掺杂改性二氧化钛纳米管光催化降污研究进展
Research Progress of Photocatalytic Pollution Reduction by Dopant Modified Titanium Dioxide Nanotubes
DOI: 10.12677/APP.2022.1211070, PDF, HTML, XML, 下载: 412  浏览: 1,065  科研立项经费支持
作者: 李亚泽, 李思雨, 高 悦, 张 敏*:辽宁师范大学物理与电子技术学院,辽宁 大连
关键词: 二氧化钛纳米管光催化掺杂降解Titanium Dioxide Nanotubes Photocatalysis Doping Degradation
摘要: 随着现代科技和工业的快速发展,水资源受到前所未有的污染威胁。光催化降解由于其有效性和多功能性在目前已经成为了解决水污染问题的主流方案之一,并显示出强大的发展潜力。二氧化钛纳米管及其改性材料被广泛用于光催化降解各种污染物,诸如掺杂和复合材料形式的改性手段已被用于增强其光催化剂的性能。本文综述了最近几年掺杂改性二氧化钛纳米管光催化降解污水的研究进展,介绍了目前常用的掺杂改性方法及其优缺点,从金属和非金属两个类别介绍了常用的掺杂元素,最后通过比较掺杂改性后的降解效果对二氧化钛基纳米管材料降解污水进行了总结和展望。
Abstract: With the rapid development of modern technology and industry, water resources are threatened by unprecedented pollution. Photocatalytic degradation has become one of the mainstream solutions to water pollution problems due to its effectiveness and versatility, and has shown strong potential for development. Titanium dioxide nanotubes and their modified materials are widely used for photocatalytic degradation of various pollutants, and modification methods such as doping and composite materials have been used to enhance their photocatalytic performance. In this paper, the research progress of photocatalytic degradation of wastewater by dopant modified titanium dioxide nanotube in recent years is reviewed, the commonly used doping modification methods and their advantages and disadvantages are introduced, and the commonly used doping elements are introduced from the two categories of metal and non-metal. Finally, the summary and prospective outlook were reached by comparing the wastewater degradation effect of doping modified titanium dioxide nanotube materials.
文章引用:李亚泽, 李思雨, 高悦, 张敏. 掺杂改性二氧化钛纳米管光催化降污研究进展[J]. 应用物理, 2022, 12(11): 603-620. https://doi.org/10.12677/APP.2022.1211070

1. 引言

近年来,世界人口的增加、生活水平的提高以及工业的发展,造成淡水资源稀缺的同时,工业废水的排放量也逐渐增多。目前,对废水的常规处理方法主要包括化学沉淀法、生物法和膜过滤法等。化学沉淀法存在化学药品消耗量大、产生大量污泥、可能导致二次污染以及出水时需进行pH值等理化参数监测等问题。生物法由于其经济性而被业界认可和采用,但是也存在诸如处理前需进行废水稀释,生物过程难以控制以及对某些有机污染物的处理潜力不足等问题。膜过滤法具有简单、有效和快速去除的优点,但其商业规模的维护和运营成本通常很高 [1]。光催化技术作为近年来新兴的污水处理技术,具有巨大的发展潜力,引起了人们极大的兴趣,成为当前的研究热点之一。

在太阳光或紫外线照射下,TiO2具有很高的光催化氧化活性,显示出良好的光催化降解能力。TiO2还具有无毒、低成本、易获得以及良好的化学和热稳定性 [2] [3] [4],对废水中的卡马西平 [5]、亚甲基蓝 [6]、甲基橙 [6] [7]、结晶紫 [6]、刚果红 [8]、四环素 [7] [8]、酸性橙II [9]、双酚A [9] 及罗丹明B [6] [7] [8] [10] 等有机化合物表现出优异的降解去除性能,在污水处理方面具有独特的优势。具备高比表面积的TiO2粉体和纳米结构在降解废水领域具有独特优势,但TiO2粉体存在颗粒聚集、传质限制、亲和力差、回收困难等问题。在诸多TiO2纳米结构中,一维结构的TiO2纳米管是典型的代表,在光催化降解废水方面解决了粉体的诸多问题,并保持其独特的性能:较高的比表面积能够降低电子–空穴对的复合率并提高界面电荷载流子转移率,这两种效应都有利于光催化反应 [11] [12] [13]。但是,TiO2具有较宽的禁带宽度,约3.0 eV,因此TiO2的光催化性能仅能在紫外辐射下才能激活,而紫外线仅占太阳光谱的4%~5% [14]。可见,TiO2的光催化效率还有很大的提升空间,国内外研究者在这方面进行了大量的研究工作,通过元素掺杂、贵金属表面修饰和构建半导体异质结复合材料等手段引进中间能级,试图将TiO2光催化的激活波长扩展到可见光范围,以提高TiO2的光催化降解效率。本文对掺杂改性的氧化钛纳米管光催化降污方面进行综述,首先对掺杂改性方法进行介绍,其次对金属和非金属掺杂改性提升光催化性能进行综述,最后给出结论与展望。

2. TiO2光催化机理

TiO2的价带由O的2p与Ti的3d杂化轨道构成,而导带仅由Ti的3d轨道构成 [15]。当基于紫外辐射(UV)的AOP (高级氧化过程)光子入射到TiO2纳米材料上时,将电子从价带(VB)激发到导带(CB),在价带处留下一个正空穴,如下所示,

TiO 2 + hv e CB + hv CB +

产生的电子通过还原吸附的氧产生超氧自由基,光生空穴通过羟基阴离子和水的氧化产生羟基自由基。

e CB + O 2 absorbed O 2

hv CB + + OH surface OH

hv CB + + H 2 absorbed OH + H +

此外,产生的 O 2 经过还原产生H2O2,在紫外光照射下能够产生OH·

O 2 + e + 2 H + H 2 O 2

H 2 O 2 + hv 2 OH

在波长小于244 nm的光照射下,H2O可以光解产生OH·和H·

H 2 O 2 + hv OH + H

由此产生的超氧化物和羟基自由基通过降解污染物和消毒微生物而对去污过程发挥作用,如图1所示。

Figure 1. Schematic diagram of the mechanism of TiO2 light absorption, free radical generation and pollutant degradation

图1. TiO2光吸收、产生自由基和降解污染物的机理示意图

3. 掺杂改性的方法

目前可以通过多种方法对TiO2纳米管进行掺杂。但是在合成步骤次数方面有较大差异。按照制备工艺程序可以分为一步法和多步法。一步法就是在进行TiO2纳米管生长的同时实现目标元素的掺杂。而多步法的第一步通常是先制备出TiO2纳米管,随后再通过相应的操作实现目标元素的掺杂,尤其是对于多种元素的共掺杂或者复合材料的制备,通常需要多步操作。

3.1. 溶胶–凝胶法

溶胶–凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米结构的材料。溶胶–凝胶法可以很容易均匀定量地掺入一些微量元素,实现分子水平上的均匀掺杂。此外与固相反应相比,化学反应将容易进行,而且仅需要较低的合成温度。Alcaide等人 [16] 采用溶胶–凝胶法制备了Nb掺杂的TiO2纳米管,并通过传统的化学沉积方法在其上沉积Pt纳米粒子,成功制备了具有高催化活性的复合材料。Surah等人 [17] 以硼酸为硼源,采用溶胶–凝胶法制备了B掺杂的TiO2纳米管。

3.2. 溅射法

溅射法简单来讲就是利用荷能粒子轰击靶材,溅射出的沉积粒子到达并附着于基材上形成薄膜的方法。目前,磁控溅射具有操作简单、可大面积成膜、附着力强等优点而被广泛使用。Haryński等人 [18] 先用通过阳极氧化制备了TiO2纳米管,随后通过磁控溅射制备了Cr掺杂的TiO2纳米管。共掺杂TiO2通常采用化学方法合成,步骤复杂,容易造成二次污染,不适合制备TiO2纳米管,而Guo等人 [19] 采用一种新型磁控溅射方法制备了Cu-N共掺杂TiO2纳米管阵列,即在Ar和N2混合气体氛围中,先在Ti衬底上溅射一层Cu膜,然后在Cu的顶部溅射Ti膜,通过改变溅射时间来控制Cu的负载量。

3.3. 水热法

水热法是在密封的压力容器中,以水作为溶剂、粉体经溶解和再结晶的制备材料的湿化学方法。与溶胶凝胶法和共沉淀法相比,其最大优点是一般不需高温烧结即可直接得到结晶粉末,避免了可能形成的微粒硬团聚。水热过程中通过调节反应条件可控制纳米微粒的晶体结构、结晶形态与晶粒纯度。Zafar等人 [20] 先通过阳极氧化法制备了TiO2纳米管,随后以Fe(NO3)3·9H2O为铁源,通过水热法制备了Fe掺杂的TiO2纳米管。在前驱体中加入含有掺杂元素的物质可一步制得掺杂的TiO2纳米管 [21] [22]。Shaban等人 [23] 以乙酸镍和乙酸铬分别用作为镍和铬源,合成了Ni掺杂和Ni-Cr共掺杂TiO2纳米管。Wang等人 [24] 通过将TiO2纳米管浸入含有乙酸镁和乙酸铜混合物的反应釜中合成了Mg-Cu共掺杂TiO2纳米管。

