膝关节股骨后髁偏心距的临床研究进展
Clinical Research Progress of the Posterior Condylar Offset of the Knee Joint
DOI: 10.12677/ACM.2023.131142, PDF, HTML, XML, 下载: 296  浏览: 379 
作者: 杨 杰, 屈雅鑫:延安大学,陕西 延安;张民泽*:延安大学附属医院,陕西 延安
关键词: 股骨后髁偏心距膝关节活动度测量Posterior Condylar Offset Knee Joint Range of Motion Measurement
摘要: Bellmans于2002年首次提出股骨后髁偏心距(posterior condylar offset, PCO)这一概念,并认为其与膝关节置换术后膝关节屈曲度存在相关性。目前针对PCO的测量方法主要包括4种:标准X线侧位片测量法简便易行,但却忽视了股骨内外侧髁的不对称性及股骨后髁软骨厚度;CT和MRI测量法,经扫描患膝后,经软件处理重建三位模型,在模型上测量PCO,虽然其不受投射角度限制,但二者术后患膝会存在假体金属伪影的干扰;术前影像学结合术中软骨厚度测量法得到的数值最为精确,但其受术者主观性影响较强。在膝关节置换术中,PCO有着重要的临床意义。PCO可通过改变胫骨平台后缘与股骨后皮质的旋转半径,从而影响膝关节最大屈曲度;此外,PCO的改变还会影响膝关节屈曲间隙,从而影响膝关节稳定性;PCO的改变同样会影响膝关节正常的解剖学结构及生物力学结构,从而可能导致骨溶解及术后假体的松动。本文主要对近几年PCO的临床研究进展作以综述。
Abstract: Bellmans first proposed the concept of posterior condylar offset (PCO) in 2002, and believed that it was related to the knee flexion after knee replacement. At present, there are mainly four methods for measuring PCO: the standard X-ray lateral film measurement method is simple and convenient, but it neglects the asymmetry of the medial and lateral femoral condyles and the thickness of the posterior femoral condyle cartilage; CT and MRI measurement methods: after scanning the affected knee, the three-dimensional model was reconstructed through software processing, and PCO was measured on the model. Although it was not limited by the projection angle, the affected knee would be interfered by the metal artifact of the prosthesis; the value obtained by preoperative im-aging combined with intraoperative cartilage thickness measurement is the most accurate, but it is strongly influenced by the subjectivity of the operator. PCO has important clinical significance in knee replacement. PCO can affect the maximum knee flexion by changing the radius of rotation of the posterior edge of the tibial plateau and the posterior cortex of the femur; in addition, the change of PCO will also affect the knee flexion space, thus affecting the stability of the knee joint; the change of PCO will also affect the normal anatomical structure and biomechanical structure of the knee joint, which may lead to osteolysis and postoperative prosthesis loosening. This article mainly re-views the clinical research progress of PCO in recent years.
文章引用:杨杰, 张民泽, 屈雅鑫. 膝关节股骨后髁偏心距的临床研究进展[J]. 临床医学进展, 2023, 13(1): 999-1005. https://doi.org/10.12677/ACM.2023.131142

1. 引言

膝关节骨关节炎(knee osteoarthritis, KOA)是一种好发于中老年人的慢性退行性疾病,与增龄密切相关,以软骨下骨裸露、关节缘骨质增生、关节间隙进行性狭窄为主要特征 [1] [2]。膝关节置换术在治疗中晚期KOA已经作为一种常规手术,并且已经取得良好的临床效果,术后膝关节功能的恢复直接关系到患者术后的生活质量。在膝关节的功能中屈曲功能占据了很大的比例,例如行走、如厕、下蹲、上下楼梯、运动。Kettelkamp [3] 等学者通过电子测量发现:负重下行走所需膝关节屈曲角度为67˚,上下楼梯分别需膝关节屈曲角度为83˚与95˚,于座椅上起身需膝关节屈曲角度为105˚。此外,Tew [4] 等学者研究发现,当膝关节屈曲度超过70˚时,才能获得良好的行走能力,这可能与膝关节活动的协调性和关节稳定装置的平衡有关。Miner [5] 等发现膝关节屈曲度数大于95˚时才能获得良好的WOMAC评分。因此,如何提高TKA术后患膝关节屈曲度成为治疗膝关节骨性关节炎的重点,也是当前骨科医师面临的一个重大挑战。

