1. 引言
瑞典数学家Lars Garding在其名著Encounter with Mathematics中说:“如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,……,这就带来了教学上的困难。” [1] Lars Garding的名言表明了线性代数在自然科学中的重要地位,也点出了公理化体系下线性代数教学的困境。如何设计线性代数的内容体系,关系到学生学习的积极性的发挥以及对线性代数相关知识的真正理解、掌握和应用。但是,国内使用广泛的线性代数教材,一上来就是天外来物式的逆序数式行列式定义,然后就是些沉闷的有关行列式性质的证明;然后才是矩阵及其运算;然后是矩阵的初等变换和线性方程组,这其中,用最高阶非零子式来定义矩阵秩,也一样过于“曲高和寡”且不具有实操性。接下来的向量组的线性相关性有关内容,也是从理论到理论,一堆的定理、证明,冗长艰涩。学生前半期学的艰涩枯燥,严重影响学生学习后面对工程应用更为重要的向量空间、特征值与特征向量、线性空间与线性变换等内容的积极性。
为此,已经有不少学者对线性代数的内容体系进行了探索和改革。文献 [2] 和文献 [3] 均对线性代数课程内容的关联性进行了分析研究。西安电子科技大学的杨威等 [4] 在其在线开放课程《实用大众线性代数》中对线性代数的课程体系和教学内容进行了改革与实践。作者也在教材 [5] 中进行了初步的探索与实践。
如何合理组织安排线性代数各部分内容,在保持其逻辑严谨性的同时,尽可能避免传统线性代数内容的抽象与晦涩性,力求具体直观和通俗易懂,突出工科特性,是个非常重要的问题。为此,本文从新数据对象引入、为新数据对象引入数学运算、新数据对象的应用这一逻辑思路出发,将矩阵看成是从自然数、整数、实数、复数等顺延扩展引入的一种新的数据对象,并将线性代数的核心内容看作是围绕矩阵这一新的数据对象而引出的运算及相关应用,并以此对线性代数的内容体系进行了分析和梳理,在此基础上提出了一种新颖的工科线性代数教材内容体系设计思路。
2. 线性代数内容的逻辑体系分析
我们知道,本科线性代数课程的核心内容包括:矩阵的定义及其运算、线性方程组、行列式、向量组的线性相关性、向量空间、特征值与特征向量、二次型与标准型等。
2.1. 矩阵
矩阵是线性代数的核心数据类型或对象,是线性代数的基石。矩阵,顾名思义,就是矩形数据阵列。从自然数到整数到有理数到实数再到复数,我们学习、研究的数据类型或对象一步步拓展。将一个个矩形的数据表或数据阵列作为一个整体进行研究,很自然的引出了矩阵这一新的数据类型或对象。类似实数或复数的运算,自然引出矩阵的加、减、数乘、乘法、逆运算及分块矩阵运算。图1给出了从实数到矩阵的演化逻辑。

Figure 1. Evolution from Real Number to Matrix
图1. 从实数到矩阵的演化
2.2. 矩阵在线性方程组中的应用
线性方程组及其求解可以看作是矩阵对象引入后矩阵的第一个应用。图2详细给出了矩阵、向量表示视角下线性方程组及其求解所构建的内容体系图。