3.4. 阳极氧化法

阳极氧化工艺是目前制备掺杂TiO2纳米管的主流方法。与其他掺杂工艺相比,采用阳极氧化法可以实现在TiO2纳米管生长的同时完成目标元素的掺杂,且通过调节工艺参数就可对材料的形貌、晶相等进行控制。以钛基材为阳极,含有掺杂元素的溶液为电解液进行阳极氧化可以制备掺杂的TiO2纳米管,诸如Al [25]、Mg [26]、Fe [27]、Cr [28]、Au [29] 等金属,P/S [30] 等非金属以及石墨烯 [31] 掺杂的TiO2纳米管均可通过此方法制备,Momeni等人 [32] 还在含有钨酸钠和二硫化钾的混合电解液中对钛片进行阳极氧化制备了W-S共掺杂的TiO2纳米管。此外,还可对含有掺杂元素的钛基合金进行阳极氧化来制备掺杂的TiO2纳米管,与前一种方法相比,它是通过改变合金中相关元素的组分比来控制掺杂元素的含量而不是调节电解液的组分比,Cu [33]、Ni [34] 和Ag [35] 等元素掺杂的TiO2纳米管均已使用此种方法制备。

3.5. 其他方法

其他诸如电化学沉积 [36] [37] [38]、光沉积 [39]、原位沉积 [40]、原子层沉积 [41] [42]、离子交换 [43]、火焰辅助热解 [44]、浸渍 [45] 等方法也被用于制备掺杂TiO2纳米管,其中Nasirpouri等人 [38] 比较了通过直流(DC)和循环伏安(CV)不同沉积技术制备的Ni掺杂TiO2纳米管,发现直流电沉积使大的聚结镍纳米颗粒主要聚集在纳米管的顶面和管口,而循环伏安沉积使Ni纳米颗粒在纳米管上均匀分散。2019年,Dong等人 [46] 通过对在Ti-Ni合金上生长的掺杂Ni的TiO2纳米管进行锌还原,制备了Ti3+-Ni共掺杂TiO2纳米管光阳极。

4. 掺杂改性提升TiO2纳米管的光催化性能

4.1. 非金属元素掺杂

4.1.1. 氮掺杂的TiO2纳米管

氮是最有希望实现增强TiO2在可见光光催化性能的掺杂剂之一。由于氮原子大小与氧原子相当,电离能小且稳定性高,所以氮可以很容易地被引入到TiO2结构中。将氮掺入TiO2晶格导致形成新的中间能级,即高于O 2p价带的N 2p带,这最终会降低TiO2的带隙(约2.5 eV)并将光吸收转移到可见光区域。电子在吸收可见光后有可能从价带迁移到导带,这导致了氮掺杂TiO2的可见光活性(图2(a)) [47] [48] [49]。示意图(图2(b))表示TiO2在可见光照射下N掺杂和光催化降解反应后带隙减小的状态。该图显示了在可见光照射下导带中电子和价带中空穴的产生。导带中的这些电子在催化剂表面积累,然后被溶解在水中或大气中的氧分子清除,从而产生高度氧化的物质,例如超氧自由基阴离子和羟基自由基。价带中产生的空穴被OH离子清除,从而产生高度氧化的物质,例如羟基自由基(OH·),它们具有高反应性并负责有机污染物的降解和矿化。

Figure 2. (a) Energy level diagram of undoped and N-doped TiO2; (b) Possible reaction mechanism of photocatalytic degradation of organic pollutants by N-doped TiO2 under visible light irradiation

图2. (a) 未掺杂和N掺杂TiO2的能级图;(b) N掺杂TiO2在可见光照射下光催化降解有机污染物的可能反应机理

Sayegh等人 [41] 通过可见光照射降解乙酰氨基酚来评估所制备材料的光催化性能。90分钟后,N掺杂TiO2纳米管(N-TiO2 NT)、TiO2纳米管(TiO2 NT)和B-N共掺杂TiO2纳米管(B-N TiO2 NT)的降解率分别为98.3%、95.7%和31.9%,这表明,与未掺杂以及B-N共掺杂相比,N掺杂可以更好地提高降解效率。Peighambardoust等人 [50] 通过在可见光照下降解亚甲基蓝(MB)溶液来研究N-TiO2 NT的光催化活性,结果表明,N-TiO2 NT的光催化活性很高,在6 h可见光照射后,MB的降解率可达到60%,是未掺杂TiO2 NT的3倍。Yadala等人 [51] 通过降解甲基橙(MO)染料,评价了合成的光催化剂的光催化降解效率。发现优化的N-TiO2 NT光催化剂在太阳光照射下的90分钟内表现出约91%的最高降解效率,光催化效率增强可能与掺杂诱导TiO2带隙中能带的形成有关,N的能级在价带最大值附近形成,分散VB,从而促进激子(电子–空穴对)的有效分离,延迟复合和降低带隙能量,吸收更多的紫外线可见光光子用于加速光催化过程。Zhang等人 [52] 以可见光下乙酰甲胺磷的降解为模型,测试了在N2气氛中经不同温度退火后N掺杂TiO2纳米管的可见光光催化活性。发现在500℃退火后的掺杂纳米管显示出最强的光催化活性,在2小时内降解率达到84%。Wang等人 [53] 通过对甲基橙(MO)的光催化降解发现在N2中以600℃退火的掺杂纳米管具有优化的光催化性能。这主要是由于纳米管表面的羟基氧含量受退火温度的影响很大,而这与光催化活性密切相关。Wang等人 [54] 以MB水溶液为有机污染物模型,评估了制备的N掺杂TiO2纳米管阵列的光催化能力。在紫外光照射下,N掺杂TiO2纳米管阵列薄膜表现出最高的光催化性能(图3)。在波长大于410 nm的光照射下,由于对可见光的高吸收,N掺杂TiO2纳米管薄膜的光催化活性是纯TiO2纳米管薄膜的3倍。Lai等人 [55] 以MO为有机污染物模型,在紫外和可见光下评估了所制备N掺杂TiO2纳米管样品的光催化降解性能。与纯TiO2纳米管阵列薄膜相比,N掺杂TiO2纳米管在紫外和模拟太阳光照射下均表现出更高的光催化降解甲基橙为无毒无机产物的活性。Xia等人 [56] 通过光催化降解罗丹明B(RhB)评估所制备的多孔N掺杂TiO2纳米管的光催化性能,优化的多孔N掺杂TiO2 NT在可见光照射3 h后降解了约40%的RhB,优于TiO2 NT。多孔N掺杂TiO2 NT增强的光催化(PC)活性可归因于可见光响应和多孔微结构,两者都有利于捕获低能光子和染料分子。

Figure 3. Photodegradation performance of methylene blue under UV light irradiation. (a) N-TiO2 NT; (b) TiO2 NT; (c) TiO2 nanorods

图3. 紫外光照射下的MB光降解性能。(a) 氮掺杂TiO2纳米管阵列薄膜;(b) TiO2纳米管阵列薄膜;(c) TiO2纳米棒阵列薄膜

4.1.2. 碳/石墨烯掺杂的TiO2纳米管

通过结合诸如石墨烯、氧化石墨烯、还原氧化石墨烯、富勒烯、碳点、单壁和多壁碳纳米管等不同的碳基纳米材料,可以显著改善TiO2的光学和光催化效果 [57] [58]。TiO2与碳纳米材料之间的紧密接触使得它们的协同效应得以发挥,从而提高了其吸附能力。TiO2与碳纳米材料之间的紧密接触使得它们的协同效应得以发挥,从而提高了其吸附能力。

通过化学气相沉积 [59] 或者将TiO2纳米管在含碳氛围下处理 [60] [61] 来制备C掺杂TiO2纳米管。Li等人 [62] 先通过阳极氧化制备了TiO2纳米管,之后,将样品在不同浓度的尿素溶液中浸泡一段时间,然后蒸发掉水分。最后,将样品放入氮化炉中煅烧一段时间,制备了C掺杂TiO2纳米管。以亚甲基蓝水溶液模拟环境有机污染物,测试了其光催化活性,当尿素浓度为20%时,光照4 h后C改性的TiO2纳米管光降解率可达92.7%,可以看出,与原始TiO2纳米管相比,有7.9%的巨大改进。但C改性TiO2纳米管在尿素浓度为40%时光降解率下降,推测是由于纳米管上覆盖有一层碳薄膜,使样品的表面积减少,进而导致光降解率降低。

石墨烯是一种单原子层的sp2杂化碳材料,由于其优异的机械、电学和热学性能,已被广泛用于改性TiO2 [63] [64] [65]。电化学是制备石墨烯-TiO2纳米管高性能催化材料的主要方法 [66] [67] [68]。Kim等人 [31] 先通过阳极氧化制备了TiO2纳米管,再对含有还原氧化石墨烯(RGO)的电解质溶液进行阳极氧化制备了RGO掺杂的TiO2纳米管。以苯酚为有机污染物模型,提出了RGO掺杂的TiO2纳米管光催化剂降解有机污染物的机理(如图4),该机理包括以下步骤:1) 通过RGO掺杂改善TiO2表面的光照射,2) 然后将电子(e)从TiO2的价带(VB)激发到导带(CB)并通过RGO传输,3) 在VB中留下空穴(h+),然后生成的e和h+与H2O反应,(4)最后是有机物的降解。

