微小核糖核酸在OSAHS合并2型糖尿病中的研究进展
Research Progress of microRNA in OSAHS with Type 2 Diabetes
摘要: 阻塞性睡眠呼吸暂停低通气综合征是一种广泛的呼吸障碍性疾病。OSAHS的主要发病机制是慢性间歇性缺氧,长期夜间间歇性缺氧可导致夜间哮喘、猝死等风险。且慢性间歇性缺氧伴有夜间低氧血症和胸腔内压力的变化,易合并糖尿病、高血压等并发症。近年来OSAHS合并糖尿病的患者越来越多。目前该疾病的黄金标准评估为多导睡眠图,然而其局限性影响睡眠监测结果,以至于约有85%的人处于高睡眠风险呼吸暂停仍未诊断。miRNA是基因表达的关键调节因子。在要求精准医疗的时代,使用miRNA-mRNA和其他基因分析控制基因表达的调控元件,其可提示多种疾病进展和预后。
Abstract: Obstructive sleep apnea hypopnea syndrome is a widespread respiratory disorder. The main path-ogenesis of OSAHS is chronic intermittent hypoxia. Long term intermittent hypoxia at night can lead to night asthma, sudden death and other risks. Chronic intermittent hypoxia is associated with nocturnal hypoxemia and changes in intrathoracic pressure, which is prone to complications such as diabetes and hypertension. In recent years, there are more and more patients with OSAHS and diabetes. At present, the gold standard of the disease is polysomnography. However, its limitations affect the sleep monitoring results, so that about 85% of the people are at high sleep risk of apnea. miRNA is a key regulator of gene expression. In the era of precision medical treatment, miR-NA-mRNA and other gene analysis are used to control the regulatory elements of gene expression, which can indicate the progress and prognosis of many diseases.
文章引用:孙泽蕊, 何响. 微小核糖核酸在OSAHS合并2型糖尿病中的研究进展[J]. 临床医学进展, 2023, 13(1): 818-823. https://doi.org/10.12677/ACM.2023.131119

1. 引言

阻塞性睡眠呼吸暂停低通气综合征(obstructive sleep apnea hypopnea syndrome, OSAHS)是由多种原因导致睡眠状态下反复出现低通气和(或)呼吸中断,其中以间歇性低氧为主要特征,伴有夜间低氧血症和胸腔内压力的变化,易合并糖尿病、高血压等并发症 [1] [2]。据报道,成人OSAHS的患病率随年龄增大而增加,男性高于女性 [3] [4]。在美国成人中,30~49岁男性和女性OSAHS患病率分别为20%和6.6%,而50~70岁男性和女性的患病率分别为38.5%和24.4% [5]。相关研究证明,轻度OSAHS患者的2型糖尿病5年累积发病率为7.5%,中度OSAHS患者为9.3%,重度OSAHS患者为14.9% [6]。亦有研究证明 [7],糖尿病在OSAHS患者中更为普遍,且超过一半的糖尿病患者患有OSAHS。一项对横断面研究表明 [1],轻度OSAHS (而非中度或重度OSAHS)与较高的糖代谢受损患病率相关。在大型社区前瞻性队列研究中,OSAHS严重程度与2型糖尿病发病风险相关 [1]。

微小核糖核酸(microRNA, miRNA)是小的非编码单链RNA,单链RNA分子是由22个左右核苷酸组成,广泛存在于各种真核生物血浆中,它们通过识别同源序列以及干扰转录,翻译或表观遗传过程来调节基因表达 [8]。目前对于OSAHS的黄金诊断标准是多导睡眠监测(polysomnography, PSG) [9]。由于PSG的局限性逐渐被认识,即PSG不仅昂贵、耗时,而且需要专业人士监测和判读,若在陌生环境下身体布满大量传感器可出现明显的不适感,还可出现电极脱落,影响了睡眠监测结果。以至于约有85%的人处于高睡眠风险呼吸暂停仍未诊断 [10]。血浆miRNA存在于组织或体液中,并在血液中稳定表达,是潜在的非侵入性分子标志物,提示多种疾病进展和预后,其在疾病的基因表达及诊断中有着重要的地位。近年来相关研究证明miRNA涉及人类大部分疾病的发病,有研究证明miRNA参与包括OSAHS在内的多种呼吸系统疾病的生理病理机制 [11],说明了miRNA在呼吸系统疾病发病过程中的重要性。现探讨miRNA在OSAHS合并2型糖尿病中的研究进展。

