基于多重LRET效应的上转换发光探针构筑及pH检测
A Multiple LRET-Based Upconversion Luminescent Probe for Sensitive pH Detection
DOI: 10.12677/AAC.2023.131001, PDF, HTML, XML, 下载: 170  浏览: 290  国家自然科学基金支持
作者: 陈婷婷, 秦淑恒, 张玉明*:南通大学化学化工学院,江苏 南通
关键词: pH检测上转换发光探针LRETpH Detection Upconversion Luminescent Probe LRET
摘要: pH异常与多种疾病密切相关,酸化是所有实体肿瘤的特征性标志之一。上转换发光材料具有多种独特优势,适合生命体物种成像。有机小分子CouDa负载到上转换纳米颗粒(UCNPs)表面的疏水层组装成UCNPs@CouDa探针,酸性/碱性条件下,能量受体CouDa与供体UCNPs之间产生多重发光共振能量转移(LRET)效应,且随pH变化的趋势相反。探针对溶液pH检测的灵敏度高,pKa约7.3,线性响应范围在6.0~8.5,不受生命体常见物种的干扰。与小分子探针CouDa相比,该纳米探针响应速率快,线性响应范围宽,表明疏水环境有利于这一亲核加成反应机理的pH检测。
Abstract: pH dysregulation is closely relevant to many diseases, and acidosis is a hallmark of all solid tumors. Upconversion luminescent particles (UCNPs) are suitable for bio-imaging due to their typical advantages. UCNPs@CouDa probe was constructed with CouDa in the hydrophobic layer on UCNPs surface. Multiple luminescence resonance energy transfer (LRET) processes occurred between CouDa and UCNPs that changed oppositely with pH variation. UCNPs@CouDa probe could image pH fluctuations with high sensitivity and good selectivity. Its pKa was nearly 7.3 and the linear detection range was between 6.0 to 8.5 which was broader than that of the small molecule probe CouDa. The nanoprobe responded to pH changes more quickly. All these indicated that the hydrophobic environment was favorable for the pH imaging, which is based on a nucleophilic reaction mechanism.
文章引用:陈婷婷, 秦淑恒, 张玉明. 基于多重LRET效应的上转换发光探针构筑及pH检测[J]. 分析化学进展, 2023, 13(1): 1-10. https://doi.org/10.12677/AAC.2023.131001

1. 引言

pH和细胞、组织的多种功能相关,包括离子通道 [1] [2] 、内吞作用 [3] [4] [5] 、细胞增殖和凋亡 [6] 、肌肉收缩等 [7] [8] [9] 。pH稳态是蛋白保持正常结构和功能,实现生命体正常运转的关键 [10] 。肿瘤、阿尔兹海默症等多种疾病与pH异常密切相关。据报道,不同的肿瘤组织,其手术切除不完全的发生率在25%~40%之间 [11] 。近年来,临床上尝试用荧光探针特异性识别肿瘤细胞为手术导航,提高手术治愈率。受肿瘤异质性等因素限制,靶向特异性受体或酶的探针不具有普适性。酸化是所有实体肿瘤微环境的特征性标志之一 [12] [13] ,因此pH荧光探针具备识别各种肿瘤组织的可能。

上转换发光材料有反斯托克斯位移的特点,近红外光激发,可见光发射,在生命体成像中具有独特的优势,包括成像深度大、不受背景荧光干扰、半峰宽窄、发光稳定性好等 [14] [15] [16] 。同时,肿瘤组织的高通透性和滞留效应有助于上转换纳米颗粒(UCNPs)在肿瘤中的聚集和成像 [17] [18] 。上转换材料本身不具备识别能力,作为荧光供体与带有识别基团的荧光受体组装形成荧光探针,发光共振能量转移(LRET)效应是构筑这类探针的常用策略。目前基于上转换发光材料开发的pH探针通常在一个波长下产生LRET效应 [19] [20] ,多个波长下的LRET过程有助于提高探针灵敏度,这类探针鲜有报道。

