|
[1]
|
Wu, F., Maier, J. and Yu, Y. (2020) Guidelines and Trends for Next-Generation Rechargeable Lithium and Lithium-Ion Batteries. Chemical Society Reviews, 49, 1569-1614. [Google Scholar] [CrossRef]
|
|
[2]
|
Jin, S., Jiang, Y., Ji, H., et al. (2018) Advanced 3D Current Collectors for Lithium-Based Batteries. Advanced Materials, 30, Article ID: 1802014. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Li, D., Lai, W.Y., Zhang, Y.Z., et al. (2018) Printable Transparent Conductive Films for Flexible Electronics. Advanced Materials, 30, Article ID: 1704738. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Cheng, T., Zhang, Y.Z., Wang, S., et al. (2021) Conductive Hydrogel-Based Electrodes and Electrolytes for Stretchable and Self-Healable Supercapacitors. Advanced Functional Materials, 31, Article ID: 2101303.
[Google Scholar] [CrossRef]
|
|
[5]
|
Zhang, Y.Z., Wang, Y., Cheng, T., et al. (2019) Printed Supercapacitors: Materials, Printing and Applications. Chemical Society Reviews, 48, 3229-3264. [Google Scholar] [CrossRef]
|
|
[6]
|
Zhang, Y.Z., Wang, Y., Cheng, T., et al. (2015) Flexible Supercapacitors Based on Paper Substrates: A New Paradigm for Low-Cost Energy Storage. Chemical Society Reviews, 44, 5181-5199. [Google Scholar] [CrossRef]
|
|
[7]
|
Cheng, T., Wu, Y.W., Chen, Y.L., et al. (2019) Inkjet-Printed High-Performance Flexible Micro-Supercapacitors with Porous Nanofiber-Like Electrode Structures. Small, 15, Article ID: 1901830. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Cheng, X.B., Zhao, C.Z., Yao, Y.X., et al. (2019) Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes. Chem, 5, 74-96. [Google Scholar] [CrossRef]
|
|
[9]
|
Dunn, B., Kamath, H. and Tarascon, J.M. (2011) Electrical Energy Storage for the Grid: A Battery of Choices. Science, 334, 928-935. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Palacin, M.R. (2009) Recent Advances in Rechargeable Battery Materials: A Chemist’s Perspective. Chemical Society Reviews, 38, 2565-2575. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhu, B., Wang, X., Yao, P., et al. (2019) Towards High Energy Density Lithium Battery Anodes: Silicon and Lithium. Chemical Science, 10, 7132-7148. [Google Scholar] [CrossRef]
|
|
[12]
|
Bruce, P.G., Scrosati, B. and Tarascon, J.M. (2008) Nanomaterials for Rechargeable Lithium Batteries. Angewandte Chemie International Edition, 47, 2930-2946. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Lin, D., Liu, Y. and Cui, Y. (2017) Reviving the Lithium Metal Anode for High-Energy Batteries. Nature Nanotechnology, 12, 194-206. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhang, Y., Shi, Y., Hu, X.C., et al. (2020) A 3D Lithium/Carbon Fiber Anode with Sustained Electrolyte Contact for Solid-State Batteries. Advanced Energy Materials, 10, Article ID: 1903325. [Google Scholar] [CrossRef]
|
|
[15]
|
Liu, J., Yuan, H., Cheng, X.B., et al. (2019) A Review of Naturally Derived Nanostructured Materials for Safe Lithium Metal Batteries. Materials Today Nano, 8, Article ID: 100049. [Google Scholar] [CrossRef]
|
|
[16]
|
Choi, N.S., Chen, Z., Freunberger, S.A., et al. (2012) Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angewandte Chemie International Edition, 51, 9994-10024. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Wang, L., Zhou, Z., Yan, X., et al. (2018) Engineering of Lithium-Metal Anodes towards a Safe and Stable Battery. Energy Storage Materials, 14, 22-48. [Google Scholar] [CrossRef]
|
|
[18]
|
Lang, J., Qi, L., Luo, Y., et al. (2017) High Performance Lithium Metal Anode: Progress and Prospects. Energy Storage Materials, 7, 115-129. [Google Scholar] [CrossRef]
|
|
[19]
|
Zhang, R., Li, N.W., Cheng, X.B., et al. (2017) Advanced Micro/Nanostructures for Lithium Metal Anodes. Advanced Science, 4, Article ID: 1600445. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Tang, K., Xiao, J., Li, X., et al. (2020) Advances of Carbon-Based Materials for Lithium Metal Anodes. Frontiers in Chemistry, 8, Article ID: 595972. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Yang, H., Guo, C., Naveed, A., et al. (2018) Recent Progress and Perspective on Lithium Metal Anode Protection. Energy Storage Materials, 14, 199-221. [Google Scholar] [CrossRef]
|
|
[22]
|
Liu, B., Zhang, J.G. and Xu, W. (2018) Advancing Lithium Metal Batteries. Joule, 2, 833-845.