2. miRNA在OSAHS合并2型糖尿病中研究

OSAHS是常见的慢性睡眠呼吸障碍疾病,2型糖尿病是最主要非传染性慢性疾病之一,严重威胁着我国人民的健康。OSAHS的发病主要机制为慢性间歇性缺氧,其可长期通过对神经体液因素的影响导致血管内皮功能紊乱,糖尿病患者由于长期糖代谢紊乱,胰岛素抵抗等呈现高血糖、高血脂综合征,进一步引起血小板功能异常,使血液粘滞性增加,血流缓慢,从而引起慢性缺氧。miR-191是miR-191/425簇的一部分,该簇在几个多细胞动物中高度保守,表明它是高等真核生物重要调控者 [12]。由于miR-191在人唾液或血清中的高度一致和稳定表达,miR-191亦成为非侵入性疾病诊断的有力候选者 [13]。目前关于miR-191的研究主要集中于miR-191可能作为癌症的独立或共同预后标志物,但亦被证明参与了阿尔兹海默病、炎症性肠病及肺动脉高压等非肿瘤性疾病的发病过程 [14]。相关研究显示作为OSAHS基本特征的慢性间歇性低氧调控了HIF-2a的表达 [15],也有研究证明HIF-2a具有调控支气管上皮细胞miR-191表达的作用 [16]。既往研究显示miR-191与血糖受损呈正相关,且有研究显示香烟烟雾导致胰岛素抵抗参与了2型糖尿病的发病,而miR-191参与了烟提取物诱导的胰岛素抵抗的调控 [17],因此可推测血浆miR-191参与了OSAHS的发病过程,并且可能可以作为预测OSAHS合并糖尿病发生的危险因素。相关文献报道 [18],血浆miR-191在OSAHS中表达升高,血浆miR-191相对表达量、IL-6水平及LSaO2可作为OSAHS患者合并糖尿病的影响因素。

miR-34家族是由miR-34a、miR-34b、miR-34c组成,具有进化保守性。miRNA-34a可参与调控氧化应激和短暂的缺氧–复氧引起的细胞凋亡,是心血管疾病的重要调控因子 [19]。此外,miR-34a的差异表达与高血糖诱导的血管功能障碍亦有关,其可通过靶向调节沉默信息调节因子1 (SIRT1)加重高糖状态下骨髓间充质干细胞的衰老,从而加重糖尿病患者的病情 [20]。相关研究证明,miR-34a引起的血糖升高可能与2型糖尿病合并OSAHS有关。miR-34a表达水平上调,S1RT1表达水平下调,两指标联合对检测OSAHS合并糖尿病有一定价值。这些实验也进一步说明了miRNA的深入研究也在积极影响着疾病的发展并不断改善疾病预后。

阻塞性睡眠呼吸暂停低通气综合征是睡眠呼吸障碍的常见形式,其特征在于重复的夜间上气道紊乱,导致间歇性缺氧、频繁觉醒、响亮打鼾沿着睡眠碎片化和剥夺。导致呼吸暂停和呼吸不足的完全或部分气道塌陷是OSAHS的特征。肥胖和心血管疾病是与OSAHS相关的主要危险因素。在临床上,OSAHS与多种医学病症相关联,例如心血管疾病,比如高血压和代谢疾病,例如糖尿病 [21] [22]。这在生活方式和遗传相关疾病中都有意义,及时诊断和预后是深入了解其在相关疾病发展中的作用或干预措施的关键。miRNA是基因表达的关键调节因子。在要求精准医疗的时代,使用miRNA-mRNA和其他基因分析控制基因表达的调控元件是最相关的疾病靶标。随着失调疾病特异性miRNA的鉴定,其靶点的选择和验证对于开发适当的治疗干预策略是必要的。肥胖是OSAHS的主要危险因素并且OSAHS和2型糖尿病相关。在这种背景下,研究显示 [23],差异表达的miR-27和let-7与阻塞性睡眠呼吸暂停的关系,发现它们是潜在的生物标记候选物。