前期开发的有机小分子荧光探针CouDa在酸性条件下580 nm处有强吸收,碱性环境下探针与OH发生加成反应,最大吸收峰蓝移到430 nm,能检测细胞及小鼠肿瘤中pH变化,但响应时间较长,灵敏度不高 [21] 。UCNPs (NaYF4: 20% Yb, 2% Er)的发射峰与CouDa吸收峰位置吻合,在409 nm、542 nm和656 nm三个波长下都可能产生LRET效应,且随pH变化的趋势相反,有助于提高检测灵敏度(图1)。通过合理修饰,UCNPs表面可以形成疏水层,减弱水分子对OH的作用,可能加速CouDa与OH的反应。据此,我们在包裹了两亲聚合物C18PMH-mPEG的UCNPs (NaYF4: 20% Yb, 2% Er)表面负载CouDa,得到UCNPs@CouDa探针。环境pH由酸性变成碱性时,410 nm处上转换发光(UCL410 nm)减弱,同时UCL542 nm和UCL656 nm增强。在pH 6.0~8.5之间,上转换发光比值UCL542 nm/UCL409 nm与pH的变化呈线性关系,pKa值约7.3,对pH的响应选择性高,适用于生命体相关的pH成像。

Figure 1. (a) Imaging illustration of UCNP@CouDa toward pH fluctuations; (b) UCL spectra of UCNPs (NaYF4: 20% Yb, 2% Er), absorption spectra of CouDa in acidic and basic environment, and the reaction mechanism of CouDa with OH

图1. (a) UCNPs@CouDa对pH变化的响应示意图;(b) UCNPs (NaYF4: 20% Yb, 2% Er)发射光谱图,CouDa在酸/碱性环境中吸收光谱图,及CouDa对pH响应机理示意图

2. 实验部分

2.1. 仪器与试剂

Y2O3 (99.99%), Yb2O3 (99.99%), Er2O3 (99.99%), CF3COOH (99.5%),油胺(>40%, GC)购自梯希爱(上海)化成工业发展有限公司,mPEG-NH2 (MW = 5000 Da)购自上海阿拉丁生化科技有限公司,C18PMH-COOH (MW = 30,000~500,00 Da)购自Aldrich公司。合成所用试剂和溶剂都是国内供货商提供的分析纯等级,使用时没有进一步提纯。实验用水为Milli-Q超纯水。上转换荧光光谱在北京卓立汉光ZolixScan ZLX-UPL光谱仪上测定(980 nm激光光源),其余荧光光谱在Horiba FluoroMax-4荧光光谱仪上测定。吸收光谱用Perkin Elmer Lambda 35紫外可见光谱仪测定。溶液pH用PHS-3精密pH计测定。X射线衍射数据在Simadzu XRD-6000 diffractometer上采集,透射电镜数据由JEOL JEM-2100收集。

2.2. 合成及表征

2.2.1. C18PMH-mPEG合成及表征

参照文献合成 [22] 。在含有C18PMH (40 mg, 1 eq.), mPEG-NH2 (572 mg, 1 eq.), EDC·HCl (4 mg)的烧瓶中加入CH2Cl2 (20 mL)和Et3N (24 µL),N2保护下室温避光搅拌24 h。停止反应,N2吹干,加入二次水搅拌溶解,转移到半透膜中(M = 14 k),透析48小时(期间多次换水),冷冻干燥。经核磁表征,mPEG对C18PMH的修饰率为100%。

1H NMR (400 MHz, CDCl3) δ: 3.53-3.80 (m, br, CH2 of mPEG), 1.28 (br, CH2 of C18PMH), 0.91 (br, CH3 of C18PMH).

2.2.2. UCNPs合成

UCNPs (NaYF4: 20% Yb, 2% Er)参照文献合成 [23] 。(CF3COO)3M (M = Y, Yb, Er)由相应氧化物溶于CF3COOH和水的混合溶液(1/1,v/v)中制得。在20 mL油胺中分别加入CF3COONa (2 mmol, 285.60 mg), (CF3COO)3Y (0.78 mmol, 375.96 mg), (CF3COO)3Yb (0.20 mmol, 113.23 mg), (CF3COO)3Er (0.02 mmol, 11.21 mg),搅拌溶解,缓慢升温至120℃,抽真空2小时除去体系中的水和氧气后,向体系内通入高纯氩气,缓慢升温至340℃并反应2小时。停止反应,降至60℃以下并加入20 mL乙醇,10,000 r/min离心,粒子用1:1的正己烷/乙醇混合溶液和水分别洗涤三次,分散于正己烷中待用。透射电镜和X射线衍射表征。