Figure 4. Photocatalytic mechanism of RGO-doped TiO2

图4. RGO掺杂的TiO2光催化机理

4.1.3. 硫掺杂的TiO2纳米管

硫掺杂的TiO2也是一类有趣的可见光活性光催化剂。掺杂的硫的离子价态有三种:六价(S6+)、四价(S4+)或硫化物(S2),这取决于S掺杂TiO2的合成方法 [69] [70]。Momeni等人 [71] 在含有NH4F和不同浓度的焦亚硫酸钾作为硫源的水溶液中,通过钛基底的电化学氧化制备了S掺杂的TiO2纳米管光催化剂薄膜。研究了TiO2纳米管上硫掺杂的光活性对光降解RhB的依赖性。S掺杂后,可见光照射下罗丹明B的去除率增加,且光催化剂表现出良好的稳定性。掺杂还导致显著的光电流增强。Yang等人 [72] 以硫化热处理制得的S掺杂TiO2纳米管作为PbO2阳极的导电夹层,用来进行电化学降解有机污染物实验,与已报道的PbO2电极相比,具有更好的电化学氧化能力和有机降解羟基自由基生成活性。90分钟内,近100%的亚甲基蓝在S-TiO2 NT-PbO2阳极上降解。淬火实验表明,阳极表面的直接氧化导致约50%的MB降解,并在MB的完全矿化中起到关键作用。此外,S-TiO2 NT-PbO2阳极用途广泛,足以降解各种工业污染物,包括4-氯酚、对硝基苯酚和双酚A。

4.1.4. 其他非金属掺杂的TiO2纳米管

Momeni等人 [73] 通过原位阳极氧化方法选择硼作为二氧化钛结构中的掺杂剂,研究了掺杂剂浓度对纳米管光电催化和防腐性能的影响。结果表明,与裸露的TiO2纳米管相比,B掺杂的纳米管具有更好的光催化性能和抗腐蚀性能。Bessegato等人 [74] 评估了在70、140、280和560 ppm硼存在下通过紫外/可见光照射活化时通过电化学阳极氧化制备的B掺杂TiO2纳米管(B-TiO2 NT)的性能。最佳结果表明,当使用B-TiO2 NT电极在pH为2的0.01 mol·L1的Na2SO4溶液以及外加1.2 V的偏置电压下处理100 ppm酸性黄1染料时,在120分钟的时间内,达到了优异的100%的变色和高达95%的总有机碳(TOC)去除效果。Zhang等人 [13] 通过在密封安瓿中用无定形红磷煅烧TiO2纳米管制造了具有优异光电催化活性的P掺杂TiO2纳米管阵列。

4.1.5. 非金属共掺杂的TiO2纳米管

提高非金属掺杂TiO2可见光利用率的另一种有效策略是加入多种掺杂剂(共掺杂)。对于非金属共掺杂的TiO2,以N-F共掺杂为例,一种掺杂剂(例如N)的作用是诱导可见光吸收特性,而第二种掺杂剂的作用(例如F)是补偿整体电子计数,这是避免晶格缺陷意外形成的有效方法。Wang等人 [75] 采用两步法制备了具有高纵横比的可见光响应C-N共掺杂TiO2纳米管。通过在可见光照射下降解罗丹明B来评估共掺杂TiO2纳米管的光催化活性。与N掺杂的P25相比,这些共掺杂的TiO2纳米管具有优异的光催化活性,90%以上的RhB在90分钟可见光照射后降解。这是由于N和C掺杂的协同作用。Zheng等人 [76] 采用通过降解MB来评估N掺杂的石墨烯包覆的TiO2纳米管可见光催化性能。在40分钟内,优化的样品可以完全降解MB。Jia等人 [77] 将N-F共掺杂TiO2纳米管与ZIF-8作为光电极,用于光电催化降解磺胺嘧啶,与未改性的锐钛矿型TiO2相比,ZIF-8/NF-TiO2的反应速率和降解效率分别提高了21.7倍和11.6倍。

4.2. 金属元素掺杂

4.2.1. 贵金属掺杂的TiO2纳米管

Wang等人 [35] 通过磁控溅射和阳极氧化在ITO玻璃上制备了具有晶体择优取向的Ag掺杂TiO2纳米管阵列膜(Ag-TiO2 NT),使用还原六价铬( Cr 2 O 7 2 (Cr(VI))的方法来评估其光催化活性,结果表明,优化的Ag-TiO2 NT在可见光照射下90分钟内可以去除99.1%的六价铬,显示出优异的光催化性能。Teng等人 [78] 通过光还原沉积法制备了Ag-TiO2 NT,研究了其对2,4,6-三氯苯酚的降解效果。结果表明,Ag-TiO2 NT电极有效地提高了2,4,6-三氯苯酚降解过程中的光电催化活性。120分钟后,Ag-TiO2 NT可以去除100%的2,4,6-三氯苯酚,而纯TiO2 NT只降解了36%的2,4,6-三氯苯酚。Kong等人 [79] 报道了一种改进的混合TiO2纳米结构,银纳米颗粒敏化TiO2纳米管阵列是用经典的阳极氧化法和特殊的水热法合成的。合成产物的光催化性能根据其在光下在水溶液中的MB的光降解速率来评价。与纯TiO2纳米管相比,显示出增强的光催化活性。

Rajput等人 [29] 采用简单的阳极氧化法合成了Au掺杂TiO2纳米管(Au-TiO2 NT)电极,并通过各种表征技术研究了其理化特性。结果表明,Au在TiO2电极上的沉积使TiO2纳米管的顶端表面开口更加均匀一致。此外,与未掺杂的TiO2纳米管电极相比,合成的Au掺杂TiO2纳米管电极显示出针对难降解有机污染物4-氯桂醇(4-CG)的增强的光电催化(PEC)降解和矿化效率。Lin等人 [80] 通过热蒸发使用Au在高度有序的TiO2纳米管上进行改性。通过仔细控制合成条件,获得了具有不同Au纳米颗粒尺寸和覆盖率的均匀无配体Au掺杂TiO2纳米管。所制备的材料显示出令人满意的PEC脱色MO活性。

Tamilselvan等人 [81] 通过电化学阳极氧化法合成了垂直排列的TiO2纳米管阵列,并通过光沉积过程形成Ag掺杂TiO2纳米管和Pt掺杂TiO2纳米管(Pt-TiO2 NT)的异质结构。通过在紫外光下MO和MB的降解速率来评价这些样品的光催化性能。两种催化剂都表现出比纯TiO2纳米管更强的光催化效率,但Pt-TiO2 NT显示出最强的性能。在3小时UV照射后MO和MB的降解率分别为42%和70%。这可归因于更高肖特基势垒的形成,该势垒增加了电子的俘获并导致Pt-TiO2 NT中的复合率降低。Yurdakal等人 [82] 在含有NH4F的乙二醇溶液中,通过阳极氧化法在钛板上制备了纳米管结构的TiO2作为光阳极。阳极表面通过电化学还原法以单金属或双金属形式负载贵金属(Pt、Au和Pd)。通过光电催化3-吡啶甲醇实验测试材料的光电催化性能。结果表明,大量金属负载对PEC活性有负面影响。这是因为大量金属会阻止UVA辐射到达纳米管内部。然而,负载Pd的阳极相对于原始阳极却显示出高PEC活性和高产物选择性值。

综上,用贵金属纳米粒子(Ag, Au, Pt, Pd)掺杂改性TiO2纳米管是一种非常具有前途的提高TiO2光催化活性的方法 [83] [84] [85]。贵金属主要通过两种方式提高光催化活性:

1) 抑制电子–空穴对的复合。一些贵金属(Au、Ag、Pt等)的费米能级低于TiO2的导带,TiO2价带的电子很容易被可见光激发。在可见光照射下,电子从TiO2的价带转移到导带。因此,贵金属充当电子陷阱,TiO2导带的光生电子将向贵金属的导带移动,同时,光生空穴从贵金属价带转移到TiO2的价带。因此,光生电子–空穴对被有效分离。

2) 表面等离子体共振(SPR)效应。SPR通过将光吸收扩展到更长的波长、增加光散射以及将等离子体能量从金属转移到半导体来激发半导体中的电子–空穴对来提高太阳能转换效率。

4.2.2. 普通、过渡及稀土金属元素掺杂的TiO2纳米管

Nair等人 [26] 以亚甲基蓝为有机污染物模型,通过可见光下光催化降解来评估所制备的Mg掺杂TiO2纳米管的光催化活性,结果表明在180分钟可见光照射后,达到约77%的降解率,是未掺杂TiO2纳米管的3倍之多。

掺杂有Fe [86]、Cu [87]、Mn [88]、Cr [89]、Co [90]、Nb [91] 和W [92] 等过渡金属的TiO2也已被证实可以通过抑制光生电子和空穴的复合来扩大可见光吸收并提高转换效率。过渡金属在二氧化钛晶格中的结合可能导致VB和CB之间形成新的能级,导致光吸收向可见光区域转移。光催化活性通常取决于掺杂剂的性质和数量。需要注意的是,当掺杂量过高时,可能会部分阻塞TiO2纳米管的通道并充当复合中心,而不是促进电子–空穴分离,从而导致光/光电催化活性降低。

