 | b j j | α j ( B + ) ] } , (11)

因此,由(10)、(11)式可得(7)式成立。

接下来,对(3)式、(5)式及(7)式进行比较。

3.2. 定理2

M = ( m i j ) R n × n 是B-矩阵,且 M = B + + C ,其中 B + = ( b i j ) 形如(1)式,则有:

max { i = 1 n [ n 1 min { β ^ i , 1 } j = 1 i 1 k = j + 1 n | b j k | α j ( B + ) ] , i = 1 n [ ( n 1 ) p i ( B + ) min { β ^ i , 1 } j = 1 i 1 | b j j | α j ( B + ) ] } i = 1 n n 1 min { β ¯ i , 1 } j = 1 i 1 [ 1 + 1 β ¯ j k = j + 1 n | b j k | ] i = 1 n n 1 min { β ˜ i , 1 } j = 1 i 1 | b j j | β ˜ j . (12)

其中 β ^ i α i ( B + ) β ¯ i β ˜ i 分别如(8)式,(4)式及(6)式所示。

证明:因为 B + 为具有正主对角元的严格对角占优矩阵,因此对任意的 j N ,有

0 r j ( B + ) < 1 , 0 l j ( B + ) < 1 , 0 p j ( B + ) < 1.

且对任意的 j = 1 , 2 , , n 1

m k i ( B + ) l k i ( B + ) = | b k i | + j = i + 1 , k n | b k j | r i ( B + ) | b k k | | b k i | + j = i + 1 , k n | b k j | | b k k | = j = i + 1 , k n | b k j | r i ( B + ) j = i + 1 , k n | b k j | | b k k | 0 ,

则有 β ^ i β ¯ i , 1 min { β ^ i , 1 } 1 min { β ¯ i , 1 } . (13)

p k ( B + ) l k ( B + ) = | b i + k , k | + h = k + 1 , i + k n | b i + k , h | b k | b i + k , i + k | | b i + k , k | + h = k + 1 , i + k n | b i + k , h | | b i + k , i + k | = h = k + 1 , i + k n | b i + k , h | b k h = k + 1 , i + k n | b i + k , h | | b i + k , i + k | 0 ,

则有 α i ( B + ) β ¯ i . (14)

由(13)式及(14)式可得

i = 1 n [ n 1 min { β ^ i , 1 } j = 1 i 1 k = j + 1 n | b j k | α j ( B + ) ] i = 1 n n 1 min { β ¯ i , 1 } j = 1 i 1 [ 1 + 1 β ¯ i k = j + 1 n | b j k | ] , (15)

| b j j | α j ( B + ) | b j j | β ¯ j = | b j j | k = j + 1 n | b j k | + k = j + 1 n | b j k | α j ( B + ) = 1 + 1 β ¯ j k = j + 1 n | b j k | l j ( B + ) 1 + 1 β ¯ j k = j + 1 n | b j k | , (16)

由(15)式及(16)式可得

i = 1 n [ ( n 1 ) min { β ^ i , 1 } j = 1 i 1 | b j j | α j ( B + ) ] i = 1 n n 1 min { β ¯ i , 1 } j = 1 i 1 [ 1 + 1 β ¯ i k = j + 1 n | b j k | ] , (17)

综上,由(15)式及(17)式可得

max { i = 1 n [ n 1 min { β ^ i , 1 } j = 1 i 1 k = j + 1 n | b j k | α j ( B + ) ] , i = 1 n [ ( n 1 ) p i ( B + ) min { β ^ i , 1 } j = 1 i 1 | b j j | α j ( B + ) ] } i = 1 n n 1 min { β ¯ i , 1 } j = 1 i 1 [ 1 + 1 β ¯ j k = j + 1 n | b j k | ] . (18)

β ¯ i β ˜ i , 1 min { β ¯ i , 1 } 1 min { β ˜ i , 1 } ,

因此,

1 + 1 β ¯ j k = j + 1 n | b j k | 1 + 1 β ˜ j k = j + 1 n | b j k | = β ˜ j + k = j + 1 n | b j k | β ˜ j = | b j j | β ˜ j , (19)

由(18)式及(19)式可得

max { i = 1 n [ n 1 min { β ^ i , 1 } j = 1 i 1 k = j + 1 n | b j k | α j ( B + ) ] , i = 1 n [ ( n 1 ) p i ( B + ) min { β ^ i , 1 } j = 1 i 1 | b j j | α j ( B + ) ] } i = 1 n n 1 min { β ¯ i , 1 } j = 1 i 1 [ 1 + 1 β ¯ j k = j + 1 n | b j k | ] i = 1 n n 1 min { β ˜ i , 1 } j = 1 i 1 | b j j | β ˜ j .

4. 数值算例

例1. 考虑B-矩阵

M = ( 1.3 0.1 0.3 0 0.3 1.4 0.1 0.4 0.4 0.2 1.4 0.3 0.5 0.5 0.3 1.5 ) .

M = B + + C ,其中

B + = ( 1 0.4 0 0.3 0.1 1 0.5 0 0 0.2 1 0.1 0 0 0.2 1 ) .