近几年诸多学者对膝关节置换后屈伸活动的影响因素进行相关研究 [4] - [16],研究发现膝关节活动度的影响因素可分为:① 非手术相关因素——年龄、性别、体质量指数、术前膝关节活动度及膝关节疾病的严重程度;② 手术相关因素——股骨后髁偏心距、胫骨平台后倾、髌骨位置、术中关节间隙平衡及保留后交叉韧带与否和膝关节假体设计。此文主要探讨影响因素为股骨后髁偏心距。

2. PCO的测量

Bellemans [7] 等首次提出股骨后髁偏心距的概念,并将其定义为侧位X线片中股骨后髁最突点与股骨干后方皮质切线的垂直距离。目前针对PCO的测量方法主要包括以下4种方法:标准X线侧位片、CT、MRI以及术前影像学结合术中后髁软骨厚度测量。四种方法各有优劣。

1) 标准X线侧位片测量法是KOA患者入院常规检查,费用较CT、MRI低,成像较快,简便易行,且术后测量时无需担心假体所致伪影干扰,是最早应用于PCO测量的影像学手段。但此法测量PCO在原理上存在一定的缺陷,因为X线片仅能显示骨性结构,对于膝关节表面的软骨无法显影,进而忽略了软骨厚度在PCO中的占比,从而使术前PCO测量结果偏小。另外,膝关节侧位片摄片要求膝关节侧位片中股骨内、外后髁完全重叠,但实际上正常人的股骨内外侧后髁不是等大的。此外,不同时间段及不同患者摄片时也难以统一膝关节的放大倍数 [17]。这是标准X线侧位片测量方法无法避免的误差。

2) CT测量法相较于标准X线侧位片测量法,具有不受摄片时投照角度的限制的优点,无需股骨内外侧后髁完全重叠。经扫描KOA患者患膝后,经软件处理重建三维图像,研究者可以直接在三维图像上测量PCO [18]。此法能保证多次重复测量PCO结果的可信性。Ishii [19] 采用CT测量法对比手术前后内外侧后髁PCO变化时发现:术前内侧后髁PCO较大,而术后外侧后髁PCO更大,这一结果是X线侧位片所无法观测到的,同时也侧面印证了上述不等量的外旋截骨。但CT三维测量方法也存在弊端,股骨软骨后髁在单纯CT扫描下同样无法成像,而且术后假体的金属伪影亦会给PCO的测量结果带来误差,这一定程度上限制了该方法在测量PCO时的应用 [20]。

3) MRI测量法同CT测量法一样,考虑到了股骨内外侧后髁的解剖学差异,同样具有不受摄片时投照角度的限制的优点。Voleti等 [21] 通过MRI及X光片测量PCO进行对比,发现使用MRI成像,测量的股骨内、外侧后髁的平均厚度较X线平片测得的数值均有显著增大(前者P < 0.01,后者P = 0.03)。这可能是因为X线平片忽视了股骨后髁软骨的厚度,从而出现这种情况。此外,同时发现,同一膝关节,股骨内侧后髁PCO显著大于外侧后髁PCO (P < 0.001)。与CT测量法类似,膝关节置换术后假体所致的金属伪影同样限制了该法在测量PCO时的应用。

4) 在结合上述三种测量方法的基础上,Yang等 [22] 尝试在术中股骨后髁截骨后,对所截后髁骨块沿矢状面切开,直观下测量软骨的厚度,结合术前X线侧位片所测得的PCO数值,将二者之和定义为“真实PCO”,这种方法测得的PCO数值理论上是最接近术前的真实PCO,能够更好地评估手术前后PCO的改变,从而更有利于PCO临床意义的研究。然而,术中进行软骨厚度测量时,沿哪一条矢状线切开以测量软骨,全依赖于术者的经验和判断,受术者主观性影响较强。此外,膝关节置换术中常常会造成内侧后髁软骨的磨损,这也在一定程度上带来了测量误差。

