#### 期刊菜单

Bilateral Matching Decision Based on Picture Fuzzy Sets
DOI: 10.12677/MSE.2022.114092, PDF , HTML, XML, 下载: 124  浏览: 274  国家自然科学基金支持

Abstract: Aiming at the problem of bilateral matching decision under fuzzy preference information of pictures, a bilateral matching decision method is presented. Firstly, TOPSIS method is used to transform fuzzy information of pictures into satisfaction. On this basis, considering one-to-one matching constraints, a bilateral matching decision model is constructed. Furthermore, according to the combined satisfaction matching method, the multi-objective planning model is transformed into a single-objective planning model, and the best bilateral matching scheme is obtained by solving this model. Finally, an example of product development requirements matching verifies the effectiveness and reliability of the proposed method.

1. 引言

2. 文献综述

3. 预备知识

3.1. 图片模糊集

$d\left({t}_{1},{t}_{2}\right)=\frac{1}{3}\left(|{\mu }_{1}-{\mu }_{2}|+|{\nu }_{1}-{\nu }_{2}|+|{ο}_{1}-{ο}_{2}|\right)$ (1)

3.2. 双边匹配

1) $\delta \left({H}_{a}\right)\in J$

2) $\delta \left({J}_{b}\right)\in H\cup \left\{{J}_{b}\right\}$

3) $\delta \left({J}_{b}\right)={H}_{a}$ 当且仅当 $\delta \left({H}_{a}\right)={J}_{b}$

$\delta$ 被称作双边匹配。在双边匹配 $\delta$ 中， $\delta \left({J}_{b}\right)={H}_{a}$$\left({H}_{a},{J}_{b}\right)$ 表示 ${H}_{a}$${J}_{b}$$\delta$ 中成功匹配， $\delta \left({J}_{b}\right)={J}_{b}$$\delta \left({H}_{a}\right)={H}_{a}$ 表示 ${H}_{a}$${J}_{b}$$\delta$ 中未能成功匹配。

4. 双边匹配模型

4.1. 问题描述

4.2. 主体满意度计算

${t}_{ab}^{+}=〈1,0,0〉$ (2)

${t}_{ab}^{-}=〈0,0,1〉$ (3)

$d\left({t}_{ab}^{H\to J},{t}_{ab}^{+}\right)=\frac{1}{3}\left(|{\mu }_{ab}^{H\to J}-1|+|{\nu }_{ab}^{H\to J}-0|+|{ο}_{ab}^{H\to J}-0|\right)$ (4)

$d\left({t}_{ab}^{H\to J},{t}_{ab}^{-}\right)=\frac{1}{3}\left(|{\mu }_{ab}^{H\to J}-0|+|{\nu }_{ab}^{H\to J}-0|+|{ο}_{ab}^{H\to J}-1|\right)$ (5)

${\eta }_{ab}^{H\to J}=\frac{d\left({t}_{ab}^{H\to J},{t}_{ab}^{-}\right)}{d\left({t}_{ab}^{H\to J},{t}_{ab}^{+}\right)+d\left({t}_{ab}^{H\to J},{t}_{ab}^{-}\right)}$ (6)

$d\left({t}_{ab}^{J\to H},{t}_{ab}^{+}\right)=\frac{1}{3}\left(|{\mu }_{ab}^{J\to H}-1|+|{\nu }_{ab}^{J\to H}-0|+|{ο}_{ab}^{J\to H}-0|\right)$ (7)

$d\left({t}_{ab}^{J\to H},{t}_{ab}^{-}\right)=\frac{1}{3}\left(|{\mu }_{ab}^{J\to H}-0|+|{\nu }_{ab}^{J\to H}-0|+|{ο}_{ab}^{J\to H}-1|\right)$ (8)

${\eta }_{ab}^{H\to J}=\frac{d\left({t}_{ab}^{H\to J},{t}_{ab}^{-}\right)}{d\left({t}_{ab}^{H\to J},{t}_{ab}^{+}\right)+d\left({t}_{ab}^{H\to J},{t}_{ab}^{-}\right)}$ (9)