2.2.3. UCNPs@C18PMH-mPEG合成

取上述UCNPs,超声分散于氯仿中,加入C18PMH-mPEG (200 mg),超声,搅拌过夜,室温下用N2吹干溶剂,加入纯水搅拌至分散,10,000 r/min离心,强烈超声水洗至无泡沫,过膜除掉大颗粒(200 µm),分散在水中4℃保存。透射电镜表征。

2.2.4. UCNP@CouDa合成

把UCNPs@C18PMH-mPEG (30 mg)分散在pH约5.0的Na2HPO4-柠檬酸缓冲溶液中(5 mL),滴加含CouDa (15 mg)的DMSO溶液(0.5 mL),避光剧烈搅拌过夜,离心,用含10%乙醇的上述酸性缓冲溶液超声洗涤,紫外–可见吸收光谱检测洗出液中没有CouDa为止。过膜滤掉大颗粒(200 µm),分散在酸性缓冲液中4℃保存。

2.2.5. CouDa合成

按照文献合成 [21] 。

2.2.6. CouDa负载量测定

按照文献方法 [24] ,称取一定量干燥的UCNPs@C18PMH-mPEG颗粒,依次用一定量的CH3Cl、CH3OH多次分散超声洗涤,所得溶液定容,用紫外–可见光谱仪检测吸光度,并与标准工作曲线对照,计算负载量。

2.3. 光谱测试方法

实验中所用缓冲溶液均为Na2HPO4-柠檬酸体系(0.2 M Na2HPO4,0.1 M柠檬酸),用NaOH和HCl调节pH值。保存在酸性溶液中的UCNPs@CouDa粒子离心后用二次水洗涤,分散到缓冲溶液中,pH计验证酸度。UCNPs@CouDa溶液调整到目标pH值后,放置30分钟左右待光谱稳定后收集数据。上转换发光光谱采集完成后,立即进行紫外–可见吸收光谱测试。

择性测试中,UCNPs@CouDa探针分散到pH 7.4的Na2HPO4-柠檬酸缓冲溶液中,加入各竞争性物种,放置30分钟左右待光谱稳定后采集数据。对照组不加其他物种。

3. 结果与讨论

3.1. UCNPs@CouDa的设计与表征

许多pH探针pKa值过于偏酸性,不适合用于生命体检测。CouDa探针具有适合于生命体检测的pKa值(7.4)和线性响应范围(6.5~8.5),但响应速率较慢 [21] 。基于OH与CouDa亲核加成反应的机理,我们推测在水溶液中OH与水分子相互作用阻碍了与CouDa的反应。当探针处于疏水环境中时,OH受水分子影响减小,响应速率可能会加快。根据紫外–可见吸收光谱可知,碱性和酸性环境下,CouDa的最大吸收峰分别位于430 nm和580 nm附近,UCNPs (NaYF4: 20% Yb, 2% Er)的三个发射峰位于409 nm、542 nm和660 nm,三个波长下的发射光都可能被CouDa吸收发生LRET过程,且环境pH变化时三个波长下的LRET效应变化趋势相反,有利于提高探针响应灵敏度。因此用含有疏水和亲水长链的两亲聚合物C18PMH-mPEG包裹表面带有油胺的UCNPs (UCNP@OM),水溶液中粒子表面形成一个疏水层,带有C12烷基长链的CouDa通过疏水–疏水相互作用可自组装到这一疏水层中 [24] [25] ,加快与OH的响应。

由热分解法制得UCNPs@OM颗粒,透射电镜及高分辨电镜显示粒径在20~30 nm左右,具有清晰的晶格条纹,晶格间距约0.51 nm,与β态UCNPs(100)晶面的晶格间距相吻合(图2(a),图2(b))。图2(c)是制得的UCNPs@OM粒子X射线衍射图(XRD)及报导的β态粒子标准卡(JCPDS File No. PDF 28-1192),对比发现晶体的衍射峰位置及强度与β态相吻合,同时也存在少量α态粒子(虚线标注)。C18PMH-mPEG包裹后,纳米颗粒形貌没有发生明显变化(图2(d))。