3. miRNA在OSAHS合并2型糖尿病及其并发症中研究

OSAHS是一种常见的疾病,其主要特征是在睡眠期间反复发生上气道阻塞,导致间歇性缺氧。OSAHS患者是发生代谢综合征的潜在风险,代表性的代谢综合征疾病是2型糖尿病 [24]。近年来随着T2DM发病率的增加,OSAHS合并T2DM的患者数量也逐年增加 [25]。研究表明,糖尿病可引起大脑认知功能障碍,糖尿病合并OSAHS患者的认知功能障碍更为严重。间歇性缺氧被认为在各种器官中OSAHS的病理学后果中发挥重要作用,最有可能通过增强氧化应激和炎症 [26] [27]。认知功能障碍的主要原因是对大脑海马中神经元的不可逆损伤。神经元损伤的原因除了直接损伤外,大量活化的小胶质细胞释放神经毒性物质,可引起神经元的进一步损伤 [28]。肿瘤坏死因子-α (TNF-α)和白细胞介素-1β (IL-1β)的产生和释放导致神经元凋亡和脑损伤 [29]。有动物试验表明,间歇性缺氧增加T2DM小鼠MALAT1的表达并降低miR-224-5p的表达,阻断活化小胶质细胞中的MALAT1/miR-224-5p/NLRP3轴可以抑制神经细胞损伤并最终减少脑损伤以减轻认知障碍。这也证明miR-224-5p可能作为OSAHS合并糖尿病治疗的潜在靶点,为以后的研究提供了方向。

睡眠呼吸障碍(SDB)以慢性间歇性缺氧(IH)和睡眠碎片化(SF)为特征,是一种可促进代谢功能障碍的常见疾病,尤其是在阻塞性低通气综合征患者中。外泌体是非常小的囊泡(30~120 nm),其存在于许多并且可能所有的生物流体中 [29] [30],其中它们参与大量的生理过程,例如细胞代谢、增殖和分化。外泌体广泛存在于血液循环中,在生理和病理条件下,其携带的外泌体可能会对细胞功能产生重大影响。血浆来源的外泌体可与靶组织相互作用,并破坏炎性细胞,例如改变脂肪细胞代谢途径,从而促进胰岛素抵抗的发展 [31] [32]。目前的研究结果表明,睡眠连续性的慢性干扰或间歇性缺氧导致循环外泌体的组成改变,进而改变靶细胞的功能特性,即脂肪细胞以促进胰岛素抗性的存在。因为,外泌体可以被许多细胞类型释放,并且装载有多种蛋白质、脂质和核酸(包括miRNA) [33],在OSAHS或小鼠0SAHS的背景下,循环外泌体可能提供细胞间通讯载体,最终破坏脂肪细胞稳态,导致代谢功能改变。

4. 问题与展望

OSAHS是常见的呼吸系统疾病,慢性间歇性缺氧是其主要特征,其可导致患者夜间出现呼吸骤停甚至猝死等风险。多导睡眠监测是其诊断的金标准,由于其不仅昂贵、耗时,而且电极易脱落,影响睡眠监测结果,以至于多数处于高睡眠风险呼吸暂停仍未诊断,OSAHS被描述为2型糖尿病其实和进展的独立危险因素,而OSAHS间歇性缺氧可能通过调控miRNA等相关指标参与了OSAHS合并糖尿病或其并发症的发生发展。本文迄今为止,越来越多的miRNA在疾病中的表达被发现,为疾病的诊治及预后提供了相关依据。但仍有许多miRNA的发现缺少大量实验及数据验证,这也促使我们更加努力去探索未知的秘密,为未来的医学发展做贡献。

