高温合金感应熔炼坩埚用耐火材料的研究现状与展望
Research Status and Prospect of Refractories for Induction Melting Crucible of Superalloy
DOI: 10.12677/MS.2022.1212142, PDF, 下载: 323  浏览: 1,469  科研立项经费支持
作者: 颜正国, 李忠华, 袁 磊, 于景坤:东北大学冶金学院,辽宁 沈阳;杨文刚:中钢集团洛阳耐火材料研究院有限公司,河南 洛阳
关键词: 高温合金感应熔炼坩埚纯净度界面反应热力学稳定性 Superalloy Induction Melting Crucible Purity Interfacial Reaction Thermal Stability
摘要: 高温合金因其高温下具有优异的力学性能、良好的抗氧化和耐腐蚀性能,在国民经济和现代国防建设领域都有着广泛的应用。真空感应熔炼是高温合金生产的重要工艺,在高温低压长时间服役过程中,坩埚耐火材料的分解、溶解以及与高温合金中活性元素的化学反应都将影响高温合金的纯净度,进而影响合金性能。因此,制备高热力学稳定性和耐高温熔体侵蚀性能优异的坩埚耐火材料,是实现高纯高温合金熔炼的关键。为此,本文就高温合金感应熔炼坩埚用耐火材料的发展、材料的热力学稳定性,以及耐火材料与高温合金熔体间相互作用展开综述,并就高稳定性耐火材料在高温合金熔炼方面所存在的问题及其未来发展方向提出建议。
Abstract: Superalloys are widely used in the na-tional economy and modern national defense construction considering their excellent mechanical properties, good oxidation resistance and corrosion resistance at high temperatures. Vacuum in-duction melting is an important process in the production of superalloys, the decomposition and dissolution of crucible refractories and the chemical reaction with active elements in molten super-alloys during long-term service at a high temperature and low pressure will affect the purity of the superalloys, which in turn will affect the properties of the superalloys. Therefore, the preparation of crucibles with high thermal stability and excellent corrosion resistance to molten alloy is the key to achieving high purity of superalloys. In this paper, the development of refractories for induction melting crucibles of superalloys, the thermal stability of materials, and the interfacial reaction be-tween refractories and molten superalloys are reviewed, the problems in the application of high thermal stability refractories in superalloys are discussed and the future development of refracto-ries for superalloys induction melting is suggested.
文章引用:颜正国, 李忠华, 杨文刚, 袁磊, 于景坤. 高温合金感应熔炼坩埚用耐火材料的研究现状与展望[J]. 材料科学, 2022, 12(12): 1276-1287. https://doi.org/10.12677/MS.2022.1212142

参考文献

[1] 张业欣, 王万林. 铸造高温合金与纯净化熔炼技术发展现状[J]. 金属材料与冶金工程, 2015, 43(4): 28-32+35.
[2] 刘录凯, 王林珠, 冉佳乐. 镍基高温合金中夹杂物的研究现状及进展[J]. 山东化工, 2021, 50(17): 90-92.
[3] 王会阳, 安云岐, 李承宇, 等. 镍基高温合金材料的研究进展[J]. 材料导报, 2011, 25(2): 482-486.
[4] 操齐高, 马光, 郑晶. 高温合金杂质控制水平国内外对比分析研究[J]. 科技创新导报, 2015, 12(30): 3-4+35.
[5] 刘奎, 张炳大, 张顺南. 硫、氧对M17F高温合金组织和高温持久性能的影响[J]. 金属学报, 1995, 31(3): 370-373.
[6] 郭建亭. 几种微量元素在高温合金中的作用与机理[J]. 中国有色金属学报, 2011, 21(3): 465-475.
[7] 丁雨田, 王伟, 李海峰, 等. 真空感应重熔GH3625合金纯净化研究[J]. 稀有金属材料与工程, 2018, 47(2): 687-691.
[8] 谢锡善, 董建新, 付书红, 等. γ″和γ′相强化的Ni-Fe基高温合金GH4169的研究与发展[J]. 金属学报, 2010, 46(11): 1289-1302.
[9] Chen, K., Zhao, L.R. and Tse, J.S. (2003) Sulfur Embrittlement on γ/γ′ Interface of Ni-Base Single Crystal Superalloys. Acta Materialia, 51, 1079-1086.
https://doi.org/10.1016/S1359-6454(02)00512-8
[10] 赵云松, 赵婷婷, 张迈, 等. S元素对镍基高温合金及其涂层组织和性能的影响研究进展[J]. 航空材料学报, 2021, 41(3): 96-110.