Wang等人 [93] 通过对磁控溅射制得的Ti-Zr金属膜进行一步电化学阳极氧化,再进行真空退火和加热合成了类单晶黑色Zr掺杂的TiO2纳米管,在不使用任何牺牲剂或助催化剂的情况下对Cr(VI)显示出优异的光催化性能,因此成为迄今为止报道的用于Cr(VI)还原的最佳光催化剂之一。Zafar等人 [20] 以刚果红和六价铬作为模型污染物进行了光催化实验以评估所制备的Fe掺杂TiO2纳米管(Fe-TiO2 NT)的光催化性。结果表明在180分钟的可见光照射下可以显示出68%的最高光催化降解,因为Fe3+可以捕获电子和空穴。Wang等人 [94] 通过简单的溶剂热方法制备了高可见光活性的Fe-TiO2 NT,通过模拟太阳光照射下去除水溶液中的MB和Cr(VI)来评估其PEC性能。Zhang等人 [95] 采用低温水辅助结晶法制备了Fe3+掺杂的金红石相TiO2纳米管阵列,以MO为有机污染物模型,评估了制备材料在紫外和可见光下的光催化性能。Su等人 [96] 采用通过超声辅助浸渍煅烧方法制备了Fe掺杂TiO2纳米管,并研究了在紫外条件下TiO2纳米管中Fe的含量、H2O2的初始浓度和酸性橙II (AO II)溶液的初始pH对AO II光催化降解速率的影响。结果表明,与纯TiO2 NT和其他Fe-TiO2 NT样品相比,超声沉积25分钟制备的Fe-TiO2 NT具有最高的光催化活性。在H2O2存在下,AO II的光催化降解速率显著提高,当pH为2.96时,在紫外线照射120分钟后,Fe-TiO2 NT可降解约80%的AO II,这比没有H2O2的情况高1.7倍。这表明Fe-TiO2 NT的光催化过程与H2O2氧化之间存在明显的协同效应。

通过掺杂稀土金属也可以改善或修饰TiO2纳米材料的光学、电学、结构、表面和界面特性。诸如La [97]、Ce [98]、Eu [99]、Er [100]、Gd [101] 等稀土金属已被用来掺杂TiO2材料。掺杂稀土金属离子会在TiO2的带结构中产生额外的能级。导带和价带之间的这些额外能级主要用于捕获电荷载流子,使其与带分离,并促进其向表面扩散,以便在TiO2表面发生各种过程。这些形成的亚带隙能级导致其吸收光谱发生红移,并降低了促进可见光吸收的材料的带隙能量。

Parnicka等人 [102] 通过使用Ti90RE10合金(RE = Ho, Er, Nd, Y, Ce, Tm)作为工作电极,在氟化物电解液中进行阳极氧化,从而形成由TiO2和RE2O3混合物制成的有序纳米管,以苯酚和甲苯为污染模型化合物,研究了合成样品的光催化活性。Cho等人 [37] 报告的Er掺杂的TiO2纳米管是通过阳极氧化和电沉积成功合成的,沉积时间不同,以用于改变Er含量。在最佳电沉积条件下,Er掺杂改性可以大大提高TiO2纳米管的光催化性能,在180分钟后Er掺杂的TiO2纳米管成功降解了85%的亚甲基蓝。Gong等人 [103] 通过阳极氧化在TC4钛合金基体上成功合成了纯的TiO2纳米管和Ce掺杂的TiO2纳米管,制备参数影响了TiO2纳米管的形貌。对MB的光催化降解实验表明,掺Ce的TiO2纳米管比纯TiO2纳米管具有更强的可见光吸收率,在240分钟的光催化反应中,可以达到90.4%的降解率,比纯TiO2纳米管高出13.7%。

Shaban等人 [23] 系统地研究了未掺杂、Ni掺杂和Ni-Cr共掺杂的TiO2纳米管可见光照射下降解MB的光催化能力,发现共掺杂Ni-Cr共掺杂的TiO2纳米管对MB的光催化降解效率最高,在90分钟内达到95.6%,这是由于在紫外–可见光(UV-Vis)光学吸收范围内有许多载体可用于有效的光氧化。

4.2.3. 金属–非金属元素共掺杂的TiO2纳米管

阴离子掺杂的TiO2与金属离子的共合金化是另一种提高TiO2可见光光催化活性的有效方法 [104] [105]。与含有单一掺杂剂的TiO2相比,共掺杂TiO2的性能有明显提高。共掺杂系统增强光催化活性的基本机制与非金属共掺杂的机制类似。除了增强可见光吸收外,由于化学性质不同,两种共掺杂剂有助于光生电子–空穴分离,对光电流和光催化活性产生有利影响。

Zhang等人 [106] 采用电沉积方法成功制备了载Ag纳米粒子的N掺杂TiO2纳米管阵列(Ag-N TNT)。用于降解酸性橙II (AO-II)的Ag-N TNT的平均光电流密度和光催化降解效率分别是TiO2纳米管阵列的6倍和6.8倍。Cai等人 [107] 使用阳极氧化和浸渍法制备了稳定的B和Co共掺杂TiO2纳米管,在对2,4-二氯苯氧基乙酸的降解中表现出良好的光催化性能。Kiziltas [108] 比较了通过阳极氧化技术制备的TiO2纳米管、B掺杂TiO2纳米管、Co掺杂TiO2纳米管和B-Co共掺杂TiO2纳米管对RhB的光电化学降解。结果表明,在TiO2纳米管中掺杂B、Co和B-Co离子显著提高了PEC性能,并且B-Co共掺杂TiO2纳米管是RhB进行光电降解的最合适电极。Zhao等人 [109] 通过一步阳极氧化法成功地在Ti箔衬底上制备了取向良好的Ti3+-N共掺杂TiO2纳米管阵列(Ti3+-N TNT)膜,通过模拟阳光照射下罗丹明B溶液的光降解,评估了不同管长(相似直径)和不同直径(相似管长)两个系列的Ti3+-N TNT的光催化活性。结果表明,只要在适当范围内调节管的长度和直径,Ti3+-N TNT的光催化活性就可以提高。Cho等人 [110] 通过阳极氧化、电化学沉积和/或滴注制备了用铒和还原氧化石墨烯修饰的高度有序的TiO2纳米管(RGO-Er TNT)。光催化测试表明,RGO-Er TNT光催化剂表现出最佳性能。提高的光催化效率可归因于增强的光电性能和铒和RGO分离载流子的路径的结合,Er和RGO与TiO2纳米管的组合通过协同效应实现了高电位太阳能活性光催化剂。

综上,国内外研究者在掺杂改性氧化钛纳米管降解废水方面开展了大量工作,其中掺杂方法、掺杂元素、降解目标污染物均不尽相同,很难评判出哪种方法和元素的降解效果最佳,为了对比起见,本文在表1中总结了掺杂改性TiO2纳米管光催化降解性能。

Table 1. Comparison of photocatalytic degradation performance of doped modified titanium dioxide nanotubes

表1. 掺杂改性二氧化钛纳米管光催化降解性能对比

5. 结论与展望

本文介绍了TiO2纳米管的掺杂改性方法和掺杂改性提升光催化性能的最新进展,包括金属及非金属在内的多种元素、水热和电化学等其他制备方法以及提升后的光催化性能对比。N是被研究最多的非金属元素掺杂之一,也被越来越多被应用于多元而非一元掺杂,而且表现出不俗的光催化降污性能。以石墨烯-TiO2纳米管为基体的复合掺杂材料在制备工艺方面稍显复杂,但是具有非常优异的光催化降污效果,显示出非常大的发展潜力。贵金属虽然造价较为昂贵,但是得益于其额外的SPR效应,在光催化/光电催化方面具有非常优异的表现。过渡金属元素由于其易得性以及掺杂工艺较为简单而被广为探索,且共掺杂材料的光催化性能相比单一掺杂有很大提高。稀土元素掺杂的TiO2纳米管制备方法较为简单,且单一的掺杂就可拥有很高的光催化降污水平,是非常有实际应用潜力的降污方案。此外,对TiO2纳米管自掺杂光催化的研究也越来越多。掺杂元素的种类和含量、掺杂材料的制备工艺、光源的选取以及污染物的种类都会影响掺杂TiO2纳米管的光催化水平,但是相比于纯TiO2纳米管,掺杂材料均表现出增强的光催化降解效果。

虽然目前对TiO2纳米管材料的研究取得了很大的进展,但是制造性能更为优异的TiO2纳米管阵列仍然是目前的迫切需求。抑制电子–空穴对的复合和提高光电子的转换效率对提高TiO2基纳米光催化剂的性能至关重要。由于光催化和电催化的协同作用机制可以显著促进光载流子的转移并抑制光生电子和空穴的复合,光电催化表现出比单一的光催化更好的光电活性。面对日趋严峻的水资源污染问题,光催化/光电催化降解污染物将在未来发挥越来越重要的作用。