除了测量误差外,研究者利用X平片进行PCO测量时发现存在不同程度的放大倍数,不利于参数的稳定 [15] [23]。因此,为了寻找一个较为稳定的参数来比较不同文献中膝关节置换手术前后PCO的变化,Soda等 [23] 学者提出了股骨后髁偏心距率(posterior condylar offset ratio, PCOR)的概念:即股骨后髁偏心距/股骨远端前后径。王伟 [24] 学者的一项研究结果为中国志愿者膝关节股骨后髁偏心距率男性为(0.46 ± 0.03),女性为(0.47 ± 0.04),男女志愿者之间无显著差异。Johal [25] 等研究结果为男性股骨后髁偏心距率(0.44 ± 0.02),女性为(0.45 ± 0.02)。以上报道均认为性别之间PCOR无显著差异(P > 0.05),但不同种族间PCOR存在显著统计学差异(P < 0.05)。因此,PCOR相对不受性别、体型、膝关节大小及X线放大倍数等因素的影响,对膝关节置换术后关节屈曲功能恢复有着重要意义。

3. PCO与膝关节最大屈曲度

既往关于PCO与膝关节置换术后最大屈曲度相关性的研究结论始终未能统一。2002年Bellemans等 [7] 学者研究研究发现使用后交叉韧带韧带保留型假体膝关节置换后,PCO与膝关节术后最大屈曲度存在相关性(R2 = 0.58, P < 0.001),研究进一步表明:① 膝关节置换后PCO每减少1 mm,膝关节关节活动度较术前平均减少6.1˚;② 术后PCO重建减小3 mm以上,膝关节活动度将明显减少。因此认为保留足够的PCO可以获得较大的后方空间,从而减少后方撞击,使患者获得更大的屈曲度。此后,重建PCO有助于膝关节置换术后获得更佳的膝关节屈曲度逐渐成为大多数学者的共识 [7] [15] [26] [27]。然而,骨科学界对于PCO与膝关节置换术后的屈曲范围之间是否存在相关性始终存在争议。Seo等 [28] 和Geijsen等 [11] 的研究发现PCO与后十字韧带保留型TKA术后的屈曲范围无显著相关。甚至Ishil等 [12] 学者发现不论使用后交叉韧带替代还是保留型假体膝关节置换,PCO与术后膝关节最大屈曲程度均无明确相关性。造成上述研究结果相互矛盾的原因可能主要主要是:① 在分析PCO与TKA术后屈曲范围的相关性时,未考虑术前(患者)、术中(手术技术及假体设计)及术后(并发症及康复措施)因素 [9] [29] [30] 对膝关节置换术后屈曲范围的影响。② 传统测量方法并未考虑到实际存在且变异很大的关节软骨厚度 [31],导致术前PCO测量值明显小于实际值。③ 膝关节负重状态的不同可显著影响屈膝角度 [9] [29] [32];即使负重状态相同,主动与被动屈曲范围也会存在显著差异 [32] [33];另外,尽管负重位屈曲范围更能体现膝关节功能 [9],但除Bellemans等 [7] 外,其他学者均仅针对非负重位主动屈曲范围 [15] 或非负重位被动屈曲范围 [15] [34] [35] [36] 与PCO的相关性进行分析,测量屈曲范围时负重状态与屈膝状态不统一必然会影响对结果的判断。④ 正常膝关节在屈曲时会伴有显著的股骨后滚和胫骨内旋(roll-back机制) [34],从而延缓了胫骨平台后缘——股骨远端后皮质的撞击,进而提高了膝关节置换术后关节最大屈曲度。