[11] Jiang, R., Bull, D.J., Proprentner, D., et al. (2017) Effects of Oxygen-Related Damage on Dwell-Fatigue Crack Propagation in a P/M Ni-Based Superalloy: From 2D to 3D Assessment. International Journal of Fatigue, 99, 175-186.
https://doi.org/10.1016/j.ijfatigue.2017.03.003
[12] Storgärds, E., Saarimäki, J., Simonsson, K., et al. (2016) In-fluence of Superimposed Vibrational Load on Dwell Time Crack Growth in a Ni-Based Superalloy. International Jour-nal of Fatigue, 87, 301-310.
https://doi.org/10.1016/j.ijfatigue.2016.02.018
[13] 赵鸿燕. 真空感应炉坩埚材质对镍基合金Inconel 690氧硫含量的影响[J]. 特殊钢, 2011, 32(6): 43-46.
[14] Jiang, L., Guo, S.Q., Bian, Y.Y., et al. (2016) Interfacial Behaviors of Magnesia Partially Stabilized Zirconia with Nickel-Based Superalloy. Materials Letters, 181, 313-316.
https://doi.org/10.1016/j.matlet.2016.06.029
[15] 吴笑非, 姚建省, 王丽丽, 等. Al2O3型壳与定向凝固合金IC10的界面反应[J]. 材料工程, 2021, 49(7): 141-147.
[16] Valenza, F., Nowak, R., Sobczak, N., et al. (2010) Inter-actions between Superalloys and Mould Materials for Investment Casting of Turbine Blades. Advances in Science and Technology, 70, 130-135.
https://doi.org/10.4028/www.scientific.net/AST.70.130
[17] Yao, J.S., Tang, D.Z., Liu, X.G., et al. (2013) Interac-tion between Two Ni-Base Alloys and Ceramic Moulds. Materials Science Forum, 747-748, 765-771.
https://doi.org/10.4028/www.scientific.net/MSF.747-748.765
[18] Li, Q., Song, J.X., Wang, D.G., et al. (2011) Effect of Cr, Hf and Temperature on Interface Reaction between Nickel Melt and Silicon Oxide Core. Rare Metals, 30, 405-409.
https://doi.org/10.1007/s12598-011-0313-6
[19] 杨根林, 王二敏, 韩劲, 等. 真空感应熔炼用石墨坩埚对Ni47Ti44Nb9形状记忆合金质量的影响[J]. 材料工程, 2011(11): 51-52+57.
[20] Frenzel, J., Zhang, Z., Neuking, K., et al. (2004) High Quality Vacuum Induction Melting of Small Quantities of NiTi Shape Memory Alloys in Graphite Crucibles. Journal of Alloys and Compounds, 385, 214-223.
https://doi.org/10.1016/j.jallcom.2004.05.002
[21] 王建淦, 牛中杰, 毛江虹, 等. TiNi形状记忆合金真空感应熔炼工艺的研究[J]. 稀有金属材料与工程, 2011, 40(6): 1115-1119.
[22] Zhang, Z.H., Frenzel, J., Neuking, K., et al. (2005) On the Reaction between NiTi Melts and Crucible Graphite during Vacuum Induction Melting of NiTi Shape Memory Alloys. Acta Materialia, 53, 3971-3985.
https://doi.org/10.1016/j.actamat.2005.05.004
[23] 肖云峰, 周晋林, 唐清富, 等. 高温熔炼用石墨坩埚涂层工艺研究[J]. 表面技术, 2001, 30(2): 20-22.
[24] 吴梅柏, 郭喜平, 武兴君. 铌基超高温合金熔体与陶瓷类坩埚的高温反应[J]. 稀有金属与硬质合金, 2007, 35(4): 9-13+26.
[25] Billings, G.W. (2003) Refractory Crucibles and Molds for Containing Reactive Molten Metals and Salts. U.S. Patent No. 6604941.
[26] Kartavykh, A.V., Tcherdyntsevb, V.V. and Zollingerc, J. (2009) TiAl-Nb Melt Interaction with AlN Refractory Crucibles. Materials Chemistry and Physics, 116, 300-304.
https://doi.org/10.1016/j.matchemphys.2009.03.032
[27] 高永辉, 李重河, 国子明, 等. TiNi合金熔炼的耐火材料研究[J]. 过程工程学报, 2010, 10(z1): 63-67.