CouDa探针在UCNPs上的负载量通过紫外−可见吸收光谱测定。CouDa及C18PMH-mPEG通过疏水–疏水相互作用自组装到UCNPs表面,在可溶性有机溶剂中强烈超声时,它们会从颗粒表面脱落 [24] 。通过测量有机溶剂的吸光度并与标准工作曲线对照,测得每克UCNPs表面负载的CouDa为119毫克,即负载率为11.9%。

Figure 2. (a) TEM, (b) HR-TEM and (c) XRD spectra of UCNPs@OM; (d) TEM of UCNPs@C18PMH-mPEG. Scale bar, 20 nm ((a), (b)), 5 nm (b)

图2. UCNPs@OM粒子(a)透射电镜图,(b)高分辨透射电镜图,(c) XRD图,下图为β态粒子对照图,JCPDS File No. PDF 28-1192;(d) UCNPs@C18PMH-mPEG粒子透射电镜图。标尺:20 nm ((a), (b)), 5 nm (b)

3.2. UCNPs@CouDa光谱测试

首先测试了UCNPs@CouDa对pH的响应速率。在pH 7.4的缓冲溶液中,20分钟左右探针的上转换发射及紫外–可见吸收光谱都达到了稳定状态,说明探针与OH的反应达到平衡,在pH 8.4的溶液中响应时间相近,这一速率远大于小分子探针CouDa的响应速率(pH 8.4时40 min左右) [21] ,表明疏水环境有利于CouDa对OH的响应(图3)。

Figure 3. Time dependent upconversion luminescence spectra and absorption spectra of UCNPs@CouDa in Na2HPO4-citric buffer solutions with pH 7.4 ((a), (b)) and pH 8.4 (c)

图3. 在pH 7.4和8.4的Na2HPO4-柠檬酸缓冲溶液中UCNPs@CouDa的上转换发射光谱(a)及紫外–可见吸收光谱((b), (c))随时间变化图

生理pH条件下,UCNPs@CouDa探针的上转换发射光谱如图4(a)所示。pH 5.0左右探针在409 nm,542 nm及656 nm出现三组UCNPs的特征发射峰。当pH从5.0逐渐增大到8.2时,409 nm处上转换发射有所减弱,而542 nm和656 nm处上转换发射都显著增强,表明UCNPs三个波长下的发射光与CouDa之间都存在LRET过程。这与CouDa分子的吸收峰位置、强度随pH的变化相关。pH 5.0附近,CouDa在500~700 nm范围有一个强的宽吸收峰,当pH增大到8.0以上时,这一吸收峰减弱到几乎消失,同时在430 nm附近出现一个新的较弱的吸收峰(图4(c))。因此,酸性环境中UCNPs在542 nm和656 nm的上转换发射光被CouDa吸收,LRET效应较强,UCL542 nm和UCL656 nm较弱。随pH增大CouDa对这两处光的吸收减弱,LRET效应减弱,UCL542 nm和UCL656 nm逐渐增强。而409 nm处的变化趋势恰好相反,随pH增大,CouDa对此处光的吸收逐渐增强,LRET效应随之增大,导致UCL409 nm减弱。542 nm和409 nm处发射峰比值(UCL542 nm/UCL409 nm)对pH作图可以发现,酸度小于6.0时该比值几乎保持不变,pH 6.0 到8.5范围内两者间存在显著的线性关系,UCL542 nm/UCL409 nm比值随pH增大而快速增大,到pH 8.5时该比值增大约2.8倍(图4(b))。小分子探针CouDa对pH的线性响应范围在6.5~8.5 [21] ,负载到UCNPs的疏水层后,其线性响应范围拓宽,表明疏水环境有利于CouDa对pH的响应。与小分子探针CouDa相比,UCNPs@CouDa对pH的相应速率更快,线性响应范围更宽,对pH检测更加灵敏。通过Henderson-Hasselbalch方程 [26] 计算可得,UCNPs@CouDa探针的pKa值约7.3,与小分子探针CouDa的pKa值一致(图4(d))。