Figure 2. Content system diagram of linear equations and their solutions from the perspective of matrix and vector representation
图2. 矩阵、向量表示视角下线性方程组及其求解构建的内容体系图
2.2.1. 矩阵表示视角下的线性方程组及其求解
1) 消元法解线性方程组:有了矩阵对象并给其定义了一些运算后,自然的获得了它的第一个应用:将线性方程组用矩阵来表示,并将解方程的消元法对应成矩阵的初等行变换。为此,自然引出矩阵的初等变换、行阶梯矩阵、行最简形、标准型等概念;然后将矩阵行阶梯阵的非零行的行数定义为矩阵秩。相比于最高价非零子式秩的定义的抽象和不可实际计算性,该秩的定义不仅具体(可以对应于线性方程组中的有效方程个数)而且具有可计算性(化矩阵为行阶梯矩阵,然后数数非零行的行数)。有了初等行变换和秩的概念,便可以根据具体线性方程例子,总结归纳出非齐次和齐次线性方程组有解、有唯一解、无解等与秩的关系的相关定理。所有这些,都力求通俗易懂,浅显直观,尽可能避免抽象和神来之物式的数学定义、定理、证明。有了初等变换后,对单位矩阵进行一次初等变换便得到了出初等矩阵。然后将矩阵初等变换转化为初等矩阵与矩阵的乘积问题,也就可以推导出求矩阵逆的初等变换法。至此,消元法解方程引出的系列内容大体完结(还剩基础解系等问题)。
2) 公式法解线性方程组(克拉默法则)及行列式
对n个方程n个变量的非齐次线性方程组,探讨其一般求解公式法。由二元非齐次线性方程组
解的一般公式
、
,可以引出二阶行列式的定义
。类似地,三元非齐次线性方程组
解的一般公式
可以引出三阶行列式
。
通过分析
可得出三阶行列式按行按列展开的公式。若定义一阶行列式为一个数本身,则二阶行列式也可以按行按列展开。由此引出矩阵的按行按列展开的递推式定义。其他行列式性质皆由此定义获得,完全避开逆序数式行列式定义。
2.2.2. 向量表示视角下的线性方程组及其求解
将矩阵A按行按列分块,矩阵更可对应成向量组的形式。Ax更对应向量组的线性组合问题;Ax = 0有解、无解对应向量组的线性相关和线性无关;Ax = b对应一个向量能由一个向量组线性表示问题;AX = B对应向量组B能由向量组A线性表示问题;当AX = B有解且BY = A也有解时,对应向量组A与向量组B等价。这样一来,传统上学生学得非常累的充满晦涩证明的向量组的相关性问题就变得简单——无非就是新瓶(向量组)装旧酒(线性方程组有解无解问题)。
2.3. 向量与空间
向量空间相关内容的逻辑体系分析见图3。将空间点对应成向量,由一维实数空间R(对应数轴上的点,一维向量)到二维实数空间R2 (二维平面点,二维向量)到三维实数空间R3,自然过度到Rn,然后自然引出向量空间的定义、子空间的定义。由自然基极其坐标(对应笛卡尔坐标系极其上的点的坐标)引申出向量空间的基与坐标、不同基下坐标的转移计算等内容。

Figure 3. Analysis of logical system of vector space related content
图3. 向量空间相关内容逻辑体系分析
由点x到原点的距离公式
引出向量的l2-范数(长度),由
引出向量x、y的内积
,然后再引出向量的夹角、向量正交等系列内容。
2.4. 矩阵表示视角下的线性变换
矩阵表示视角下的线性变换内容体系见图4所示。

Figure 4. Content system of linear transformation from the perspective of matrix representation
图4. 矩阵表示视角下的线性变换内容体系
由二维恒等变换
、尺度变换
、旋转变换
的矩阵表示
、
、
引申出线性变换y = Ax,将方阵
与向量的乘法运算看成线性变换。由y=Ax抽象出一般的线性变换T的定义及性质,以及二者之间的关系。
对给定的线性变换T (设其对应的方阵为A),是否存在某向量,使得该向量在变换T下仅改变大小,不改变方向呢?写成矩阵表示,即给定方阵A,是否存在x及数
,使得
?由此引申出特征值、特征向量的定义及其计算问题。
由旋转变换对应的矩阵的特点引出正交矩阵的概念及性质。由同一线性变换在不同基下的矩阵表示引出相似矩阵、相似变换问题。一个线性变换(对应一个方阵)在什么基下会对应成各分量的尺度变换(对角矩阵)的问题引出矩阵的对角化问题。实对称矩阵对应二次型,二次型通过什么变换可化为标准型的问题引出对称矩阵的对角化问题。
线性变换存在的问题是它只对应方阵乘法运算,对于一般的矩阵乘法运算,它对应什么几何问题?进一步的,当然也可以把一般的矩阵乘法运算看成是线性映射,但这已超出我们多数线性代数教材所涉及的内容范畴。
3. 工科线性代数教材内容体系设计思路
根据以上线性代数内容的逻辑体系分析,一种新颖的线性代数教材内容编排设计如表1所示。
教材 [5] 大体是按表1的编排体系进行内容布局,但仍有一些不相符的地方,我们将对其进一步进行修订,使其内容尽可能通俗、直观而不失严谨,并尽可能降低传统线性代数课程的抽象与晦涩性,在其内容中进一步结合工程应用实例,拓展学生视野,融合科学计算软件,在掌握基本的数学原理的基础上,真正培养学生的科学计算能力和应用线性代数知识解决实际问题的能力。

Table 1. A novel content arrangement of Linear Algebra textbook
表1. 一种新颖的线性代数教材内容编排
4. 结论
本文从矩阵对象这一视角出发,对线性代数的知识体系进行了梳理和分析,在此基础上给出了一种新颖的线性代数教材内容编排设计思路。如何在这些内容体系中进一步融入工程应用和科学计算,是下一步值得探索的研究方向。
基金项目
广东省教育科学规划课题(2021GXJK308),广东省研究生教育创新计划项目(2022SFKC_083)。
NOTES
*通讯作者。