[28] Fashu, S., Lototskyy, M., Davids, M.W., et al. (2020) A Review on Crucibles for Induction Melting of Titanium Alloys. Materials & Design, 186, 108295-108312.
https://doi.org/10.1016/j.matdes.2019.108295
[29] 赵凤鸣, 姚世义, 文杰. 热解氮化硼坩埚在特种熔炼上的应用[J]. 稀有金属, 1993, 17(2): 152-154.
[30] 李超, 刘佳, 于昂, 等. 铸造高温合金真空感应熔炼过程的研究[J]. 真空, 2016, 53(2): 37-41.
[31] 王祖锦, 张立同. 等静压镁质陶瓷坩埚与高温合金液之间的界面物理化学作用[J]. 航空学报, 1989, 10(3): A167-A172.
[32] 王晓峰, 周晓明, 穆松林, 等. 高温合金熔炼工艺讨论[J]. 材料导报, 2012, 26(7): 108-113.
[33] Valenza, F., Muolo, M.L. and Passerone, A. (2010) Wetting and Interactions of Ni- and Co-Based Superalloys with Different Ceramic Materials. Journal of Materials Science, 45, 2071-2079.
https://doi.org/10.1007/s10853-009-3801-4
[34] 王慢慢, 杨彦红, 王道红, 等. 铸造高温合金K417G深度脱氧脱硫的研究[J]. 稀有金属材料与工程, 2018, 47(12): 3730-3734.
[35] 牛建平. 纯净钢及高温合金制备技术[M]. 北京: 冶金工业出版社, 2009: 5-46.
[36] 董盼. 真空感应熔炼超纯合金用复合结构坩埚[J]. 特种铸造及有色冶金, 2010, 30(11): 995-996.
[37] Bai, P., Zhang, H.R., Li, Y.M., et al. (2019) Effect of Y2O3 Crucible on Purification of Ni3 Al-Based Superalloy Scraps. Rare Metal Materials and Engineering, 48, 406-410.
[38] 牛建平, 杨克努, 孙晓峰, 等. 采用CaO坩埚超纯净熔炼Ni基高温合金[J]. 机械工程材料, 2009, 25(5): 19-20+46.
[39] 出川通, 音谷登平. 高純度Ni基超合金のカルシア耐火材を用いた溶製技術[J]. 鐵と鋼: 日本鐡鋼協會々誌, 1987, 73: 1691-1697.
[40] Wei, J.W., Han, B.Q., Wang, X.C., et al. (2020) Improvement in Hydration Resistance of CaO Gran-ules Based on CaO-TiO2, CaO-ZrO2 and CaO-V2O5 Systems. Materials Chemistry and Physics, 254, 123413-123422.
https://doi.org/10.1016/j.matchemphys.2020.123413
[41] Cheng, X., Yuan, C., Green, N.R., et al. (2013) Sintering Mechanisms of Yttria with Different Additives. Ceramics International, 39, 4791-4799.
https://doi.org/10.1016/j.ceramint.2012.11.069
[42] Mcdeavitt, S.M., Billings, G.W. and Indacochea, J.E. (2009) High Temperature Interaction Behavior at Liquid Metal-Ceramic Interfaces. Journal of Materials Engineering and Per-formance, 11, 392-401.
https://doi.org/10.1361/105994902770343917
[43] 王常珍. 冶金物理化学研究方法[M]. 北京: 冶金工业出版社, 2002: 54-61.
[44] Yuasa, G., Sugiura, S., Fujine, M., et al. (1983) Oxygen Content in Refractories. Transaction ISIJ, 23, 289-297.
[45] 李秉强, 戴文斌, 于景坤. 钢包耐火材料对钢中氧含量及钢水温降的影响[J]. 材料与冶金学报, 2011, 10(3): 180-183.
[46] 陈肇友. 化学热力学与耐火材料[M]. 北京: 冶金工业出版社, 2005: 371-425.
[47] Saha, R.L., Nandy, T.K., Misra, R.D.K., et al. (1990) On the Evaluation of Stability of Rare Earth Oxides as Face Coats for Investment Casting of Titanium. Metallurgical and Materials Transactions B, 21, 559-566.
https://doi.org/10.1007/BF02667869
[48] 叶大伦, 胡建华. 实用无机物热力学数据手册[M]. 第2版. 北京: 冶金工业出版社, 2002: 57-1158.