Figure 4. (a) Upconversion luminescence spectra of UCNPs@CouDa in Na2HPO4-citric buffer solutions with pH 5.1 to 8.5; (b) Luminescence ratio (UCL542 nm/UCL409 nm) versus pH, and (b inset) the linear fitting between pH 6.0 to 8.5; (c) Absorption spectra of CouDa with pH 4.9 to 8.5; (d) Linear fitting of Log[(Imax−I)/(I−Imin)] versus pH, where I is the ratio of UCL542 nm/UCL409 nm; λex = 980 nm

图4. (a) UCNPs@CouDa在pH 5.1到8.5的Na2HPO4-柠檬酸缓冲溶液中的上转换发射光谱图;UCL542 nm/UCL409 nm比值随pH的变化图(b),以及pH 6.0~8.5两者之间的线性关系拟合图(b内插入图);(c) pH 4.9~8.5小分子CouDa紫外–可见吸收光谱随pH变化图;(d) Log[(Imax−I)/(I−Imin)]和pH之间的线性关系拟合图,I为上转换发光比值UCL542 nm/UCL409 nm;λex = 980 nm

上转换发光检测的同时收集了UCNPs@CouDa探针的紫外–可见吸收光谱随pH的变化(图5)。pH 5.0左右的酸性环境中,上转换纳米探针在450~700 nm范围出现了宽而强的吸收峰,半峰宽明显大于小分子探针CouDa,表明负载在UCNPs表面疏水层中的CouDa可能部分聚集。pH逐渐增大时该吸收峰逐渐减弱,同时在440 nm附近出现新的吸收峰。pH小于6.0时440 nm和543 nm处的吸收强度比值变化很小(A440 nm/A543 nm),当pH大于6.0时,该比值随pH增大而增大,pH大于7.8时该比值不再变化,pH 6.0~7.8范围内线性关系不明显。因此与小分子探针CouDa相比,生理pH条件下UCNPs@CouDa的紫外–可见吸收光谱的灵敏度下降。

Figure 5. (a) Absorption spectra of UCNPs@CouDa in Na2HPO4-citric buffer solutions with pH 5.0 to 8.2, (b) The absorption ratio (A440 nm/A543 nm) versus pH

图5. UCNPs@CouDa在pH 5.0~8.2的Na2HPO4-柠檬酸缓冲溶液中的紫外–可见吸收图(a),409 nm 和542 nm处吸收比值(A440 nm/A543 nm)随pH的变化图(b)

接着对UCNPs@CouDa的选择性进行了测试。把上转换探针分散在pH 7.4的Na2HPO4-柠檬酸缓冲溶液中,加入各生命体常见物种。如图6所示,这些物种对探针的上转换发光影响很小,对上转换发光强度比值UCL542 nm/UCL409 nm的影响在0.1个单位以内。在pH线性响应范围6.0到8.5之间,该比值变化约2.8倍。可见UCNPs@CouDa对生理pH变化的响应具有高选择性。

Figure 6. (a) Upconversion luminescence spectra of Na2HPO4-citric buffer solution in pH 7.4 containing UCNPs@CouDa and other biorelevant species. (b) Histograms of upconversion luminescence intensity ratio UCL542 nm/UCL409 nm in diagram a. 1. Control, without competitive species; 2. Mg2+; 3. Na+; 4. Ca2+; 5. K+; 6. GSH; 7. Cys; 8. H2O2; 9. ClO (2~6, 10 mM; 6~7, 1 mM; 8-9, 200 µM). λex = 980 nm

图6. 含UCNPs@CouDa的pH 7.4缓冲溶液中(Na2HPO4-柠檬酸)加入各竞争性物种后的上转换发射图(a),及各物种存在时溶液的上转换发射光强度比值(UCL542 nm/UCL409 nm)。1、参照,不含竞争性物种,2、Mg2+,3、Na+,4、Ca2+,5、K+,6、GSH,7、Cys,8、H2O2,9、ClO (2~6, 10 Mm; 6~7, 1 mM; 8~9, 200 µM)。λex = 980 nm

