|
[1]
|
Liu, Y., Yu, H. and Zhang, Y. (2008) TLRs Are Important Inflammatory Factors in Atherosclerosis and May Be a Therapeutic Target. Medical Hypotheses, 70, 314-316. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Libby, P. (2001) Current Concepts of the Pathogenesis of the Acute Coronary Syndromes. Circulation, 104, 365-372. [Google Scholar] [CrossRef]
|
|
[3]
|
Kaartinen, M., Penttilä, A. and Kovanen, P.T. (1994) Mast Cells of Two Types Differing in Neutral Protease Composition in the Human Aortic Intima. Demonstration of Tryptase- and Tryptase/Chymase-Containing Mast Cells in Normal Intimas, Fatty Streaks, and the Shoulder Region of Atheromas. Ar-teriosclerosis and Thrombosis, 14, 966-972. [Google Scholar] [CrossRef]
|
|
[4]
|
Hansson, G.K., Libby, P. and Tabas, I. (2015) Inflammation and Plaque Vulnerability. Journal of Internal Medicine, 278, 483-493. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Chistiakov, D.A., Melnichenko, A.A. and Grechko, A.V. (2018) Potential of Anti-Inflammatory Agents for Treatment of Atherosclerosis. Experimental and Molecular Pathology, 104, 114-124. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
狄培琰, 康乐, 孟驿佳, 柴彬, 苗明三, 苗晋鑫. 基于数据挖掘和网络药理学的中医药治疗动脉粥样硬化用药规律及特点分析[EB/OL]. 中药药理与临床: 1-22. 2022-09-23.[CrossRef]
|
|
[7]
|
王怡茹, 张一凡, 韦婧. 桃仁红花煎通过抑制淋巴管增生改善ApoE-/-小鼠动脉粥样硬化的炎症反应[J]. 暨南大学学报(自然科学与医学版), 2021, 42(1): 62-70.
|
|
[8]
|
Hopkins, A.L. (2019) Network Pharmacology. Nature Biotechnology, 25, 1110-1111. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ru, J.L., Li, P., Wang, J.N., et al. (2014) TCMSP: A Database of Sys-tems Harmacology for Drug Discovery from Herbal Medicines. Journal of Cheminformatics, 6, Article No. 13. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Rognoni, A., Cavallino, C., Veia, A., et al. (2015) Pathophysiology of Atherosclerotic Plaque Development. Cardiovascular & Hematological Agents in Medicinal Chemistry, 13, 10-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Yuan, C., Ni, L., Zhang, C., et al. (2021) Vascular Calcification: New Insights into Endothelial Cells. Microvascular Research, 134, Article ID: 104105. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lara-Guzman, O.J., Tabares-Guevara, J.H., Leon-Varela, Y.M., et al. (2012) Proatherogenic Macrophage Activities Are Targeted by the Flavonoid Quercetin. Journal of Pharmacology and Experimental Therapeutics, 343, 296-306. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Jia, Q., Cao, H., Shen, D., et al. (2019) Quercetin Protects against Atherosclerosis by Regulating the Expression of PCSK9, CD36, PPARγ, LXRα and ABCA1. International Journal of Molecular Medicine, 44, 893-902. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Cao, H., Jia, Q., Yan, L., Chen, C., et al. (2019) Quercetin Suppress-es the Progression of Atherosclerosis by Regulating MST1-Mediated Autophagy in ox-LDL-Induced RAW264.7 Mac-rophage Foam Cells. International Journal of Molecular Sciences, 20, Article 6093. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Calderón-Montaño, J.M., Burgos-Morón, E. and Pérez-Guerrero, C. (2011) A Review on the Dietary Flavonoid Kaempferol. Mini-Reviews in Medicinal Chemistry, 11, 298-344. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kong, L., Luo, C., Li, X., Zhou, Y. and He, H. (2013) The An-ti-Inflammatory Effect of Kaempferol on Early Atherosclerosis in High Cholesterol Fed Rabbits. Lipids in Health and Disease, 12, Article No. 115. [Google Scholar] [CrossRef]
|
|
[17]
|