[49] 宋庆忠, 潜坤, 舒磊, 等. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[50] Kostov, A. and Friedrich, B. (2006) Predicting Thermodynamic Stabil-ity of Crucible Oxides in Molten Titanium and Titanium Alloys. Computational Materials Science, 38, 374-385.
https://doi.org/10.1016/j.commatsci.2006.03.006
[51] Cui, R., Tang, X., Gao, M., et al. (2012) Thermodynamic Analysis of Interactions between Ti-Al Alloys and Oxide Ceramics. Transactions of Nonferrous Metals Society of China, 22, 887-894.
https://doi.org/10.1016/S1003-6326(11)61261-2
[52] Bannenberg, N. (1995) Demands of Refractory Material for Clean Production. Proceedings of UNITECR’95, Kyoto, 19-22 November 1995, 36-39.
[53] Pehlke, R.D. andElliott, J.F. (1960) Solubility of Nitrogen in Liquid Iron Alloys. I. Thermodynamics. Transaction of American Institute of Mining, Metallurgical and Petroleum Engineers, 218, 1088-1101.
[54] Jones, J., Bowman, B. andLefrank, P.A. (1998) Electric Furnace Steelmaking. The AISE Steel Foundation, Pittsburgh, 525-527.
[55] Li, B.S., Liu, A.H., Nan, H., et al. (2018) Wettability of TiAl Alloy Melt on Ceramic Moulds in Electromagnetic Field. Transactions of Nonferrous Metals Society of China (English Edition), 18, 518-522.
https://doi.org/10.1016/S1003-6326(08)60091-6
[56] Zhu, J., Kamiya, A., Yamada, T., et al. (2002) Surface Ten-sion, Wettability and Reactivity of Molten Titanium in Ti Yttria-Stabilized Zirconia System. Materials Science & Engi-neering A (Structural Materials: Properties, Microstructure and Processing), 327, 117-127.
https://doi.org/10.1016/S0921-5093(01)01732-4
[57] Tetsui, T., Kobayashi, T., Kishimoto, A., et al. (2012) Struc-tural Optimization of an Yttria Crucible for Melting TiAl Alloy. Intermetallics, 20, 16-23.
https://doi.org/10.1016/j.intermet.2011.08.026
[58] Wan, B.B., Zhang, H.R., Ran, C., et al. (2018) High-Temperature Wettability and Interactions between NbSi-Based Alloys and Y2O3 Ceramics. Ceramics International, 44, 32-39.
https://doi.org/10.1016/j.ceramint.2017.07.163
[59] 姚建省, 唐定中, 刘晓光, 等. DD6单晶高温合金与陶瓷型壳的界面反应[J]. 航空材料学报, 2015, 35(6): 1-7.
[60] 吴茂, 常玲玲, 路新, 等. 粗糙度对金属/陶瓷反应润湿体系高温润湿性的影响[J]. 材料热处理学报, 2016, 37(7): 25-32.
[61] 周文斌. 锆熔体与氧化物型壳的界面反应研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2014.
[62] Wan, B.B., Zhang, H.R., Gao M, et al. (2018) High-Temperature Wettability and Interactions between Hf-Containing NbSi-Based Alloys and Y2O3Ceramics with Various Microstructures. Materials & Design, 138, 103-110.
https://doi.org/10.1016/j.matdes.2017.10.060
[63] Zi, Y., Meng, J., Zou, M.k., et al. (2020) Effects of Yttrium on Wettability and Interactions between Molten Superalloy and SiO2-Based Ceramic Core. Ceramics International, 46, 7324-7335.
https://doi.org/10.1016/j.ceramint.2019.11.228
[64] 陈晓燕, 周亦胄, 张朝威, 等. Hf对一种高温合金与陶瓷材料润湿性及界面反应的影响[J]. 金属学报, 2014, 50(8): 1019-1024.
[65] Sangghaleh, A. and Halali, M. (2009) Effect of Magnesium Addition on the Wetting of Alumina by Aluminium. Applied Surface Science, 255, 8202-8206.
https://doi.org/10.1016/j.apsusc.2009.05.044
[66] 姚建省, 李鑫, 王丽丽, 等. Al2O3型壳与DD6单晶合金的界面反应[J]. 稀有金属材料与工程, 2018, 47(3): 840-845.