4. 结论

有机小分子CouDa负载到UCNPs@C18PMH-mPEG疏水层,组合成上转换探针UCNPs@CouDa。pH变化时,上转换颗粒的三组特征发射峰都可以被CouDa吸收,产生三重LRET效应,且409 nm处LRET变化趋势与542 nm及656 nm处相反,使得UCL409 nm和UCL542 nm、UCL656 nm变化趋势相反,单位pH范围内UCL542 nm/UCL409 nm比值增大,提高了检测灵敏度。UCNPs@CouDa探针的pKa值约7.3,对pH变化的线性响应范围在6.0~8.5,对pH检测具有高选择性。与小分子探针CouDa相比,负载到疏水层的CouDa对pH响应更迅速,线性响应范围更宽,表明疏水环境有利于这一亲核加成机理的pH检测。

基金项目

感谢国家自然科学基金(22107054)、南通市基础科学基金(JC2021114)和江苏省大学生创新训练计划项目(202110304132H)的资助。

参考文献

NOTES

*通讯作者。

参考文献

[1] Azoulay, I.S., Liu, F., Hu, Q., et al. (2020) ASIC1a Channels Regulate Mitochondrial Ion Signaling and Energy Homeostasis in Neurons. Journal of Neurochemistry, 153, 203-215.
https://doi.org/10.1111/jnc.14971
[2] Cabrera-Garcia, D., Bekdash, R., Abbott, G.W., et al. (2021) The Envelope Protein of SARS-CoV-2 Increases Intra-Golgi pH and Forms a Cation Channel That Is Regulated by pH. The Journal of Physiology, 599, 2851-2868.
https://doi.org/10.1113/JP281037
[3] Verdaguer, M.P., Zhang, T., Paulo, J.A., et al. (2021) Mechanism of p38 MAPK-Induced EGFR Endocytosis and Its Crosstalk with Ligand-Induced Pathways. Journal of Cell Biology, 220, e202102005.
https://doi.org/10.1083/jcb.202102005
[4] Richardson, D.S., Gregor, C., Winter, F.R., et al. (2017) SRpHi Ratiometric pH Biosensors for Super-Resolution Microscopy. Nature Communications, 8, Article No. 577.
https://doi.org/10.1038/s41467-017-00606-4
[5] Leloup, N., Lössl, P., Meijer, D.H., et al. (2017) Low pH-Induced Conformational Change and Dimerization of Sortilin Triggers Endocytosed Ligand Release. Nature Communications, 8, Article No. 1708.
https://doi.org/10.1038/s41467-017-01485-5
[6] Hu, Y., Lou, J., Jin, Z., et al. (2021) Advances in Research on the Regulatory Mechanism of NHE1 in Tumors. Oncology Letters, 21, Article No. 273.
https://doi.org/10.3892/ol.2021.12534
[7] Chen, Y.R., Jiang, B.Y. and Chen, C.C. (2018) Acid-Sensing Ion Channels: Dual Function Proteins for Chemo-Sensing and Mechano-Sensing. Journal of Biomedical Science, 25, Article No. 46. https://doi.org/10.1186/s12929-018-0448-y
[8] Beg, A.A., Ernstrom, G.G., Nix, P., et al. (2008) Protons Act as a Transmitter for Muscle Contraction in C. elegans. Cell, 132, 149-160.
https://doi.org/10.1016/j.cell.2007.10.058
[9] Cooke, R., Franks, K., Luciani, G.B., et al. (1988) The Inhibition of Rabbit Skeletal Muscle Contraction by Hydrogen Ions and Phosphate. The Journal of Physiology, 395, 77-97.
https://doi.org/10.1113/jphysiol.1988.sp016909
[10] Casey, J.R., Grinstein, S. and Orlowski, J. (2010) Sensors and Regulators of Intracellular pH. Nature Reviews Molecular Cell Biology, 11, 50-61.
https://doi.org/10.1038/nrm2820
[11] Siegel, R.L., Miller, K.D. and Jemal, A. (2017) Cancer Statistics. CA: A Cancer Journal for Clinicians, 67, 7-30.
https://doi.org/10.3322/caac.21387
[12] Corbet, C. and Feron, O. (2017) Tumour Acidosis: From the Passenger to the Driver’s Seat. Nature Reviews Cancer, 17, 577-593.
https://doi.org/10.1038/nrc.2017.77
[13] Chiche, J., Brahimi-Horn, M.C. and Pouysségur, J. (2010) Tumour Hypoxia Induces a Metabolic Shift Causing Acidosis: A Common Feature in Cancer. Journal of Cellular and Molecular Medicine, 14, 771-794.
https://doi.org/10.1111/j.1582-4934.2009.00994.x