基金项目

兴辽英才计划青年拔尖人才项目(批准号:XLYC1807170)、辽宁省百千万人才工程项目、大连市科技创新基金项目(批准号:2021JJ13FG97)。

NOTES

*通讯作者。

参考文献

[1] Chen, D.J., Cheng, Y.L., Zhou, N., et al. (2020) Photocatalytic Degradation of Organic Pollutants Using TiO2-Based Photocatalysts: A Review. Journal of Cleaner Production, 268, Article ID: 121725.
https://doi.org/10.1016/j.jclepro.2020.121725
[2] Lincho, J., Gomes, J., Kobylanski, M., et al. (2021) TiO2 Nanotube Catalysts for Parabens Mixture Degradation by Photocatalysis and Ozone-Based Technologies. Process Safety and Environmental Protection, 152, 601-613.
https://doi.org/10.1016/j.psep.2021.06.044
[3] Perillo, P.M. and Rodríguez, D.F. (2021) Photocatalysis of Methyl Orange Using Free Standing TiO2 Nanotubes under Solar Light. Environmental Nanotechnology, Monitoring & Management, 16, Article ID: 100479.
https://doi.org/10.1016/j.enmm.2021.100479
[4] Jo, S., Kim, H. and Lee, T.S. (2021) Decoration of Conju-gated Polyquinoxaline Dots on Mesoporous TiO2 Nanofibers for Visible-Light-Driven Photocatalysis. Polymer, 228, Article ID: 123892.
https://doi.org/10.1016/j.polymer.2021.123892
[5] Murgolo, S., Franz, S., Arab, H., et al. (2019) Degradation of Emerging Organic Pollutants in Wastewater Effluents by Electrochemical Photocatalysis on Nanostructured TiO2 Meshes. Water Research, 164, Article ID: 114920.
https://doi.org/10.1016/j.watres.2019.114920
[6] Chandrabose, G., Dey, A., Gaur, S.S., et al. (2021) Re-moval and Degradation of Mixed Dye Pollutants by Integrated Adsorption-Photocatalysis Technique Using 2-D MoS2/TiO2 Nanocomposite. Chemosphere, 279, Article ID: 130467.
https://doi.org/10.1016/j.chemosphere.2021.130467
[7] Nguyen, V.Q., Mady, A.H., Mahadadalkar, M.A., et al. (2022) Highly Active Z-Scheme Heterojunction Photocatalyst of Anatase TiO2 Octahedra Covered with C-MoS2 Nanosheets for Efficient Degradation of Organic Pollutants under Solar Light. Journal of Colloid and Interface Science, 606, 337-352.
https://doi.org/10.1016/j.jcis.2021.07.128
[8] Shen, S., Wang, H.B. and Fu, J.J. (2021) A Nanoporous Three-Dimensional Graphene Aerogel Doped with a Carbon Quantum Dot-TiO2 Composite that Exhibits Superior Activity for the Catalytic Photodegradation of Organic Pollutants. Applied Surface Science, 569, Article ID: 151116.
https://doi.org/10.1016/j.apsusc.2021.151116
[9] Bae, H., Mahadik M.A., Seo, Y., et al. (2021) Palladium Metal Oxide/Hydroxide Clustered Cobalt Oxide Co-Loading on Acid Treated TiO2 Nanorods for Degradation of Organic Pollutants and Salmonella typhimurium Inactivation under Simulated Solar Light. Chemical Engineering Journal, 408, Article ID: 127260.
https://doi.org/10.1016/j.cej.2020.127260
[10] Xu, D. and Ma, H.L. (2021) Degradation of Rhodamine B in Water by Ultrasound-Assisted TiO2 Photocatalysis. Journal of Cleaner Production, 313, Article ID: 127758.
https://doi.org/10.1016/j.jclepro.2021.127758
[11] Nakata, K. and Fujishima, A. (2012) TiO2 Photocatalysis: Design and Applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13, 169-189.
https://doi.org/10.1016/j.jphotochemrev.2012.06.001
[12] Nazari, M., Golestani, F., Bayati, R. and Eftekhari, B. (2015) Enhanced Photocatalytic Activity in Anodized WO3-Loaded TiO2 Nanotubes. Superlattices and Micro-structures, 80, 91-101.
https://doi.org/10.1016/j.spmi.2014.12.008
[13] Zhang, G.L., Huang, G.Q., Yang, C., et al. (2021) Efficient Photoelectrocatalytic Degradation of Tylosin on TiO2 Nanotube Arrays with Tunable Phosphorus Dopants. Journal of Environmental Chemical Engineering, 9, Article ID: 104742.
https://doi.org/10.1016/j.jece.2020.104742
[14] Dao, T.B.T., Hua, T.T.L., Nguyen T.D., et al. (2021) Effec-tiveness of Photocatalysis of MMT-Supported TiO2 and TiO2 Nanotubes for Rhodamine B Degradation. Chemo-sphere, 280, Article ID: 130802.
https://doi.org/10.1016/j.chemosphere.2021.130802
[15] Mollavali, M., Rohani, S., Elahifard, M., et al. (2021) Band Gap Reduction of (Mo+N) Co-Doped TiO2 Nanotube Arrays with a Significant Enhancement in Visible Light Photo-Conversion: A Combination of Experimental and Theoretical Study. International Journal of Hydrogen Energy, 46, 21475-21498.
https://doi.org/10.1016/j.ijhydene.2021.03.249
[16] Alcaide, F., Genova, R.V., Álvarez, G., et al. (2020) Platinum-Catalyzed Nb-Doped TiO2 and Nb-Doped TiO2 Nanotubes for Hydrogen Generation in Proton Exchange Membrane Water Electrolyzers. International Journal of Hydrogen Energy, 45, 20605-20619.
https://doi.org/10.1016/j.ijhydene.2020.01.057
[17] Surah, S.S., Vishwakarma, M., Kumar, R., et al. (2019) Tuning the Electronic Band Alignment Properties of TiO2 Nanotubes by Boron Doping. Results in Physics, 12, 1725-1731.
https://doi.org/10.1016/j.rinp.2019.01.081
[18] Haryński, Ł., Karczewski, J., Ryl, J., et al. (2021) Rapid Development of the Photoresponse and Oxygen Evolution of TiO2 Nanotubes Sputtered with Cr Thin Films Realized via Laser Annealing. Journal of Alloys and Compounds, 877, Article ID: 160316.
https://doi.org/10.1016/j.jallcom.2021.160316
[19] Guo, F., Liu, J.M., Zhang, W.G., et al. (2019) Synthesis of Cu,N-Doped TiO2 Nanotube by a Novel Magnetron Sputtering Method and Its Photoelectric Property. Vacuum, 165, 223-231.
https://doi.org/10.1016/j.vacuum.2019.04.032
[20] Zafar, Z., Fatima, R. and Kim, J. (2021) Effect of HCl Treatment on Physico-Chemical Properties and Photocatalytic Performance of Fe-TiO2 Nanotubes for Hexa-valent Chromium Reduction and Dye Degradation under Visible Light. Chemosphere, 284, Article ID: 131247.
https://doi.org/10.1016/j.chemosphere.2021.131247
[21] Nguyen, H.H., Gyawali, G., Martinez, A., et al. (2020) Physicochemical Properties of Cr-Doped TiO2 Nanotubes and Their Application in Dye-Sensitized Solar Cells. Journal of Photochemistry and Photobiology A: Chemistry, 397, Article ID: 112514.
https://doi.org/10.1016/j.jphotochem.2020.112514
[22] Patel, S.K.S., Jena, P. and Gajbhiye N.S. (2019) Structural and Room-Temperature Ferromagnetic Properties of Pure and Ni-Doped TiO2 Nanotubes. Materials Today: Proceedings, 15, 388-393.
https://doi.org/10.1016/j.matpr.2019.04.098
[23] Shaban, M., Ahmed, A.M., Shehata, N., et al. (2019) Ni-Doped and Ni/Cr Co-Doped TiO2 Nanotubes for Enhancement of Photocatalytic Degradation of Methylene Blue. Journal of Colloid and Interface Science, 555, 31-41.
https://doi.org/10.1016/j.jcis.2019.07.070
[24] Wang, B.B., Wu, Z.Z., Wang, S., et al. (2021) Mg/Cu-Doped TiO2 Nanotube Array: A Novel Dual-Function System with Self-Antibacterial Activity and Excellent Cell Compat-ibility. Materials Science & Engineering C, 128, Article ID: 112322.
https://doi.org/10.1016/j.msec.2021.112322
[25] Puga, M.L., Venturini, J., Guaglianoni, W.C., Ruwer, T.L., et al. (2021) Aluminium-Doped TiO2 Nanotubes with Enhanced Light-Harvesting Properties. Ceramics International, 47, 18358-18366.
https://doi.org/10.1016/j.ceramint.2021.03.157
[26] Nair, S.B., K, A.J., Joseph, J.A., et al. (2020) Role of Magnesium Doping for Ultrafast Room Temperature Crystallization and Improved Photocatalytic Behavior of TiO2 Nanotubes. Materials Today: Proceedings, 25, 203-207.
https://doi.org/10.1016/j.matpr.2019.12.421
[27] Guaglianoni, W.C., Ruwer, T.L., Caldeira, L.E.N., et al. (2021) Single-Step Synthesis of Fe-TiO2 Nanotube Arrays with Improved Light Harvesting Properties for Application as Photoactive Electrodes. Materials Science & Engineering B, 263, Article ID: 114896.