NOTES

*通讯作者。

参考文献

[1] Muraki, I., Wada, H. and Tanigawa, T. (2018) Sleep Apnea and Type 2 Diabetes. Journal of Diabetes Investigation, 9, 991-997.
https://doi.org/10.1111/jdi.12823
[2] Weinstein, M.S., Cardenas, D.D., O’Shaughnessy, E.J. and Ca-tanzaro, M.L. (1988) Carbon Dioxide Cystometry and Postural Changes in Patients with Multiple Sclerosis. Archives of Physical Medicine and Rehabilitation, 69, 923-927.
[3] Young, T., Shahar, E., Nieto, F.J., Redline, S., Newman, A.B., Gottlieb, D.J., Walsleben, J.A., Finn, L., Enright, P. and Samet, J.M. (2002) Predictors of Sleep-Disordered Breathing in Community-Dwelling Adults: The Sleep Heart Health Study. Archives of Internal Medicine, 162, 893-900.
https://doi.org/10.1001/archinte.162.8.893
[4] Bixler, E.O., Vgontzas, A.N., Lin, H.M., Ten Have, T., Rein, J., Vela-Bueno, A. and Kales, A. (2001) Prevalence of Sleep-Disordered Breathing in Women: Effects of Gender. American Journal of Respiratory and Critical Care Medicine, 163, 608-613.
https://doi.org/10.1164/ajrccm.163.3.9911064
[5] Peppard, P.E., Young, T., Barnet, J.H., Palta, M., Hagen, E.W. and Hla, K.M. (2013) Increased Prevalence of Sleep- Disordered Breathing in Adults. American Journal of Epidemiology, 177, 1006-1014.
https://doi.org/10.1093/aje/kws342
[6] Kendzerska, T., Gershon, A.S., Hawker, G., Tomlinson, G. and Leung, R.S. (2014) Obstructive Sleep Apnea and Incident Diabetes. A Historical Cohort Study. American Journal of Respirato-ry and Critical Care Medicine, 190, 218-225.
https://doi.org/10.1164/rccm.201312-2209OC
[7] Ogilvie, R.P. and Patel, S.R. (2018) The Epidemiology of Sleep and Diabetes. Current Diabetes Reports, 18, Article No. 82.
https://doi.org/10.1007/s11892-018-1055-8
[8] Chen, L., Heikkinen, L., Wang, C., Yang, Y., Sun, H. and Wong, G. (2019) Trends in the Development of miRNA Bioinfor-matics Tools. Briefings in Bioinformatics, 20, 1836-1852.
https://doi.org/10.1093/bib/bby054
[9] Hafezi, M., Montazeri, N., Zhu, K., Alshaer, H., Yadollahi, A. and Taati, B. (2019) Sleep Apnea Severity Estimation from Respira-tory Related Movements Using Deep Learning. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, 23-27 July 2019, 1601-1604.
https://doi.org/10.1109/EMBC.2019.8857524
[10] 张绍兴, 姚子明, 栾胜, 王丽. 徐颖使用多参数压敏式便携睡眠监测系统检测阻塞型睡眠呼吸暂停伴低通气综合征[J]. 北京大学学报(医学版), 2021, 53(3): 608-612.
[11] Pietrusinska, M., Pajak, A., Gorski, P., Kuna, P., Szemraj, J., Gozdzinska-Nielepkowicz, A. and Pietras, T. (2016) Preliminary Studies: Differences in microRNA Expression in Asthma and Chronic Obstructive Pulmonary Disease. Advances in Dermatology and Allergology, 33, 276-280.
https://doi.org/10.5114/ada.2016.61603
[12] Kiezun, A., Artzi, S., Modai, S., Volk, N., Isakov, O. and Shomron, N. (2012) miRviewer: A Multispecies microRNA Homologous Viewer. BMC Research Notes, 5, Article No. 92.