4.3. 模型构建与求解

$\text{(M-1)}\left\{\begin{array}{l}\text{Max}{Z}_{1}=\underset{a=1}{\overset{m}{\sum }}\underset{b=1}{\overset{n}{\sum }}{\eta }_{ab}^{H\to J}{x}_{ab}\\ \text{Max}{Z}_{2}=\underset{a=1}{\overset{m}{\sum }}\underset{b=1}{\overset{n}{\sum }}{\eta }_{ab}^{J\to H}{x}_{ab}\\ \text{s}\text{.t}\text{.}\underset{a=1}{\overset{m}{\sum }}{x}_{ab}\le 1,\text{}b=1,2,\cdots ,n\\ \text{}\underset{b=1}{\overset{n}{\sum }}{x}_{ab}\le 1,\text{}a=1,2,\cdots ,m\\ {x}_{ab}=\left\{0,1\right\},a=1,2,\cdots ,m;b=1,2,\cdots ,n\end{array}$

$\text{(M-2)}\left\{\begin{array}{l}\text{Max}{Z}_{1}=\underset{a=1}{\overset{m}{\sum }}\underset{b=1}{\overset{n}{\sum }}\left[\kappa \left(\frac{{\eta }_{ab}^{H\to J}+{\eta }_{ab}^{J\to H}}{2}\right)+\left(1-\kappa \right)\sqrt{{\eta }_{ab}^{H\to J}×{\eta }_{ab}^{J\to H}}\right]{x}_{ab}\\ \text{s}\text{.t}\text{.}\underset{a=1}{\overset{m}{\sum }}{x}_{ab}\le 1,\text{}b=1,2,\cdots ,n\\ \text{}\underset{b=1}{\overset{n}{\sum }}{x}_{ab}\le 1,\text{}a=1,2,\cdots ,m\\ {x}_{ab}=\left\{0,1\right\},a=1,2,\cdots ,m;b=1,2,\cdots ,n\end{array}$

4.4. 双边匹配方法求解途径

5. 算例

Table 1. Picture fuzzy number matrix Φ = [ t a b H → J ] m × n

Table 2. Picture fuzzy number matrix Γ = [ t a b J → H ] m × n

Table 3. Satisfaction matrix σ = [ η a b H → J ] m × n

Table 4. Satisfaction matrix ς = [ η a b J → H ] m × n

$\text{(M-1)}\left\{\begin{array}{l}\text{Max}{Z}_{1}=\underset{a=1}{\overset{m}{\sum }}\underset{b=1}{\overset{n}{\sum }}{\eta }_{ab}^{H\to J}{x}_{ab}\\ \text{Max}{Z}_{2}=\underset{a=1}{\overset{m}{\sum }}\underset{b=1}{\overset{n}{\sum }}{\eta }_{ab}^{J\to H}{x}_{ab}\\ \text{s}\text{.t}\text{.}\underset{a=1}{\overset{m}{\sum }}{x}_{ab}\le 1,\text{}b=1,2,\cdots ,n\\ \text{}\underset{b=1}{\overset{n}{\sum }}{x}_{ab}\le 1,\text{}a=1,2,\cdots ,m\\ {x}_{ab}=\left\{0,1\right\},a=1,2,\cdots ,m;b=1,2,\cdots ,n\end{array}$

$\text{(M-2)}\left\{\begin{array}{l}\text{Max}{Z}_{1}=\underset{a=1}{\overset{m}{\sum }}\underset{b=1}{\overset{n}{\sum }}\left[\kappa \left(\frac{{\eta }_{ab}^{H\to J}+{\eta }_{ab}^{J\to H}}{\text{2}}\right)\right]{x}_{ab}\\ \text{s}\text{.t}\text{.}\underset{a=1}{\overset{m}{\sum }}{x}_{ab}\le 1,\text{}b=1,2,\cdots ,n\\ \text{}\underset{b=1}{\overset{n}{\sum }}{x}_{ab}\le 1,\text{}a=1,2,\cdots ,m\\ {x}_{ab}=\left\{0,1\right\},a=1,2,\cdots ,m;b=1,2,\cdots ,n\end{array}$