4. PCO与关节稳定性

早有学者 [37] 提出,当PCO减小时,膝关节屈曲间隙相对变大,有屈曲不稳的可能。Matziolis [38] 等人通过测量不同屈伸角度时膝关节内、外侧关节间隙平均髙度的差值,以反映内外侧间隙的不对称性,依此直观的体现PCO与关节屈曲间隙稳定性的关系。该研究结果表明,在关节半屈位(屈膝30˚)时,PCO无论增减,均会造成膝关节相对间隙的不稳定,并且每1 mm的增减都会导致上述“相对间隙不稳定性”增加0.5 mm。同时,如果将术后PCO的改变控制在2 mm内,则能够有效避免这种膝关节半屈位的不稳定(P = 0.017)。总而言之,单纯增加术后PCO对不同屈膝角度下关节稳定性的影响可能不尽相同,但减少术后PCO则很可能会使得关节稳定性变差。因此,术者应尽量恢复患者术前的PCO,来提升术后关节稳定性,尽量不要选择会使PCO变小的假体 [20]。

5. PCO与骨溶解及术后假体松动

Kim [39] 等人对486例后交叉韧带替代型假体膝关节置换患者进行了两年的随访,按照术后有无发生骨溶解进行分组。研究表明:骨溶解组中,患者手术前后PCO及关节线的改变显著大于无骨溶解组(P = 0.021, P = 0.015)。从而认为术后PCO改变过大,会增加骨溶解发生率。Kim解释可能是因为手术改变了膝关节的解剖学结构和生物力学环境,从而导致骨溶解的发生。但同时,我们也应认识到,PCO较大的假体虽然使得膝关节获得了更大的屈曲度,但同时也增大了股骨后髁所受的压力和剪切力,这或许是较大的PCO造成骨溶解和假体松动的另一可能原因 [37] [40]。

6. PCO与伸膝功能

根据前述Bellmens [7] 的理论,股骨假体在设计时应适当增加PCO,从而增大膝关节屈曲度。然而,Onodera等 [41] 学者研究发现PCO的增大将导致伸直膝关节时,膝关节后方关节囊及软组织紧张程度增加,从而出现屈曲挛缩,进而影响膝关节功能的恢复。此外,Matziolis等 [38] 研究发现:5˚伸膝时,PCO 的改变与膝关节稳定性正相关,PCO每增加1 mm,关节间隙减小0.2 mm,关节稳定性增强。另外,如果术者术中通过增加股骨远端截骨来缓解膝关节后方关节囊紧张,将会导致关节线上移,从而导致髌股关节间压力增高、膝前痛,影响膝关节置换术后功能的恢复 [42] [43]。所以为了避免对伸膝功能造成负面影响,术者应尽可能恢复术前PCO [17]。

7. 总结与展望

膝关节置换术后功能恢复受到多种因素的共同影响,其中PCO的选取一个值得探索的问题。通过归纳关于PCO的文献,发现PCO存在内外侧髁、性别间差异,然而PCOR却未发现存在性别间差异。因此,未来研究以PCOR变化来评估膝关节置换术后膝关节屈曲功能的恢复情况,或许结果会更精准,更具有临床指导意义。另外,膝关节置换术中为了更好重建膝关节原始生物力学,那么未来的假体设计应当考虑股骨后髁偏心距性别及内外侧侧差异。此外,虽然既往文献关于PCO对膝关节活动度二者相关性的研究结论未能统一,但是通过文献学习,我们可以知道PCO的增大或者减小,均有可能造成不良后果,因此,在膝关节置换术中,临床医师们需要尽量恢复KOA患者术前PCO,从而保证患者术后膝关节功能的恢复。此外,我们还可以发现现阶段有关PCO的研究大多是根据术后PCO大于(或者小于)术前PCO进行分组,较为笼统,因此,未来研究若以量化结果分组对照,衡量PCO术后不同变化范围对膝关节功能的影响,从而得到术后PCO最佳的取值范围,或许会更具有临床指导意义。

