APP  >> Vol. 2 No. 2 (April 2012)

    三种典型结构金属的空位形成与迁移机制
    Formation and Migration Mechanism of the Vacancy in Three Typical Structures Metal

  • 全文下载: PDF(367KB) HTML    PP.50-54   DOI: 10.12677/app.2012.22008  
  • 下载量: 2,504  浏览量: 9,592   国家科技经费支持

作者:  

黄烁,张川晖,孙婧,李亚萍,张振峰,申江:北京科技大学应用物理研究所

关键词:
晶格反演嵌入原子方法空位迁移机制
Lattice Inversion; EAM; Vacancy; Migration Mechanism

摘要:

本文应用陈氏晶格反演嵌入原子势(CLI-EAM)分析了面心、体心和六角三种典型结构金属的空位形成与迁移机制。结果表明,对于形成的最稳定双空位结构,面心结构的金属银为最近邻组态,体心结构的金属钼和六角结构的金属钪为最近邻组态或次近邻组态。对于单空位迁移机制,三种结构的金属均为最近邻迁移。对于双空位迁移机制,面心金属银保持最近邻双空位组态;体心金属钼为最近邻和次近邻双空位组态的相互转化;六角金属钪为最近邻和次近邻双空位组态的相互转化,或者是保持其原来的组态。

The formation and migration mechanisms of the vacancy for FCC, BCC and HCP metal are studied by Chen’s lattice inversion embedded-atom-method (CLI-EAM). The results show that the most stable, divacancy configuration of BCC and HCP metal are the first neighbor divacancy configurations (FNDC) or the second neighbor divacancy configurations (SNDC) while in FCC metal is FNDC. The single vacancy defect migration mechanism of all the metal is first neighbor migration. The divacancy mechanism of FCC metal Ag is FNDC, the divacancy mechanism of BCC metal Mo is FNDC and SNDC conversion, and the divacancy mechanism of HCP metal Sc is the transition between FNDC and SNDC or the initial configuration.

文章引用:
黄烁, 张川晖, 孙婧, 李亚萍, 张振峰, 申江. 三种典型结构金属的空位形成与迁移机制[J]. 应用物理, 2012, 2(2): 50-54. http://dx.doi.org/10.12677/app.2012.22008

参考文献

[1] S. Dannefaer, P. Mascher and D. Kerr. Monovacancy formation enthalpy in silicon. Physical Review Letters, 1986, 56(20): 2195- 2198.
[2] E. Mart´ınez, C. C. Fu. Cr interactions with He and vacancies in dilute Fe-Cr alloys from first principles. Physical Review B, 2011, 84(1): Article ID 041203(10).
[3] D. J. Backlund, S. K. Estreicher. Ti, Fe, and Ni in Si and their interactions with the vacancy and the A center: A theoretical study. Physical Review B, 2010, 81(23): Article ID 235213(8).
[4] L. Ismer, M. S. Park, A. Janotti, et al. Interactions between hydrogen impurities and vacancies in Mg and Al: A comparative analysis based on density functional theory. Physical Review B, 2009, 80(18): Article ID 184110(10).
[5] 王超营, 王振清, 孟庆元. 空位的第一性原理及经验势函数的对比研究[J]. 物理学报, 2010, 59(5): 3370-3376.
[6] N. X. Chen. Modified mobius inverse formula and its applications in physics. Physical Review Letters, 1990, 64(11): 1193-1195.
[7] P. Qian, J. L. Liu, Y. W. Hu, et al. Atomistic simulation of site preference, Curie temperature, and lattice vibration of Nd2Co7–xFex. Chinese Physics B, 2011, 20(7): Article ID 076104.
[8] P. Qian, Q. Y. Hu, J. Shen, et al. An atomistic simulation of the structural and vibrational properties of A4Fe3Al32 (A = Th, U). Modelling and Simulation in Materials Science and Engineering, 2010, 18(4): Article ID 045002.
[9] Y. Long, N. X. Chen. An atomistic simulation and phenol- menological approach of misfit dislocation in metal/oxide interface. Surface Science, 2008, 602: 1122-1130.
[10] H. Y. Zhao, N. X. Chen and Y. Long. Interfacial potentials for Al/SiC(111). Journal of Physics: Condensed Matter, 2009, 21 (22): Article ID 225002.
[11] Y. D. Wang, N. X. Chen. Atomistic investigations of misfit dislocation for Pt/SiC(111) interface fracture. Modelling and Simulation in Materials Science and Engineering, 2010, 18(6): Article ID 065012.
[12] M. S. Daw, M. I. Baskes. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Physical Review Letters, 1983, 50(17): 1285-1288.
[13] M. S. Daw, M. I. Baskes. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 1984, 29(12): 6443-6453.
[14] C. H. Zhang, J. J. Han, S. Huang, et al. Chen’s lattice inversion embedded-atom method for FCC metal. Advanced Materials Research, 2011, 320: 415-420.
[15] J. M. Zhang, Y. N. Wen, K. W. Xu, et al. Formation mechanism of the divacancy in FCC metal Pt. Journal of Physics Chemistry of Solids, 2008, 69(8): 1957-1962.
[16] J. Takamura, M. Doyama, M. Kiritani, et al. Proceedings of Yamada conference on point defects and defect interactions in metals. Tokyo: University of Tokyo Press, 1982: 257-259.
[17] H. Ullmaier, P. Ehrhart, H. Shultz, et al. Atomic defects in metals. Berlin: Springer-Verlag, 1991.
[18] K. Marier, H. Mehrer and G. Rein. Self-diffusion in molybdenum. Zeitschrift fur Metallkunde, 1979, 70: 271.
[19] M. I. Baskes, R. A. Johnson. Modified embedded atom potentials for HCP metals. Modelling and Simulation in Materials Science and Engineering, 1994, 2(1): 147-163.