[1]
|
S. Dannefaer, P. Mascher and D. Kerr. Monovacancy formation enthalpy in silicon. Physical Review Letters, 1986, 56(20): 2195- 2198.
|
[2]
|
E. Mart´ınez, C. C. Fu. Cr interactions with He and vacancies in dilute Fe-Cr alloys from first principles. Physical Review B, 2011, 84(1): Article ID 041203(10).
|
[3]
|
D. J. Backlund, S. K. Estreicher. Ti, Fe, and Ni in Si and their interactions with the vacancy and the A center: A theoretical study. Physical Review B, 2010, 81(23): Article ID 235213(8).
|
[4]
|
L. Ismer, M. S. Park, A. Janotti, et al. Interactions between hydrogen impurities and vacancies in Mg and Al: A comparative analysis based on density functional theory. Physical Review B, 2009, 80(18): Article ID 184110(10).
|
[5]
|
王超营, 王振清, 孟庆元. 空位的第一性原理及经验势函数的对比研究[J]. 物理学报, 2010, 59(5): 3370-3376.
|
[6]
|
N. X. Chen. Modified mobius inverse formula and its applications in physics. Physical Review Letters, 1990, 64(11): 1193-1195.
|
[7]
|
P. Qian, J. L. Liu, Y. W. Hu, et al. Atomistic simulation of site preference, Curie temperature, and lattice vibration of Nd2Co7–xFex. Chinese Physics B, 2011, 20(7): Article ID 076104.
|
[8]
|
P. Qian, Q. Y. Hu, J. Shen, et al. An atomistic simulation of the structural and vibrational properties of A4Fe3Al32 (A = Th, U). Modelling and Simulation in Materials Science and Engineering, 2010, 18(4): Article ID 045002.
|
[9]
|
Y. Long, N. X. Chen. An atomistic simulation and phenol- menological approach of misfit dislocation in metal/oxide interface. Surface Science, 2008, 602: 1122-1130.
|
[10]
|
H. Y. Zhao, N. X. Chen and Y. Long. Interfacial potentials for Al/SiC(111). Journal of Physics: Condensed Matter, 2009, 21 (22): Article ID 225002.
|
[11]
|
Y. D. Wang, N. X. Chen. Atomistic investigations of misfit dislocation for Pt/SiC(111) interface fracture. Modelling and Simulation in Materials Science and Engineering, 2010, 18(6): Article ID 065012.
|
[12]
|
M. S. Daw, M. I. Baskes. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Physical Review Letters, 1983, 50(17): 1285-1288.
|
[13]
|
M. S. Daw, M. I. Baskes. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 1984, 29(12): 6443-6453.
|
[14]
|
C. H. Zhang, J. J. Han, S. Huang, et al. Chen’s lattice inversion embedded-atom method for FCC metal. Advanced Materials Research, 2011, 320: 415-420.
|
[15]
|
J. M. Zhang, Y. N. Wen, K. W. Xu, et al. Formation mechanism of the divacancy in FCC metal Pt. Journal of Physics Chemistry of Solids, 2008, 69(8): 1957-1962.
|
[16]
|
J. Takamura, M. Doyama, M. Kiritani, et al. Proceedings of Yamada conference on point defects and defect interactions in metals. Tokyo: University of Tokyo Press, 1982: 257-259.
|
[17]
|
H. Ullmaier, P. Ehrhart, H. Shultz, et al. Atomic defects in metals. Berlin: Springer-Verlag, 1991.
|
[18]
|
K. Marier, H. Mehrer and G. Rein. Self-diffusion in molybdenum. Zeitschrift fur Metallkunde, 1979, 70: 271.
|
[19]
|
M. I. Baskes, R. A. Johnson. Modified embedded atom potentials for HCP metals. Modelling and Simulation in Materials Science and Engineering, 1994, 2(1): 147-163.
|