https://doi.org/10.1016/j.mseb.2020.114896
[28] Momeni, M.M. and Motalebian, M. (2021) Chromi-um-Doped Titanium Oxide Nanotubes Grown via One-Step Anodization for Efficient Photocathodic Protection of Stainless Steel. Surface & Coatings Technology, 420, Article ID: 127304.
https://doi.org/10.1016/j.surfcoat.2021.127304
[29] Rajput, H., Changotra, R., Sangal, V.K. and Dhir, A. (2021) Photoelectrocatalytic Treatment of Recalcitrant Compounds and Bleach Stage Pulp and Paper Mill Effluent Using Au-TiO2 Nanotube Electrode. Chemical Engineering Journal, 408, Article ID: 127287.
https://doi.org/10.1016/j.cej.2020.127287
[30] Song, E., Kim, Y. and Choi, J. (2019) Anion Additives in Rapid Breakdown Anodization for Nonmetal-Doped TiO2 Nanotube Powders. Electrochemistry Communications, 109, Article ID: 106610.
https://doi.org/10.1016/j.elecom.2019.106610
[31] Kim, S., Ali, I. and Kim, J. (2019) Phenol Degradation Using an Anodized Graphene-Doped TiO2 Nanotube Composite under Visible Light. Applied Surface Science, Ap-plied Surface Science, 477, 71-78.
https://doi.org/10.1016/j.apsusc.2017.12.024
[32] Momeni, M.M., Akbarnia, M. and Ghayeb, Y. (2020) Preparation of S-W-Codoped TiO2 Nanotubes and Effect of Various Hole Scavengers on Their Photoelectrochemical Activity: Alcohol Series. International Journal of Hydrogen Energy, 45, 33552-33562.
https://doi.org/10.1016/j.ijhydene.2020.09.112
[33] Hejazi, S., Mohajernia, S., Wu, Y.H., et al. (2019) Intrinsic Cu Nanoparticle Decoration of TiO2 Nanotubes: A Platform for Efficient Noble Metal Free Photocatalytic H2 Pro-duction. Electrochemistry Communications, 98, 82-86.
https://doi.org/10.1016/j.elecom.2018.11.020
[34] Dong, Z.B., Ding, D.Y., Li, T. and Ning, C.Q. (2018) Ni-Doped TiO2 Nanotubes Photoanode for Enhanced Photoelectrochemical Water Splitting. Applied Surface Science, 443, 321-328.
https://doi.org/10.1016/j.apsusc.2018.03.031
[35] Wang, S.Q., Zhang, Z.L., Huo, W.Y., et al. (2020) Preferentially Oriented Ag-TiO2 Nanotube Array Film: An Efficient Visible-Light-Driven Photocatalyst. Journal of Hazardous Materials, 399, Article ID: 123016.
https://doi.org/10.1016/j.jhazmat.2020.123016
[36] K.A.J., Naduvath, J., Remillard, S.K., et al. (2019) A Simple Method to Fabricate Metal Doped TiO2 Nanotubes. Chemical Physics, 523, 198-204.
https://doi.org/10.1016/j.chemphys.2019.04.028
[37] Cho, H., Joo, H., Kim, H., et al. (2021) Improved Photoelectrochemical Properties of TiO2 Nanotubes Doped with Er and Effects on Hydrogen Production from Water Splitting. Chemosphere, 267, Article ID: 129289.
https://doi.org/10.1016/j.chemosphere.2020.129289
[38] Nasirpouri, F., Cheshideh, H., Samardak, A.Y., et al. (2019) Morphology- and Magnetism-Controlled Electrodeposition of Ni Nanostructures on TiO2 Nanotubes for Hybrid Ni/TiO2 Functional Applications. Ceramics International, 45, 11258-11269.
https://doi.org/10.1016/j.ceramint.2019.02.200
[39] Chokesawatanakit, N., Jutakridsada, P., Boonlue, S., et al. (2021) Ag-Doped Cobweb-Like Structure of TiO2 Nanotubes for Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus (MRSA). Journal of Environmental Chemical Engineering, 9, Article ID: 105843.
https://doi.org/10.1016/j.jece.2021.105843
[40] Hua, K., Fang, D., Cui, M.M., et al. (2019) In-Situ Deposition of Co Nanoparticles in Discharged TiO2 Nanotube Array with Enhanced Magnetic Property. Journal of Magnetism and Magnetic Materials, 485, 217-223.
https://doi.org/10.1016/j.jmmm.2019.04.029
[41] Sayegh, S., Abid, M., Tanos, F., et al. (2022) N-Doped TiO2 Nanotubes Synthesized by Atomic Layer Deposition for Acetaminophen Degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 655, Article ID: 130213.
https://doi.org/10.1016/j.colsurfa.2022.130213
[42] Wang, C.C., Chou, C.Y., Yi, S.R. and Chen, H.D. (2019) Deposition of Heterojunction of ZnO on Hydrogenated TiO2 Nanotube Arrays by Atomic Layer Deposition for Enhanced Photoelectrochemical Water Splitting. International Journal of Hydrogen Energy, 44, 28685-28697.
https://doi.org/10.1016/j.ijhydene.2019.09.133
[43] Dong, P.M., Cheng, X.D., Jin, Z., et al. (2019) The Green Synthesis of Ag-Loaded Photocatalyst via DBD Cold Plasma Assisted Deposition of Ag Nanoparticles on N-Doped TiO2 Nanotubes. Journal of Photochemistry & Photobiology A: Chemistry, 382, Article ID: 111971.
https://doi.org/10.1016/j.jphotochem.2019.111971
[44] Sun, M.X., Yao, Y., Zhang, Z.X., et al. (2020) Flame-Assisted Pyrolysis Formation of Cu2O/Cu/TiO2 Nanotube Arrays to Boost Superior Photo-Electrochemical Response. International Journal of Hydrogen Energy, 45, 21493-21501.
https://doi.org/10.1016/j.ijhydene.2020.06.008
[45] García, P., Ramírez, E., Cortazar, J.C.S., et al. (2021) In-fluence of Ruthenium Doping on UV- and Visible-Light Photoelectrocatalytic Color Removal from Dye Solutions Using a TiO2 Nanotube Array Photoanode. Chemosphere, 267, Article ID: 128925.
https://doi.org/10.1016/j.chemosphere.2020.128925
[46] Dong, Z.B., Ding, D.Y., Li, T. and Ning, C.Q. (2019) Facile Preparation of Ti3+/Ni Co-Doped TiO2 Nanotubes Photoanode for Efficient Photoelectrochemical Water Splitting. Applied Surface Science, 480, 219-228.
https://doi.org/10.1016/j.apsusc.2019.02.237
[47] Peighambardoust, N.S., Asl, S.K., Mohammadpour, R. and Asl, S.K. (2018) Band-Gap Narrowing and Electrochemical Properties in N-Doped and Reduced Anodic TiO2 Nanotube Arrays. Electrochimica Acta, 270, 245-255.
https://doi.org/10.1016/j.electacta.2018.03.091
[48] Huang, J., Dou, L., Li, J.Z., et al. (2021) Excellent Visible Light Responsive Photocatalytic Behavior of N-Doped TiO2 toward Decontamination of Organic Pollutants. Journal of Hazardous Materials, 403, Article ID: 123857.
https://doi.org/10.1016/j.jhazmat.2020.123857
[49] Dey, K., Vaidya, S., Gobetti, A., et al. (2022) Facile Synthesis of N-Doped Biphasic TiO2 Nanoparticle with Enhanced Visible Light-Driven Photocatalytic Performance. Materials Today Communications, 33, Article ID: 123857.
https://doi.org/10.1016/j.mtcomm.2022.104690
[50] Peighambardoust, N.S., Asl, S.K. and Maghsoudi, M. (2019) The Effect of Doping Concentration of TiO2 Nanotubes on Energy Levels and Its Direct Correlation with Photocatalytic Activity. Thin Solid Films, 690, Article ID: 137558.
https://doi.org/10.1016/j.tsf.2019.137558
[51] Yadala, V.D., Nagappagari, L.R., Lee, K., et al. (2021) Opti-mization of N Doping in TiO2 Nanotubes for the Enhanced Solar Light Mediated Photocatalytic H2 Production and Dye Degradation. Environmental Pollution, 269, Article ID: 116170.
https://doi.org/10.1016/j.envpol.2020.116170
[52] Zhang, X.L., Zhou, J., Gu, Y.F. and Fan, D. (2015) Visi-ble-Light Photocatalytic Activity of N-Doped TiO2 Nanotube Arrays on Acephate Degradation. Journal of Nano-materials, 2015, Article ID: 527070.
https://doi.org/10.1155/2015/527070
[53] Wang, T., Ma, Q., Gao, S. and Huang, M.S. (2020) Enhanced Thermal Stability and Photocatalytic Property of Highly Ordered Anodized TiO2 Nanotube Arrays with Interstitial Nitrogen as Dominant Point Defect. Journal of Materials Science: Materials in Electronics, 31, 8403-8412.
https://doi.org/10.1007/s10854-020-03375-x
[54] Wang, J.S., Wang, Z.Z., Li, H.Y., et al. (2010) Visible Light-Driven Nitrogen Doped TiO2 Nanoarray Films: Preparation and Photocatalytic Activity. Journal of Alloys and Compounds, 494, 372-377.
