不同种类离子对Al-Mg-Li-Zr合金粉末水反应性能的影响
Effect of Different Ions on Water Reaction Performance of Al-Mg-Li-Zr Alloy Powder
DOI: 10.12677/MS.2022.1212141, PDF, 下载: 186  浏览: 267  科研立项经费支持
作者: 蔡嘉辉:武汉市光谷第二高级中学,湖北 武汉;王晓东:华中科技大学附属中学,湖北 武汉
关键词: Al-Mg-Li-Zr合金粉末水反应性能T-t曲线 Al-Mg-Li-Zr Alloy Powder Water Reaction Performance T-t Curves
摘要: 使用高压反应釜对Al-Mg-Li-Zr合金粉末的水反应性能进行了研究,通过对反应体系的温度–时间(T-t)曲线进行分析,提取出了反应启动温度、反应时间、放热温升与平均升温速率四个特征参数,重点研究了不同种类离子对Al-Mg-Li-Zr合金粉末水反应性能的影响。结果表明,相较于蒸馏水,大部分盐溶液均使得Al-Mg-Li-Zr合金粉末的水反应启动温度降低。硝酸根、硫酸根、氯离子、钾离子与钠离子均对Al-Mg-Li-Zr合金粉末的水反应起到促进作用,其中,KNO3的促进效果最好,而氟化盐则明显抑制了Al-Mg-Li-Zr合金粉末的水反应。
Abstract: The water reaction performance of Al-Mg-Li-Zr alloy powder was studied in a high-pressure reactor. Through the analysis of the temperature-time (T-t) curve of the reaction system, four characteristic parameters, namely, reaction starting temperature, reaction time, exothermic temperature rise and average temperature rise rate, were extracted. The effects of different kinds of ions on the water reaction performance of Al-Mg-Li-Zr alloy powder were emphatically studied. The results showed that compared with distilled water, the starting temper-ature of the water reaction of Al-Mg-Li-Zr alloy powder was reduced by most salt solutions. Nitrate, sulfate, chloride, potassium and sodium ions all promoted the water reaction of Al-Mg-Li-Zr alloy powder, among which KNO3 was the best, while fluoride obviously inhibited the water reaction of Al-Mg-Li-Zr alloy powder.
文章引用:蔡嘉辉, 王晓东. 不同种类离子对Al-Mg-Li-Zr合金粉末水反应性能的影响[J]. 材料科学, 2022, 12(12): 1269-1275. https://doi.org/10.12677/MS.2022.1212141

参考文献

[1] 毛宗强. 氢能——我国未来的清洁能源[J]. 化工学报, 2004(S1): 296-302.
[2] Wang, H.Z., Leung, D.Y., Leung, M.K.H. and Ni, M. (2009) A Review on Hydrogen Production Using Aluminum and Aluminum Alloys. Renewable & Sustainable Energy Reviews, 13, 845-853.
https://doi.org/10.1016/j.rser.2008.02.009
[3] Bergthorson, J.M., Ya-vor, Y., Palecka, J., Georges, W., Soo, M., Vickery, J., Goroshin, S., Frost, D.L. and Higgins, A.J. (2017) Metal-Water Combustion for Clean Propulsion and Power Generation. Applied Energy, 186, 13-27.
https://doi.org/10.1016/j.apenergy.2016.10.033
[4] 赵卫兵, 史小锋, 伊寅, 韩新波. 水反应金属燃料在超高速鱼雷推进系统中的应用[J]. 火炸药学报, 2006, 29(5): 53-56.
[5] 张亚俊, 王祎, 李吉祯, 刘芳莉, 齐晓飞. 高速鱼雷水冲压发动机用金属/水反应燃料研究进展[J]. 四川兵工学报, 2013, 34(5): 123-126.
[6] 刘冠鹏, 李凤生, 郭效德. 铝粉燃料与水反应的研究进展[J]. 固体火箭技术, 2007, 30(2): 138-141+154.
[7] Wollmark, S. and Ya-vor, Y. (2019) Static Firing Tests of Aluminum-Water Propellant Motors Containing V-Alex Nanopowders. Internation-al Journal of Energetic Materials and Chemical Propulsion, 18, 229-246.
https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.2019028018
[8] Wollmark, S. and Yavor, Y. (2019) Burning Rates of Nanoaluminum-Water Solid Propellants at Various Pressures. Journal of Propulsion and Power, 35, 173-181.
https://doi.org/10.2514/1.B37098
[9] 郑邯勇, 王永昌. 铝水反应机理的试验研究与分析[J]. 舰船科学技术, 2005(3): 81-83.
[10] Wan, J., Cai, S., Liu, Y., Xie, C., Xia, X. and Zeng, D. (2012) Reaction Characteristics of Nano-Aluminum and Water by In-Situ Investigation. Materials Chemistry and Physics, 136, 466-471.
https://doi.org/10.1016/j.matchemphys.2012.07.012
[11] 孙倩, 郭晓燕, 邹美帅, 杨荣杰, 黄海涛. 镁基水反应金属材料制备及其水反应活性[J]. 含能材料, 2014, 22(2): 197-201.
[12] 刘冠鹏, 郭效德, 段红珍, 姜炜, 李凤生. 镁水反应的实验研究及机理初探[J]. 固体火箭技术, 2008, 31(5): 497-500.
[13] 姜菡雨, 徐司雨, 郝海霞, 姚二岗, 裴庆, 李猛. 锆粉的改性制备及在固体推进剂中的应用研究[C]//中国化学会第30届学术年会摘要集-第四十六分会: 燃烧化学. 2016: 30.