[14] Su, Q., Feng, W., Yang, D., et al. (2017) Resonance Energy Transfer in Upconversion Nanoplatforms for Selective Biodetection. Accounts of Chemical Research, 50, 32-40.
https://doi.org/10.1021/acs.accounts.6b00382
[15] Di, X., Wang, D., Zhou, J., et al. (2021) Quantitatively Monitoring In Situ Mitochondrial Thermal Dynamics by Upconversion Nanoparticles. Nano Letters, 21, 1651-1658.
https://doi.org/10.1021/acs.nanolett.0c04281
[16] Gu, B. and Zhang, Q. (2018) Recent Advances on Functionalized Upconversion Nanoparticles for Detection of Small Molecules and Ions in Biosystems, Advanced Science, 5, Article ID: 1700609.
https://doi.org/10.1002/advs.201700609
[17] Zhou, L., Wang, R., Yao, C., et al. (2015) Single-Band Upconversion Nanoprobes for Multiplexed Simultaneous in Situ Molecular Mapping of Cancer Biomarkers. Nature Communications, 6, Article No. 6938.
https://doi.org/10.1038/ncomms7938
[18] Yang, Y., Huang, J., Wei, W., et al. (2022) Switching the NIR Upconversion of Nanoparticles for the Orthogonal Activation of Photoacoustic Imaging and Phototherapy. Nature Communications, 13, Article No. 3149.
https://doi.org/10.1038/s41467-022-30713-w
[19] Tsai, E.S., Joud, F., Wiesholler, L.M., et al. (2020) Upconversion Nanoparticles as Intracellular pH Messengers. Analytical and Bioanalytical Chemistry, 412, 6567-6581.
https://doi.org/10.1007/s00216-020-02768-5
[20] Wang, F., Raval, Y., Chen, H., et al. (2014) Development of Luminescent pH Sensor Films for Monitoring Bacterial Growth through Tissue. Advanced Healthcare Materials, 3, 197-204.
https://doi.org/10.1002/adhm.201300101
[21] Zhang, Y., Chen, Y., Fang, H., et al. (2022) A Ratiometric pH Probe for Acidification Tracking in Dysfunctional Mitochondria and Tumour Tissue in Vivo. Journal of Materials Chemistry B, 10, 5422-5429.
https://doi.org/10.1039/D2TB00553K
[22] Prencipe, G., Tabakman, S.M., Welsher, K., et al. (2009) PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation. Journal of the American Chemical Society, 131, 4783-4787.
https://doi.org/10.1021/ja809086q
[23] Bogdan, N., Vetrone, F., Ozin, G.A., et al. (2011) Synthesis of Ligand-Free Colloidally Stable Water Dispersible Brightly Luminescent Lanthanide-Doped Upconverting Nanoparticles. Nano Letters, 11, 835-840.
https://doi.org/10.1021/nl1041929
[24] Yao, L., Zhou, J., Liu, J., et al. (2012) Iridium-Complex-Modified Upconversion Nanophosphors for Effective LRET Detection of Cyanide Anions in Pure Water. Advanced Functional Materials, 22, 2667-2672.
https://doi.org/10.1002/adfm.201102981
[25] Luo, Y., Zhang, W., Liao, Z., et al. (2018) Role of Mn2+ Doping in the Preparation of Core-Shell Structured Fe3O4@upconversion Nanoparticles and Their Applications in T1/T2-Weighted Magnetic Resonance Imaging, Upconversion Luminescent Imaging and Near-Infrared Activated Photodynamic Therapy. Nanomaterials, 8, Article No. 466.
https://doi.org/10.3390/nano8070466
[26] Silva, A.P., Gunaratne, H.Q.N. and Rice, T.E. (1996) Proton-Controlled Switching of Luminescence in Lanthanide Complexes in Aqueous Solution: pH Sensors Based on Long-Lived Emission. Angewandte Chemie International Edition, 35, 2116-2118.
https://doi.org/10.1002/anie.199621161