https://doi.org/10.1016/j.jallcom.2010.01.049
[55] Lai, Y.K., Huang, J.Y., Zhang, H.F., et al. (2010) Nitro-gen-Doped TiO2 Nanotube Array Films with Enhanced Photocatalytic Activity under Various Light Sources. Journal of Hazardous Materials, 184, 855-863.
https://doi.org/10.1016/j.jhazmat.2010.08.121
[56] Xia, L., Yang, Y., Cao, Y., et al. (2019) Porous N-Doped TiO2 Nanotubes Arrays by Reverse Oxidation of TiN and Their Visible-Light Photocatalytic Activity. Surface & Coatings Technology, 365, 237-241.
https://doi.org/10.1016/j.surfcoat.2018.06.033
[57] Alkorbi, A.S., Javed, H.M.A., Hussain, S., et al. (2022) Solar Light-Driven Photocatalytic Degradation of Methyl Blue by Carbon-Doped TiO2 Nanoparticles. Optical Ma-terials, 127, Article ID: 112259.
https://doi.org/10.1016/j.optmat.2022.112259
[58] Suárez, O., Collado, S., Oulego, P., et al. (2017) Gra-phene-Family Nanomaterials in Wastewater Treatment Plants. Chemical Engineering Journal, 313, 121-135.
https://doi.org/10.1016/j.cej.2016.12.022
[59] Wu, G., Nishikawa, T., Ohtani, B., et al. (2007) Synthesis and Characterization of Carbon-Doped TiO2 Nanostructures with Enhanced Visible Light Response. Chemistry of Ma-terials, 19, 4530-4537.
https://doi.org/10.1021/cm071244m
[60] Park, J.H., Kim, S. and Bard, A.J. (2006) Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting. Nano Letters, 6, 24-28.
https://doi.org/10.1021/nl051807y
[61] Hu, L.S., Huo, K.F., Chen, R.S., et al. (2011) Re-cyclable and High-Sensitivity Electrochemical Biosensing Platform Composed of Carbon-Doped TiO2 Nanotube Arrays. Analytical Chemistry, 83, 8138-8144.
https://doi.org/10.1021/ac201639m
[62] Li, Y.C., Wang, Y.Q., Kong, J.H., et al. (2015) Synthesis and Char-acterization of Carbon Modified TiO2 Nanotube and Photocatalytic Activity on Methylene Blue under Sunlight. Applied Surface Science, 344, 176-180.
https://doi.org/10.1016/j.apsusc.2015.03.085
[63] Yang, Y., Zhou, B.C., Wang, L.B., et al. (2022) In-Situ Grown N, S Co-Doped Graphene on TiO2 Fiber for Artificial Photosynthesis of H2O2 and Mechanism Study. Applied Catalysis B: Environmental, 317, Article ID: 121788.
https://doi.org/10.1016/j.apcatb.2022.121788
[64] Esmaili, H., Kowsari, E., Tafreshi, S.S., et al. (2022) TiO2 Nanoarrays Modification by a Novel Cobalt-Heteroatom Doped Graphene Complex for Photoelectrochemical Water Splitting: An Experimental and Theoretical Study. Journal of Molecular Liquids, 356, Article ID: 118960.
https://doi.org/10.1016/j.molliq.2022.118960
[65] Temur, E., Eryiğit, M., Doğan, H.Ö., et al. (2022) Electro-chemical Fabrication and Reductive Doping of Electrochemically Reduced Graphene Oxide Decorated with TiO2 Electrode with Highly Enhanced Photoresponse under Visible Light. Applied Surface Science, 518, Article ID: 152150.
https://doi.org/10.1016/j.apsusc.2021.152150
[66] Wang, Y., Li, Z., Tian, Y.F., et al. (2014) A Facile Way to Fabricate Graphene Sheets on TiO2 Nanotube Arrays for Dye-Sensitized Solar Cell Applications. Journal of Materials Science, 49, 7991-7999.
https://doi.org/10.1007/s10853-014-8506-7
[67] Liu, C.B., Teng, Y.R., Liu, R.H., et al. (2011) Fabrication of Graphene Films on TiO2 Nanotube Arrays for Photocatalytic Application. Carbon, 49, 5312-5320.
https://doi.org/10.1016/j.carbon.2011.07.051
[68] Ge, M.Z., Huang, J.Y., Zhang, K.Q., et al. (2015) TiO2 Nanotube Arrays Loaded with Reduced Graphene Oxide Films: Facile Hybridization and Promising Photo-Catalytic Application. Journal of Materials Chemistry A, 7, 3491-3499.
https://doi.org/10.1039/C4TA06354F
[69] Jiang, L., Luo, Z.F., Li, Y.Z., et al. (2020) Morphology- and Phase-Controlled Synthesis of Visible-Light-Activated S-Doped TiO2 with Tunable S4+/S6+ Ratio. Chemical Engi-neering Journal, 402, Article ID: 125549.
https://doi.org/10.1016/j.cej.2020.125549
[70] Han, C., Pelaez, M., Likodimos, V., et al. (2011) Innovative Visible Light-Activated Sulfur Doped TiO2 Films for Water Treatment. Applied Catalysis B: Environmental, 107, 77-87.
https://doi.org/10.1016/j.apcatb.2011.06.039
[71] Momeni, M.M., Ghayeb, Y. and Ghonchegi, Z. (2015) Visible Light Activity of Sulfur-Doped TiO2 Nanostructure Photoelectrodes Prepared by Single-Step Elec-tronchemical Anodizing Process. Journal of Solid State Electrochemistry, 19, 1359-1366.
https://doi.org/10.1007/s10008-015-2758-2
[72] Yang, C., Shang, S.S. and Li, X.Y. (2021) Fabrication of Sulfur-Doped TiO2 Nanotube Array as a Conductive Interlayer of PbO2 Anode for Efficient Electrochemical Oxi-dation of Organic Pollutants. Separation and Purification Technology, 258, Article ID: 118035.
https://doi.org/10.1016/j.seppur.2020.118035
[73] Momeni, M.M., Taghineiad, M., Ghayeb, Y., et al. (2019) Preparation of Various Boron-Doped TiO2 Nanostructures by in Situ Anodizing Method and Investigation of Their Photoelectrochemical and Photocathodic Protection Properties. Journal of Iranian Chemical Society, 16, 1839-1851.
https://doi.org/10.1007/s13738-019-01658-7
[74] Bessegato, G.G., Cardoso, J.C. and Zanoni, M.V.B. (2015) Enhanced Photoelectrocatalytic Degradation of an Acid Dye with Boron-Doped TiO2 Nanotube Anodes. Catalysis Today, 240, 100-106.
https://doi.org/10.1016/j.cattod.2014.03.073
[75] Wang, J.P., Huang, B.B., Wang, Z.Y., et al. (2011) Synthesis and Characterization of C, N-Codoped TiO2 Nanotubes/Nanorods with Visible-Light Activity. Rare Metals, 30, 161-165.
https://doi.org/10.1007/s12598-011-0261-1
[76] Zheng, P., Zhou, W., Wang, Y.B., et al. (2020) N-Doped Graphene-Wrapped TiO2 Nanotubes with Stable Surface Ti3+ for Visible-Light Photocatalysis. Applied Surface Science, 512, Article ID: 144549.
https://doi.org/10.1016/j.apsusc.2019.144549
[77] Jia, M.Y., Yang, Z.H., Xu, H.Y., et al. (2020) Integrating N and F Co-Doped TiO2 Nanotubes with ZIF-8 as Photoelectrode for Enhanced Photo-Electrocatalytic Degradation of Sulfamethazine. Chemical Engineering Journal, 388, Article ID: 124388.
https://doi.org/10.1016/j.cej.2020.124388
[78] Teng, W., Xu, J., Yu, J.H., et al. (2022) Experimental and Quantum Chemical Investigation on the Mechanism of Photocatalytic Degradation of 2,4,6-Trichlorophenol by Ag/TiO2 Nanotube Electrode. Journal of Electroanalytical Chemistry, 921, Article ID: 116662.
https://doi.org/10.1016/j.jelechem.2022.116662
[79] Kong, J.H., Song, C.X., Zhang, W., et al. (2017) En-hanced Visible-Light-Active Photocatalytic Performances on Ag Nanoparticles Sensitized TiO2 Nanotube Arrays. Superlattices and Microstructures, 109, 579-587.
https://doi.org/10.1016/j.spmi.2017.05.050
[80] Lin, P., Nie, L.F., Wei, W.W., et al. (2020) One-Step and Ligand-Free Modification of Au Nanoparticles on Highly Ordered TiO2 Nanotube Arrays for Effective Photoelec-trocatalytic Decontamination. Industrial & Engineering Chemistry Research, 59, 668-675.
https://doi.org/10.1021/acs.iecr.9b04911
[81] Tamilselvan, A., Durgalakshmi, D., Rakkesh, R.A. and Bala-kumar, S. (2022) Enhanced Photocatalytic Activity of TiO2 Nanotubes Arrays Decorated with Ag and Pt Nanopar-ticles. Materials Today: Proceedings, 64, 1822-1831.
https://doi.org/10.1016/j.matpr.2022.06.135
[82] Yurdakal, S., Çetinkaya, S., Özcan, L., et al. (2021) Partial Photoelectrocatalytic Oxidation of 3-Pyridinemethanol by Pt, Au and Pd Loaded TiO2 Nanotubes on Ti Plate. Ca-talysis Today, 380, 248-258.
https://doi.org/10.1016/j.cattod.2020.11.003