NOTES

*通讯作者。

参考文献

[1] Dantas, L.O., de Fátima Salvini, T., et al. (2021) Knee Osteoarthritis: Key Treatments and Implications for Physical Therapy. Brazilian Journal of Physical Therapy, 25, 135-146.
https://doi.org/10.1016/j.bjpt.2020.08.004
[2] 张仁卓, 荆琳, 潘丽, 等. 固定平台假体与活动平台假体在膝关节单髁置换术中应用的效果比较[J]. 山东医药, 2021, 61(13): 84-86.
[3] Kettelkamp, D.B., Johnson, R.J., Smidt, G.L., et al. (1970) An Electrogoniometric Study of Knee Motion in Normal Gait. The Journal of Bone and Joint Surgery. American Volume, 52, 775-790.
https://doi.org/10.2106/00004623-197052040-00008
[4] Tew, M., Forster, I., et al. (1989) Effect of Total Knee Arthroplasty on Maximal Flexion. Clinical Orthopaedics and Related Research, 247, 168-174.
https://doi.org/10.1097/00003086-198910000-00027
[5] Miner, A.L., Lingard, E.A., Wright, E.A., et al. (2003) Knee Range of Motion after Total Knee Arthroplasty: How Important Is This as an Outcome Measure? The Journal of Arthroplasty, 18, 286-294.
https://doi.org/10.1054/arth.2003.50046
[6] Bauer, T., Biau, D., Colmar, M., et al. (2010) Influence of Posterior Condylar Offset on Knee Flexion after Cruciate-Sacrificing Mobile-Bearing Total Knee Replacement: A Prospective Analysis of 410 Consecutive Cases. Knee, 17, 375-380.
https://doi.org/10.1016/j.knee.2009.11.001
[7] Bellemans, J., Banks, S., Victor, J., et al. (2002) Fluoroscopic Analysis of the Kinematics of Deep Flexion in Total Knee Arthro-plasty: Influence of Posterior Condylar Offset. The Journal of Bone and Joint Surgery. British Volume, 84, 50-53.
https://doi.org/10.1302/0301-620X.84B1.0840050
[8] Bellemans, J., Robijns, F., Duerinckx, J., et al. (2005) The Influence of Tibial Slope on Maximal Flexion after Total Knee Arthroplasty. Knee Surgery, Sports Traumatology, Ar-throscopy, 13, 193-196.
https://doi.org/10.1007/s00167-004-0557-x
[9] Dennis, D.A., Komistek, R.D., Stiehl, J.B., et al. (1998) Range of Motion after Total Knee Arthroplasty: The Effect of Implant Design and Weight-Bearing Conditions. The Journal of Ar-throplasty, 13, 748-752.
https://doi.org/10.1016/S0883-5403(98)90025-0
[10] Fujimoto, E., Sasashige, Y., Masuda, Y., et al. (2013) Sig-nificant Effect of the Posterior Tibial Slope and Medial/Lateral Ligament Balance on Knee Flexion in Total Knee Arthro-plasty. Knee Surgery, Sports Traumatology, Arthroscopy, 21, 2704-2712.
https://doi.org/10.1007/s00167-012-2059-6
[11] Geijsen, G., Heesterbeek, P., Van Stralen, G., et al. (2014) Do Tibiofemoral Contact Point and Posterior Condylar Offset Influence Outcome and Range of Motion in a Mobile-Bearing Total Knee Arthroplasty? Knee Surgery, Sports Traumatology, Arthroscopy, 22, 550-555.
https://doi.org/10.1007/s00167-013-2525-9
[12] Ishii, Y., Noguchi, H., Takeda, M., et al. (2013) Posterior Con-dylar Offset Does Not Correlate with Knee Flexion after TKA. Clinical Orthopaedics and Related Research, 471, 2995-3001.
https://doi.org/10.1007/s11999-013-2999-2
[13] Kim, J. (2013) Effect of Posterior Femoral Condylar Offset and Posterior Tibial Slope on Maximal Flexion Angle of the Knee in Posterior Cruciate Ligament Sacrificing Total Knee Arthroplasty. Knee Surgery & Related Research, 25, Article No. 54.
https://doi.org/10.5792/ksrr.2013.25.2.54