Table 5. Best bilateral matching scheme x a b

6. 结论

 [1] Gale, D. and Shapley, L.S. (1962) College Admissions and the Stability of the Marriage. American Mathematical Monthly, 69, 9-15. https://doi.org/10.1080/00029890.1962.11989827 [2] 万树平, 李登峰. 具有不同类型信息的风险投资商与投资企业多指标双边匹配决策方法[J]. 中国管理科学, 2014, 22(2): 40-47. [3] 刘桔, 杨琴, 周永务, 曹策俊. 面向师生感知满意度的双边匹配决策模型[J]. 运筹与管理, 2020, 29(3): 16-26+43. [4] Yu, D.J. and Xu, Z.S. (2020) Intuitionistic Fuzzy Two-Sided Matching Model and Its Application to Personnel-Position Matching Problems. Journal of the Operational Research Society, 71, 312-321. https://doi.org/10.1080/01605682.2018.1546662 [5] Tong, H.G. and Zhu, J.J. (2022) A Two-Stage Method for Large-Scale Manufacturing Service Stable Matching under Uncertain Environments in Cloud Manufacturing. Computers & Industrial Engineering, 171, Article ID: 108391. https://doi.org/10.1016/j.cie.2022.108391 [6] Liu, L., Zhang, Z.S. and Wang, Z. (2021) Two-Sided Matching and Game on Investing in Carbon Emission Reduction Technology under a Cap-and-Trade System. Journal of Cleaner Production, 282, Article ID: 124436. https://doi.org/10.1016/j.jclepro.2020.124436 [7] Zhao, R., Jin, M.Z., Ren, P.Y. and Zhang, Q. (2020) Stable Two-Sided Satisfied Matching for Ridesharing System Based on Preference Orders. Journal of Supercomputing, 76, 1063-1081. https://doi.org/10.1007/s11227-020-03173-6 [8] Yue, Q., Zou, W.C. and Hu, W. (2023) A New Theory of Triangular Intuitionistic Fuzzy Sets to Solve the Two-Sided Matching Problem. Alexandria Engineering Journal, 63, 57-73. https://doi.org/10.1016/j.aej.2022.07.018 [9] Jia, X., Wang, X.F., Zhu, Y.F., et al. (2021) A Two-Sided Matching Decision-Making Approach Based on Regret Theory under Intuitionistic Fuzzy Environment. Journal of Intelligent & Fuzzy Systems, 40, 11491-11508. https://doi.org/10.3233/JIFS-202720 [10] Li, B.D., Yang, Y., Su, J.F., et al. (2019) Two-Sided Matching Model for Complex Product Manufacturing Tasks Based on Dual Hesitant Fuzzy Preference Information. Knowledge-Based Systems, 186, Article ID: 104989. https://doi.org/10.1016/j.knosys.2019.104989 [11] Zhang, Z., Gao, J.L., Gao, Y., et al. (2021) Two-Sided Matching Decision Making with Multi-Granular Hesitant Fuzzy Linguistic Term Sets and Incomplete Criteria Weight Information. Expert Systems with Applications, 168, Article ID: 114311. https://doi.org/10.1016/j.eswa.2020.114311 [12] 林杨, 王应明. 考虑直觉模糊偏好关系的双边稳定匹配及应用[J]. 控制与决策, 2015, 30(12): 2212-2218. [13] Singh, A. and Kumar, S. (2021) Picture Fuzzy Set and Quality Function Deployment Approach Based Novel Framework for Multi-Criteria Group Decision Making Method. Engineering Applications of Artificial Intelligence, 104, Article ID: 104395. https://doi.org/10.1016/j.engappai.2021.104395 [14] Khan, M.D., Kumam, P., Deebani, W., et al. (2021) Bi-Parametric Distance and Similarity Measures of Picture Fuzzy Sets and Their Applications in Medical Diagnosis. Egyptian Informatics Journal, 22, 201-212. https://doi.org/10.1016/j.eij.2020.08.002 [15] Peng, X.D. and Dai, J.G. (2017) Algorithm for Picture Fuzzy Multiple Attribute Decision-Making Based on New Distance Measure. International Journal for Uncertainty Quantification, 7, 177-187. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2017020096 [16] Li, P., Wang, N.N., Wei, C.P. and Zhang, N. (2021) A Two-Sided Matching Method Considering the Lowest Value of Acceptability with Regret Theory for Probabilistic Linguistic Term Sets. International Journal of Machine Learning and Cybernetics, 12, 917-930. https://doi.org/10.1007/s13042-020-01211-6