[83] Yao, Y., Sun, M.X., Zhang, Z.H., et al. (2019) In Situ Syn-thesis of MoO3/Ag/TiO2 Nanotube Arrays for Enhancement of Visible-Light Photoelectrochemical Performance. International Journal of Hydrogen Energy, 44, 9348-9358.
https://doi.org/10.1016/j.ijhydene.2019.02.100
[84] Chen, Y., Gao, J.Z., Shi, Q.W., et al. (2022) In Situ Elec-trochemical Reduced Au Loaded Black TiO2 Nanotubes for Visible Light Photocatalysis. Journal of Alloys and Compounds, 901, Article ID: 163562.
https://doi.org/10.1016/j.jallcom.2021.163562
[85] Gautam, J., Yang, J.M. and Yang, B.L. (2022) Transition Metal Co-Doped TiO2 Nanotubes Decorated with Pt Nanoparticles on Optical Fibers as an Efficient Photocatalyst for the Decomposition of Hazardous Gaseous Pollutants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 643, Article ID: 128786.
https://doi.org/10.1016/j.colsurfa.2022.128786
[86] Eadi, S.B., Kim, S., Jeong, S.W. and Jeno, H.W. (2017) Novel Preparation of Fe Doped TiO2 Nanoparticles and Their Application for Gas Sensor and Photocatalytic Deg-radation. Advances in Materials Science and Engineering, 2017, Article ID: 2191659.
https://doi.org/10.1155/2017/2191659
[87] Yang, X.J., Wang, S., Sun, H.M., et al. (2015) Preparation and Photocatalytic Performance of Cu-Doped TiO2 Nanoparticles. Transactions of Nonferrous Metals Society of China, 25, 504-509.
https://doi.org/10.1016/S1003-6326(15)63631-7
[88] Latif, S., Tahir, K., Khan, A.U., et al. (2022) Green Synthesis of Mn-Doped TiO2 Nanoparticles and Investigating the Influence of Dopant Concentration on the Pho-tocatalytic Activity. Inorganic Chemistry Communications, 146, Article ID: 110091.
https://doi.org/10.1016/j.inoche.2022.110091
[89] Hajjaji, A., Trabelsi, K., Atyaoui, A., et al. (2014) Photo-catalytic Activity of Cr-Doped TiO2 Nanoparticles Deposited on Porous Multicrystalline Silicon Films. Nanoscale Research Letters, 9, Article ID: 543.
https://doi.org/10.1186/1556-276X-9-543
[90] Cheng, J.H., Lu, T., Huang, S.Q., et al. (2021) Recovery of Cobalt from Spent Lithium-Ion Batteries as the Dopant of TiO2 Photocatalysts for Boosting Ciprofloxacin Degra-dation. Journal of Cleaner Production, 316, Article ID: 128279.
https://doi.org/10.1016/j.jclepro.2021.128279
[91] Yang, X.Y., Min, Y.X., Li, S.B., et al. (2018) Conductive Nb-Doped TiO2 Thin Films with Whole Visible Absorption to Degrade Pollutants. Catalysis Science & Technology, 8, 1357-1365.
https://doi.org/10.1039/C7CY02614E
[92] Trejo, M., Guzmán, S.R.H., Manriquez, M.Z., et al. (2019) Removal of Aqueous Chromium and Environmental CO2 by Using Photocatalytic TiO2 Doped with Tungsten. Journal of Hazardous Materials, 370, 196-202.
https://doi.org/10.1016/j.jhazmat.2018.05.008
[93] Wang, S.Q., Zhang, Z.L., Huo, W.Y., et al. (2021) Sin-gle-Crystal-Like Black Zr-TiO2 Nanotube Array Film: An Efficient Photocatalyst for Fast Reduction of Cr(VI). Chemical Engineering Journal, 403, Article ID: 126331.
https://doi.org/10.1016/j.cej.2020.126331
[94] Wang, Q.Y., Jin, R.C., Zhang, M. and Gao, S.M. (2017) Sol-vothermal Preparation of Fe-Doped TiO2 Nanotube Arrays for Enhancement in Visible Light Induced Photoelec-trochemical Performance. Journal of Alloys and Compounds, 690, 139-144.
https://doi.org/10.1016/j.jallcom.2016.07.281
[95] Zhang, J., Yang, C., Li, S.J., et al. (2020) Preparation of Fe3+ Doped High-Ordered TiO2 Nanotubes Arrays with Visible Photocatalytic Activities. Nanomaterials (Basel), 10, Article 2107.
https://doi.org/10.3390/nano10112107
[96] Su, Y.F., Wu, Z., Wu, Y.N., et al. (2015) Acid Or-ange II Degradation through a Heterogeneous Fenton-Like Reaction Using Fe-TiO2 Nanotube Arrays as a Photo-catalyst. Journal of Materials Chemistry A, 3, 8537-8544.
https://doi.org/10.1039/C5TA00839E
[97] Rajabi, M. and Abrinaei, F. (2019) High Nonlinear Optical Re-sponse of Lanthanum-Doped TiO2 Nanorod Arrays under Pulsed Laser Irradiation at 532 nm. Optics and Laser Technology, 109, 131-138.
https://doi.org/10.1016/j.optlastec.2018.07.075
[98] Sun, P.P., Liu, L., Cui, S.C. and Liu, J.G. (2014) Synthesis, Characterization of Ce-Doped TiO2 Nanotubes with High Visible Light Photocatalytic Activity. Catalysis Letters, 144, 2107-2113.
https://doi.org/10.1007/s10562-014-1377-3
[99] Zhao, H., Zheng, K.Y., Sheng, Y., et al. (2014) Template Synthesis and Luminescence Properties of TiO2:Eu3+ Nanotubes. Journal of Solid State Chemistry, 210, 138-143.
https://doi.org/10.1016/j.jssc.2013.11.016
[100] Zhang, H., Zhang, Q.S., Lv, Y.Q., et al. (2018) Up-conversion Er-Doped TiO2 Nanorod Arrays for Perovskite Solar Cells and the Performance Improvement. Materials Research Bulletin, 106, 346-352.
https://doi.org/10.1016/j.materresbull.2018.06.014
[101] Chobba, M.B., Messaoud, M., Weththimuni, M.L., et al. (2019) Preparation and Characterization of Photocatalytic Gd-Doped TiO2 Nanoparticles for Water Treatment. Environmental Science and Pollution Research, 26, 32734-32745.
https://doi.org/10.1007/s11356-019-04680-7
[102] Parnicka, P., Mazierski, P., Lisowski, W., et al. (2019) A New Simple Approach to Prepare Rare-Earth Metals-Modified TiO2 Nanotube Arrays Photoactive under Visible Light: Surface Properties and Mechanism Investigation. Results in Physics, 12, 412-423.
https://doi.org/10.1016/j.rinp.2018.11.073
[103] Gong, Z., Li, X.Q., Zhang, Z.C., et al. (2021) Anodic Oxidation of TC4 Substrate to Synthesize Ce-Doped TiO2 Nanotube Arrays with Enhanced Photocatalytic Performance. Journal of Electronic Materials, 50, 3276-3282.
https://doi.org/10.1007/s11664-021-08821-y
[104] Bayan, E.M., Lupeiko, T.G., Pustovaya, L.E., et al. (2020) Zn-F Co-Doped TiO2 Nanomaterials: Synthesis, Structure and Photocatalytic Activity. Journal of Alloys and Com-pounds, 822, Article ID: 153662.
https://doi.org/10.1016/j.jallcom.2020.153662
[105] Feng, X.T., Gu, L.F., Wang, N.Y., et al. (2023) Fe/N Co-Doped Nano-TiO2 Wrapped Mesoporous Carbon Spheres for Synergetically Enhanced Adsorption and Photo-catalysis. Journal of Materials Science & Technology, 135, 54-64.
https://doi.org/10.1016/j.jmst.2022.06.038
[106] Zhang, S.S., Peng, F., Wang, H.J., et al. (2011) Electrodeposi-tion Preparation of Ag Loaded N-Doped TiO2 Nanotube Arrays with Enhanced Visible Light Photocatalytic Per-formance. Catalysis Communications, 12, 689-693.
https://doi.org/10.1016/j.catcom.2011.01.001
[107] Cai, J.J., Zhou, M.H., Xu, X. and Du, X.D. (2020) Stable Boron and Cobalt Co-Doped TiO2 Nanotubes Anode for Efficient Degradation of Organic Pollutants. Journal of Hazardous Materials, 396, Article ID: 122723.
https://doi.org/10.1016/j.jhazmat.2020.122723
[108] Kiziltas, H. (2022) Fabrication and Characterization of Photoelectrode B-Co/TiO2 Nanotubes for Effective Photoelectrochemical Degradation of Rhodamine B. Optical Materials, 123, Article ID: 111926.
https://doi.org/10.1016/j.optmat.2021.111926
[109] Zhao, Y.X., Zhu, L.J., Yu, Y.M., et al. (2020) Facile One-Pot Preparation of Ti3+, N Co-Doping TiO2 Nanotube Arrays and Enhanced Photodegradation Activities by Tuning Tube Lengths and Diameters. Catalysis Today, 355, 563-572.
https://doi.org/10.1016/j.cattod.2019.06.051
[110] Cho, H., Joo, H., Kim, H., et al. (2021) Enhanced Photo-catalytic Activity of TiO2 Nanotubes Decorated with Erbium and Reduced Graphene Oxide. Applied Surface Science, 565, Article ID: 150459.
https://doi.org/10.1016/j.apsusc.2021.150459