[14] Kim, Y.-H., Sohn, K.-S. and Kim, J.-S. (2005) Range of Motion of Standard and High-Flexion Posterior Stabilized Total Knee Prostheses: A Prospective, Randomized Study. The Journal of Bone and Joint Surgery. American Volume, 87, 1470-1475.
https://doi.org/10.2106/00004623-200507000-00008
[15] Malviya, A., Lingard, E., Weir, D., et al. (2009) Pre-dicting Range of Movement after Knee Replacement: The Importance of Posterior Condylar Offset and Tibial Slope. Knee Surgery, Sports Traumatology, Arthroscopy, 17, 491-498.
https://doi.org/10.1007/s00167-008-0712-x
[16] Matsumoto, T., Mizuno, K., Muratsu, H., et al. (2007) Influence of Intra-Operative Joint Gap on Post-Operative Flexion Angle in Osteoarthritis Patients Undergoing Posterior-Stabilized Total Knee Arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy, 15, 1013-1018.
https://doi.org/10.1007/s00167-007-0331-y
[17] 辛星, 曲铁兵. 膝关节股骨后髁偏心距的临床研究[J]. 中国组织工程研究, 2017, 21(15): 2432-2437.
[18] Sato, T., Koga, Y. and Omori, G. (2004) Three-Dimensional Lower Ex-tremity Alignment Assessment System: Application to Evaluation of Component Position after Total Knee Arthroplasty. 19, 620-628.
https://doi.org/10.1016/j.arth.2003.12.063
[19] Ishii, Y., Noguchi, H., Takeda, M., et al. (2011) Changes in the Medial and Lateral Posterior Condylar Offset in Total Knee Arthroplasty. The Journal of Arthroplasty, 26, 255-259.
https://doi.org/10.1016/j.arth.2010.05.023
[20] 高嘉翔, 林剑浩, 李志昌. 股骨后髁偏心距在全膝关节置换术中的意义[J]. 中华关节外科杂志(电子版), 2019, 13(4): 461-465.
[21] Voleti, P.B., Stephenson, J.W., Lotke, P.A., et al. (2014) Plain Radiographs Underestimate the Asymmetry of the Posterior Condylar Offset of the Knee Compared with MRI. Clinical Orthopaedics and Related Research, 472, 155-161.
https://doi.org/10.1007/s11999-013-2946-2
[22] Yang, G., Chen, W., Sun, X., et al. (2016) Full-Thickness Carti-lage-Based Posterior Femoral Condylar Offset. Influence on Knee Flexion after Posterior-Stabilized Total Knee Arthro-plasty. Orthopaedics & Traumatology: Surgery & Research, 102, 441-446.
https://doi.org/10.1016/j.otsr.2016.02.011
[23] Soda, Y., Oishi, J., Nakasa, T., et al. (2007) New Parameter of Flexion after Posterior Stabilized Total Knee Arthroplasty: Posterior condylar Offset Ratio on X-Ray Photographs. Ar-chives of Orthopaedic and Trauma Surgery, 127, 167-170.
https://doi.org/10.1007/s00402-007-0295-x
[24] Wang, W., Tsai, T.-Y., Yue, B., et al. (2014) Posterior Femoral Condylar Offsets of a Chinese Population. Knee, 21, 553-556.
https://doi.org/10.1016/j.knee.2013.03.010
[25] Johal, P., Hassaballa, M.A., Eldridge, J.D., et al. (2012) The Pos-terior Condylar Offset Ratio. Knee, 19, 843-845.
https://doi.org/10.1016/j.knee.2012.03.017
[26] Arabori, M., Matsui, N., Kuroda, R., et al. (2008) Posterior Con-dylar Offset and Flexion in Posterior Cruciate-Retaining and Posterior Stabilized TKA. Journal of Orthopaedic Science, 13, 46-50.
https://doi.org/10.1007/s00776-007-1191-5
[27] Massin, P. and Gournay, A. (2006) Optimization of the Posterior Condylar Offset, Tibial Slope, and Condylar Roll-Back in Total Knee Arthroplasty. The Journal of Arthroplasty, 21, 889-896.
https://doi.org/10.1016/j.arth.2005.10.019
[28] Seung-Suk Seo, M., Ha, D.-J., Kim, C.-W., et al. (2009) Effect of Posterior Condylar Offset on Cruciate-Retaining Mobile TKA. Orthopedics, 32, 44.