由(3)式可得

max d [ 0 , 1 ] n ( I D + D M ) 1 40.5506 ,

由(5)式可得

max d [ 0 , 1 ] n ( I D + D M ) 1 74.4444 ,

由(7)式可得

max d [ 0 , 1 ] n ( I D + D M ) 1 9.7961.

可见,(7)式优于(3)式和(5)式。

例2. 考虑B-矩阵 [9]

M k = ( 1.5 0.5 0.4 0.5 0.1 1.7 0.7 0.6 0.8 0.1 k k + 1 1.8 0.7 0 0.7 0.8 1.8 ) .

M k = B k + + C k ,其中

B k + = ( 1 0 0.1 0 0.8 1 0 0.1 0 0.1 k k + 1 0.8 1 0.1 0.8 0.1 0 1 ) .

由(2)式可得

max d [ 0 , 1 ] n ( I D + D M ) 1 3 min { β , 1 } = 30 ( k + 1 ) ,

k + 时, 30 ( k + 1 ) + ,因此该数值结果会趋于正无穷。

由(3)式可得

max d [ 0 , 1 ] n ( I D + D M ) 1 14.8064 ,

由(5)式可得

max d [ 0 , 1 ] n ( I D + D M ) 1 15.2675 ,

由(7)式可得

max d [ 0 , 1 ] n ( I D + D M ) 1 3.6762.

由此可知,(7)式优于(2)式、(3)式和(5)式。

由数值算例的结果可知,定理1中的误差界新估计式是可行的、有效的,改进了文献 [9] [10] 中的结果。

5. 结论

理论证明本文所得B-矩阵线性互补问题解的误差界新估计式优于文献 [9] [10] 中的结果,数值算例亦说明了本文所得新估计式的有效性和可行性。

NOTES

*通讯作者。

参考文献

[1] Chen, X. and Xiang, S. (2008) Perturbation Bounds of P-Matrix Linear Complementarity Problems. SIAM Journal on Optimization, 18, 1250-1265.
https://doi.org/10.1137/060653019
[2] Murty, K.G. and Yu, F.T. (1988) Linear Complementarity, Linear and Nonlinear Programming. Heldermann, Berlin.
[3] Cottle, R.W., Pang, J.S. and Stone, R.E. (2009) The Linear Complementarity Problem. Society for Industrial and Applied Mathematics, Philadelphia.
https://doi.org/10.1137/1.9780898719000
[4] Chen, X. and Xiang, S. (2006) Computation of Error Bounds for P-Matrix Linear Complementarity Problems. Mathematical Programming, 106, 513-525.
https://doi.org/10.1007/s10107-005-0645-9
[5] Chen, T., Li, W., Wu, X. and Vong, S. (2015) Error Bounds for Linear Complementarity Problems of MB-Matrices. Numerical Algorithms, 70, 341-356.
https://doi.org/10.1007/s11075-014-9950-9
[6] García-Esnaola, M., and Peña, J.M. (2009) Error Bounds for Linear Complementarity Problems for B-Matrices. Applied Mathematics Letters, 22, 1071-1075.
https://doi.org/10.1016/j.aml.2008.09.001
[7] Araújo, C.M. and Mendes-Gonçalves, S. (2019) On a Class of Nonsingular Matrices Containing B-Matrices. Linear Algebra and Its Applications, 578, 356-369.
https://doi.org/10.1016/j.laa.2019.05.015
[8] García-Esnaola, M. and Peña, J.M. (2012) Error Bounds for Linear Complementarity Problems Involving BS-Matrices. Applied Mathematics Letters, 25, 1379-1383.
https://doi.org/10.1016/j.aml.2011.12.006
[9] Li, C. and Li, Y. (2016) Note on Error Bounds for Linear Comple-mentarity Problems for B-Matrices. Applied Mathematics Letters, 57, 108-113.
https://doi.org/10.1016/j.aml.2016.01.013
[10] Li, C. and Li. Y. (2016) Weakly Chained Diagonally Dominant B-Matrices and Error Bounds for Linear Complementarity Problems. Numerical Algorithms, 73, 985-998.
https://doi.org/10.1007/s11075-016-0125-8
[11] Berman, A. and Plemmons, R.J. (1994) Nonnegative Matrices in The mathematical Sciences. Society for Industrial and Applied Mathematics, Philadelphia.
https://doi.org/10.1137/1.9781611971262
[12] Peña, J.M. (2001) A Class of P-Matrices with Applications to the Localization of the Eigenvalues of a Real Matrix. SIAM Journal on Matrix Analysis and Applications, 22, 1027-1037.
https://doi.org/10.1137/S0895479800370342
[13] 王峰, 彭小平, 孙德淑. B-矩阵线性互补问题的误差界估计[J]. 高等学校计算数学学报, 2018, 40(1): 27-36.
[14] 周翠玲, 莫宏敏. B-矩阵线性互补问题解的误差界新估计式[J]. 高校应用数学学报, 2022, 37(2): 142-150.
[15] Gao, L. and Li, C. (2017) An Improved Error Bound for Linear Complementarity Problems for B-Matrices. Journal of Inequalities and Applications, 2017, Article No. 144.
https://doi.org/10.1186/s13660-017-1414-z
[16] 刘新, 杨晓英. 严格对角占优M-矩阵A的 的新上界[J]. 北华大学学报(自然科学版), 2014, 15(2): 184-187.