https://doi.org/10.1186/1756-0500-5-92
[13] Patel, R.S., Jakymiw, A., Yao, B., Pauley, B.A., Carcamo, W.C., Katz, J., Cheng, J.Q. and Chan, E.K. (2011) High Resolution of microRNA Signatures in Human Whole Saliva. Archives of Oral Biology, 56, 1506-1513.
https://doi.org/10.1016/j.archoralbio.2011.05.015
[14] Nagpal, N. and Kulshreshtha, R. (2014) miR-191: An Emerging Player in Disease Biology. Frontiers in Genetics, 5, Article 99.
https://doi.org/10.3389/fgene.2014.00099
[15] Prabhakar, N.R., Peng, Y.-J. and Nanduri, J. (2020) Hypox-ia-Inducible Factors and Obstructive Sleep Apnea. The Journal of Clinical Investigation, 130, 5042-5051.
https://doi.org/10.1172/JCI137560
[16] Xu, W., Luo, F., Sun, B., Ye, H., Li, J., Shi, L., Liu, Y., Lu, X., Wang, B., Wang, Q., Liu, Q. and Zhang, A. (2016) HIF-2α, Acting via miR-191, Is Involved in Angiogenesis and Metastasis of Arsenite-Transformed HBE Cells. Toxicology Research, 5, 66-78.
https://doi.org/10.1039/C5TX00225G
[17] Yang, Q., Cui, Y., Luo, F., Liu, X., Wang, Q., Bai, J., Dong, F., Sun, Q., Lu, L., Xu, H., Xue, J., Chen, C., Xiang, Q., Liu, Q. and Zhang, Q. (2018) MicroRNA-191, Acting via the IRS-1/Akt Signaling Pathway, Is Involved in the Hepatic Insulin Resistance Induced by Cigarette Smoke Extract. Envi-ronmental Science and Pollution Research, 25, 22400- 22407.
https://doi.org/10.1007/s11356-017-0277-7
[18] 孙泽蕊, 何响, 解友邦, 等. 阻塞性睡眠呼吸暂停低通气综合征患者血浆miR-191与白细胞介素-6表达水平及临床意义[J]. 中华实用诊断与治疗杂志, 2022, 36(2): 173-177.
https://doi.org/10.13507/j.issn.1674-3474.2022.02.015
[19] 李晓伟, 奉淑君, 周凤华, 等. miR-34a在心血管疾病中的作用及机制研究进展[J]. 中国动脉硬化杂志, 2019, 27(7): 624-628.
[20] Zhao, D., Wang, N.-S., Chen, F., Li, Z.-B., Li, X.-T. and Zhu, X.-X. (2019) Intravenous Injection of miR-34a Inhibitor Alleviates Diabetes Melli-tus-Induced Vascular Endothelial Dysfunction by Targeting NOTCH1. Experimental and Clinical Endocrinology & Di-abetes, 127, 255-262.
https://doi.org/10.1055/s-0043-125324
[21] Reutrakul, S. and Mokhlesi, B. (2017) Obstruc-tive Sleep Apnea and Diabetes: A State of the Art Review. CHEST, 152, 1070-1086.
https://doi.org/10.1016/j.chest.2017.05.009
[22] Hou, H., Zhao, Y., Yu, W., Dong, H., Xue, X., Ding, J., Xing, W. and Wang, W. (2018) Association of Obstructive Sleep Apnea with Hypertension: A Systematic Review and Me-ta-Analysis. Journal of Global Health, 8, Article ID: 010405.
https://doi.org/10.7189/jogh.08.010405
[23] Khurana, S., Waidha, K., Guleria, R., Sharda, S. and Bose, S. (2020) In-Silico Investigations of Selective miRNA-Gene Targets and Their Validation Studies in Obstructive Sleep Apnea (OSA) Patient Cohorts. Computational Biology and Chemistry, 87, Article ID: 107264.
https://doi.org/10.1016/j.compbiolchem.2020.107264