Zhang, B.C., Zhang, C.W., Wang, C., et al. (2016) Luteolin At-tenuates foam Cell Formation and Apoptosis in Ox-LDL-Stimulated Macrophages by Enhancing Autophagy. Cellular Physiology and Biochemistry, 39, 2065-2076. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Li, J., Dong, J.Z., Ren, Y.L., et al. (2018) Luteolin Decreases Atheroscle-rosis in LDL Receptor-Deficient Mice via a Mechanism Including Decreasing AMPK-SIRT1 Signaling in Macrophages. Experimental and Therapeutic Medicine, 16, 2593-2599. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, Z.Z., Yu, X.H. and Tan, W.H. (2022) Baicalein Inhibits Macrophage Lipid Accumulation and Inflammatory Response by Ac-tivating the PPARγ/LXRα Pathway. Clinical and Experimental Immunology, 209, 316-325. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Galis, Z.S., Sukhova, G.K., Lark, M.W. and Libby, P. (1994) Increased Expression of Matrix Metalloproteinases and Matrix Degrading Activity in Vulnerable Regions of Human Atheroscle-rotic Plaques. Journal of Clinical Investigation, 94, 2493-2503. [Google Scholar] [CrossRef]
|
|
[21]
|
Galis, Z.S., Kranzhöfer, R., Fenton, J.W. and Libby, P. (1997) Thrombin Promotes Activation of Matrix Metalloproteinase-2 Pro-duced by Cultured Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 483-489. [Google Scholar] [CrossRef]
|
|
[22]
|
Wu, D., Hu, Q., Wang, Y., et al. (2022) Ientification of HMOX1 as a Critical Ferroptosis-Related Gene in Atherosclerosis. Frontiers in Cardiovascular Medicine, 9, Article ID: 833642. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Hu, Q., et al. (2010) PPARg1-Induced Caveolin-1 Enhances Cho-lesterol Efflux and Attenuates Atherosclerosis in Apolipoprotein E-Deficient Mice. Journal of Vascular Research, 47, 69-79. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Jin, Y., Lee, S.J., Minshall, R.D., et al. (2011) Caveolin-1: A Criti-cal Regulator of Lung Injury. The American Journal of Physiology-Lung Cellular and Molecular Physiology, 300, L151-L160. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Martinez-Outschoorn, U.E., et al. (2015) Caveolae and Signalling in Cancer. Nature Reviews Cancer, 15, 225-237. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wang, D.X., Pan, Y.Q., Liu, B., et al. (2018) Cav-1 Promotes Atherosclero-sis by Activating JNK-Associated Signaling. Biochemical and Biophysical Research Communications, 503, 513-520. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Broisat, A., Hernot, S., Toczek, J., et al. (2012) Nanobodies Tar-geting Mouse/Human VCAM1 for the Nuclear Imaging of Atherosclerotic Lesions. Circulation Research, 110, 927-937. [Google Scholar] [CrossRef]
|
|
[28]
|
Kirlangic, O.F., Yilmaz-Oral, D., Kaya-Sezginer, E., et al. (2020) The Effects of Androgens on Cardiometabolic Syndrome: Current Therapeutic Concepts. Sexual Medicine, 8, 132-155. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Mangge, H. (2016) Beyond Cholesterol—New Cardio-vascular Biomarkers. Nestlé Nutrition Institute Workshop Series, 84, 81-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Bryniarski, K.L., Wang, Z., Fracassi, F., et al. (2019) Three-Dimensional Fibrous Cap Structure of Coronary Lipid Plaque-ST-Elevation Myocardial Infarction vs. Stable Angina. Circulation Journal, 83, 1214-1219. [Google Scholar] [CrossRef]
|
|
[31]
|
Yu, X.H., Zheng, X.L. and Tang, C.K. (2015) Nuclear Factor-κB Activation as a Pathological Mechanism of Lipid Metabolism and Atherosclerosis. Advances in Clinical Chemistry, 70, 1-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Boese, A.C., Kim, S.C., Yin, K.J., et al. (2017) Sex Differ-ences in Vascular Physiology and Pathophysiology: Estrogen and Androgen Signaling in Health and Disease. The American Journal of Physiology-Heart and Circulatory Physiology, 313, H524-H545. [Google Scholar] [CrossRef] [PubMed]
|