[67] Pirowski, Z. (2014) Evaluation of High-Temperature Physicochemical Interactions between the H282 Alloy Melt and Ceramic Material of the Crucible. Ar-chives of Foundry Engineering, 14, 83-90.
https://doi.org/10.2478/afe-2014-0091
[68] 姜兰. 用于镍基高温合金熔炼氧化锆耐火材料的研究[D]: [博士学位论文]. 上海: 上海大学, 2017.
[69] 冯小欢. 镍合金铸件型壳制备与生产工艺研究[J]. 世界有色金属, 2017(22): 37-38.
[70] 吴梅柏. Nb基超高温合金熔炼用坩埚的选择及石墨坩埚惰性涂层的制备[D]: [硕士学位论文]. 西安: 西北工业大学, 2007.
[71] Li, J.P., Zhang, H.R., Gao, M., et al. (2018) High-Temperature Wettability and Interactions between Y-Containing Ni-Based Alloys and Various Oxide Ceramics. Materials, 11, 749-762.
https://doi.org/10.3390/ma11050749
[72] 汪宣成, 韩兵强, 魏耀武, 等. 单斜ZrO2加入量对CaO材料性能的影响[J]. 耐火材料, 2019, 53(1): 34-37.
[73] Chen, G.Y., Li, B.T., Zhang, H., et al. (2016) On the Modification of Hydration Resistance of CaO with ZrO2. International Journal of Applied Ceramic Technology, 13, 1173-1181.
https://doi.org/10.1111/ijac.12606
[74] Sun, T.T., Jiang, M., Li, C.H., et al. (2011) Modification of CaO Refractories for Melting Titanium Alloys and Its Hydration Resistance. Advanced Materials Research, 177, 502-505.
https://doi.org/10.4028/www.scientific.net/AMR.177.502
[75] 张悦, 李恩军, 李先容, 等. 烧结温度对纯氧化钙性能的影响[J]. 中国陶瓷工业, 2015, 22(3): 13-16.
[76] Chen, M., Wang, N., Yu, J.K., et al. (2007) Effect of Po-rosity on Carbonation and Hydration Resistance of CaO Materials. Journal of the European Ceramic Society, 27, 1953-1959.
https://doi.org/10.1016/j.jeurceramsoc.2006.05.101
[77] Zhou, P.P., Wu, G.Q., Butt, F.K., et al. (2019) Preparation of Y2O3 Coated CaO Ceramic Cores with Anti-Hydration Performance and High-Interface Stability against Interface Reaction of Ti-6Al-4V Alloys. Journal of Nanoscience and Nanotechnology, 19, 3420-3428.
https://doi.org/10.1166/jnn.2019.16034
[78] Xu, T.T., Su, Y., Shi, T., et al. (2021) Improving Hydration Re-sistance of MgO-CaO Ceramics by in Situ Synthesized CaZrO3 Coatings Prepared Using a Non-Hydrolytic Sol. Ceram-ics International, 47, 2165-2171.
https://doi.org/10.1016/j.ceramint.2020.09.054
[79] Liu, S.k, Wei, Y.W., Li, B.R., et al. (2021) Microstructural and Hydration Resistance Study of CaO with Powder Surface Modification by Al Coupling Agents: Alkoxy Type and Phosphate Type. Ceramics International, 47, 18699-18707.
https://doi.org/10.1016/j.ceramint.2021.03.203
[80] Lin, C.C., Chang, Y.W., Lin, K.L., et al. (2008) Effect of Yttria on Interfacial Reactions between Titanium Melt and Hot-Pressed Yttria/Zirconia Composites at 1700 ˚C. Journal of the American Ceramic Society, 91, 2321-2327.
https://doi.org/10.1111/j.1551-2916.2008.02428.x
[81] 鲁飞, 刘树峰, 孙良成, 等. 氧化钇陶瓷的热压烧结和耐蚀行为[J]. 稀土, 2016, 37(5): 142-146.
[82] Xiang, G., Liu, X., Liu, W., et al. (2020) Multifunctional Optical Thermometry Based on the Stark Sublevels of Er3+ in CaO-Y2O3: Yb3+/Er3+. Journal of the American Ceramic Society, 103, 2540-2547.
https://doi.org/10.1111/jace.16939