[24] Lukas, N., Franklin, J., Lee, C.M., Taylor, C.J., Martin, D.J., Kormas, N., Caterson, I.D. and Markovic, T.P. (2014) The Efficacy of Bariatric Surgery Performed in the Public Sector for Obese Patients with Comorbid Conditions. Medical Journal of Australia, 201, 218-222.
https://doi.org/10.5694/mja13.00046
[25] Mahlangu, T., Dludla, P.V., Nyambuya, T.M., Mxinwa, V., Mazibuko-Mbeje, S.E., Cirilli, I., Marcheggiani, F., Tiano, L., Louw, J. and Nkambule, B.B. (2020) A Systematic Re-view on the Functional Role of Th1/Th2 Cytokines in Type 2 Diabetes and Related Metabolic Complications. Cytokine, 126, Article ID: 154892.
https://doi.org/10.1016/j.cyto.2019.154892
[26] Lavie, L. (2015) Oxidative Stress in Obstructive Sleep Apnea and Intermittent Hypoxia—Revisited—The Bad Ugly and Good: Implications to the Heart And Brain. Sleep Medicine Re-views, 20, 27-45.
https://doi.org/10.1016/j.smrv.2014.07.003
[27] Xu, H., Wang, J., Cai, J., Feng, W., Wang, Y., Liu, Q. and Cai, L. (2019) Protective Effect of Lactobacillus rhamnosus GG and Its Supernatant against Myocardial Dysfunction in Obese Mice Exposed to Intermittent Hypoxia Is Associated with the Activation of Nrf2 Pathway. International Journal of Bio-logical Sciences, 15, 2471-2483.
https://doi.org/10.7150/ijbs.36465
[28] Yan, L., Yang, J., Yu, M., Lu, Y., Huang, L., Wang, J., Lu, X., Jin, C., Wu, S. and Cai, Y. (2019) Lanthanum Chloride Induces Neuron Damage by Activating the Nuclear Factor-Kappa B Signaling Pathway in Activated Microglia. Metallomics, 11, 1277-1287.
https://doi.org/10.1039/c9mt00108e
[29] Zhao, L., An, R., Yang, Y., Yang, X., Liu, H., Yue, L., Li, X., Lin, Y., Reiter, R.J. and Qu, Y. (2015) Melatonin Alleviates Brain Injury in Mice Subjected to Cecal Ligation and Puncture via Attenuating Inflammation, Apoptosis, and Oxidative Stress: The Role of SIRT1 Signaling. Journal of Pineal Research, 59, 230-239.
https://doi.org/10.1111/jpi.12254
[30] Khalyfa, A., Kheirandish-Gozal, L. and Gozal, D. (2018) Circulating Exo-somes in Obstructive Sleep Apnea as Phenotypic Biomarkers and Mechanistic Messengers of End-Organ Morbidity. Respiratory Physiology & Neurobiology, 256, 143-156.
https://doi.org/10.1016/j.resp.2017.06.004
[31] Milbank, E., Martinez, M.C. and Andriantsitohaina, R. (2016) Extracellular Vesicles: Pharmacological Modulators of the Peripher-al and Central Signals Governing Obesity. Pharmacology & Therapeutics, 157, 65-83.
https://doi.org/10.1016/j.pharmthera.2015.11.002
[32] Mullins, R.J., Mustapic, M., Goetzl, E.J. and Kapogiannis, D. (2017) Exosomal Biomarkers of Brain Insulin Resistance Associated with Regional Atrophy in Alzheimer’s Disease. Human Brain Mapping, 38, 1933-1940.
https://doi.org/10.1002/hbm.23494
[33] Raposo, G. and Stoorvogel, W. (2013) Extracellular Vesicles: Exosomes, Microvesicles, and Friends. Journal of Cell Biology, 200, 373-383.
https://doi.org/10.1083/jcb.201211138