[29] Dennis, D.A., Heekin, R.D., Clark, C.R., et al. (2013) Effect of Implant Design on Knee Flexion. The Journal of Arthroplasty, 28, 429-438.
https://doi.org/10.1016/j.arth.2012.07.019
[30] Dennis, D.A., Komistek, R.D., Scuderi, G.R., et al. (2007) Factors Affecting Flexion after Total Knee Arthroplasty. Clinical Orthopaedics and Related Research, 464, 53-60.
https://doi.org/10.1097/BLO.0b013e31812f785d
[31] Clarke, H. (2012) Changes in Posterior Condylar Offset after Total Knee Arthroplasty Cannot Be Determined by Radiographic Measurements Alone. The Journal of Arthroplasty, 27, 1155-1158.
https://doi.org/10.1016/j.arth.2011.12.026
[32] Schimmel, J., Defoort, K., Heesterbeek, P., et al. (2014) Bicruciate Substituting Design Does Not Improve Maximal Flexion in Total Knee Arthroplasty: A Randomized Controlled Trial. The Journal of Bone and Joint Surgery. American Volume, 96, e81.
https://doi.org/10.2106/JBJS.M.00277
[33] Lavernia, C., D’Apuzzo, M., Rossi, M.D., et al. (2008) Accuracy of Knee Range of Motion Assessment after Total Knee Arthroplasty. The Journal of Arthroplasty, 23, 85-91.
https://doi.org/10.1016/j.arth.2008.05.019
[34] Jia, Y.-T., Wang, L., Zhang, Y., et al. (2012) Does Mismatch of the Femoral Component Aspect Ratio Influence the Range of Knee Flexion after Posterior-Stabilized Total Knee Arthroplasty? Chinese Journal of Traumatology, 15, 152-157.
[35] 张宇, 刘军, 田孟强, 等. 股骨后髁偏距与高屈曲后稳定型全膝置换术后膝关节屈曲度的相关性分析[J]. 中华外科杂志, 2010, 48(10): 764-768.
[36] 张宇, 刘军, 田孟强, 等. 股骨远端解剖的性别差异对全膝关节置换术后临床疗效的影响[J]. 中华骨科杂志, 2010, 30(12): 1181-1186.
[37] Abdel, M., Pulido, L., Severson, E., et al. (2014) Stepwise Surgical Correction of Instability in Flexion after Total Knee Replacement. The Bone & Joint Journal, 96, 1644-1648.
https://doi.org/10.1302/0301-620X.96B12.34821
[38] Matziolis, G., Brodt, S., Windisch, C., et al. (2017) Changes of Posterior Condylar Offset Results in Midflexion Instability in Single-Radius Total Knee Arthroplasty. Archives of Or-thopaedic and Trauma Surgery, 137, 713-717.
https://doi.org/10.1007/s00402-017-2671-5
[39] Kim, C.W., Seo, S.S., Kim, J.H., et al. (2015) Factors Affecting the Osteolysis around the Components after Posterior-Stabilized Total Knee Replacement Arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy, 23, 1863-1869.
https://doi.org/10.1007/s00167-014-3088-0
[40] King, T.V. (1985) Femoral Component Loosening in Total Knee Arthroplasty. Clinical Orthopaedics and Related Research, 194, 285-290.
https://doi.org/10.1097/00003086-198504000-00046
[41] Onodera, T., Majima, T., Nishiike, O., et al. (2013) Posterior Femoral Condylar Offset after Total Knee Replacement in the Risk of Knee Flexion Contracture. The Journal of Arthroplasty, 28, 1112-1116.
https://doi.org/10.1016/j.arth.2012.07.029
[42] Babazadeh, S., Dowsey, M., Swan, J., et al. (2011) Joint Line Posi-tion Correlates with Function after Primary Total Knee Replacement: A Randomised Controlled Trial Comparing Con-ventional and Computer-Assisted Surgery. The Journal of Bone and Joint Surgery. British volume, 93-B, 1223-1231.
https://doi.org/10.1302/0301-620X.93B9.26950
[43] König, C., Sharenkov, A., Matziolis, G., et al. (2010) Joint Line Elevation in Revision TKA Leads to Increased Patellofemoral Contact Forces. Journal of Orthopaedic Research, 28, 1-5.
https://doi.org/10.1002/jor.20952