[Google Scholar] [CrossRef]
|
|
[23]
|
Bruce, P.G., Freunberger, S.A., Hardwick, L.J., et al. (2012) Li-O2 and Li-S Batteries with High Energy Storage. Nature Materials, 11, 19-29. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Armand, M. and Tarascon, J.M. (2008) Building Better Batteries. Nature, 451, 652-657.
[Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Gao, Y., Guo, Q., Zhang, Q., et al. (2021) Fibrous Materials for Flexible Li-S Battery. Advanced Energy Materials, 11, Article ID: 2002580. [Google Scholar] [CrossRef]
|
|
[26]
|
Kim, S.H., Yeon, J.S., Kim, R., et al. (2018) A Functional Separator Coated with Sulfonated Metal-Organic Framework/Nafion Hybrids for Li-S Batteries. Journal of Materials Chemistry A, 6, 24971-24978.
[Google Scholar] [CrossRef]
|
|
[27]
|
Zheng, Z.J., Ye, H. and Guo, Z.P. (2020) Recent Progress in Designing Stable Composite Lithium Anodes with Improved Wettability. Advanced Science, 7, Article ID: 2002212. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Cheng, X.B., Yan, C., Zhang, X.Q., et al. (2018) Electronic and Ionic Channels in Working Interfaces of Lithium Metal Anodes. ACS Energy Letters, 3, 1564-1570. [Google Scholar] [CrossRef]
|
|
[29]
|
Zhang, H., Eshetu, G.G., Judez, X., et al. (2018) Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. Angewandte Chemie International Edition, 57, 15002-15027.
[Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zheng, J., Engelhard, M.H., Mei, D., et al. (2017) Electrolyte Additive Enabled Fast Charging and Stable Cycling Lithium Metal Batteries. Nature Energy, 2, Article No. 17012. [Google Scholar] [CrossRef]
|
|
[31]
|
Wang, G., Xiong, X., Xie, D., et al. (2019) Suppressing Dendrite Growth by A Functional Electrolyte Additive for Robust Li Metal Anodes. Energy Storage Materials, 23, 701-706. [Google Scholar] [CrossRef]
|
|
[32]
|
Liu, S., Xia, X., Deng, S., et al. (2019) In Situ Solid Electrolyte Interphase from Spray Quenching on Molten Li: A New Way to Construct High-Performance Lithium-Metal Anodes. Advanced Materials, 31, Article ID: 1806470.
[Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Wu, J., Wang, X., Liu, Q., et al. (2021) A Synergistic Exploitation to Produce High-Voltage Quasi-Solid-State Lithium Metal Batteries. Nature Communications, 12, Article No. 5746. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wang, Z., Shen, L., Deng, S., et al. (2021) 10 μm-Thick High-Strength Solid Polymer Electrolytes with Excellent Interface Compatibility for Flexible All-Solid-State Lithium-Metal Batteries. Advanced Materials, 33, Article ID: 2100353.
[Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Xu, Q., Yang, X., Rao, M., et al. (2020) High Energy Density Lithium Metal Batteries Enabled by a Porous Graphene/MgF2 Framework. Energy Storage Materials, 26, 73-82. [Google Scholar] [CrossRef]
|
|
[36]
|
Zhou, Y., Zhang, X., Ding, Y., et al. (2020) Reversible Deposition of Lithium Particles Enabled by Ultraconformal and Stretchable Graphene Film for Lithium Metal Batteries. Advanced Materials, 32, Article ID: 2005763.
[Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zhang, D., Dai, A., Wu, M., et al. (2019) Lithiophilic 3D Porous CuZn Current Collector for Stable Lithium Metal Batteries. ACS Energy Letters, 5, 180-186. [Google Scholar] [CrossRef]
|
|
[38]
|
Luo, J., Yuan, W., Huang, S., et al. (2018) From Checkerboard-Like Sand Barriers to 3D Cu@CNF Composite Current Collectors for High-Performance Batteries. Advanced Science, 5, Article ID: 1800031.
[Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Howlett, P.C., Macfarlane, D.R. and Hollenkamp, A.F. (2003) A Sealed Optical Cell for the Study of Lithium- Electrode|Electrolyte Interfaces. Journal of Power Sources, 114, 277-284.
[Google Scholar] [CrossRef]
|
|
[40]
|
Dollé, M., Sannier, L., Beaudoin, B., et al. (2002) Live Scanning Electron Microscope Observations of Dendritic Growth in Lithium/Polymer Cells. Electrochemical and Solid-State Letters, 5, A286. [Google Scholar] [CrossRef]
|
|
[41]
|
Gregory, T.D., Hoffman, R.J. and Winterton, R.C. (1990) Nonaqueous Electrochemistry of Magnesium: Applications to Energy Storage. Journal of the Electrochemical Society, 137, 775-780. [Google Scholar] [CrossRef]
|
|
[42]
|
Guo, Y., Yang, J., NuLi, Y., et al. (2010) Study of Electronic Effect of Grignard Reagents on Their Electrochemical Behavior. Electrochemistry Communications, 12, 1671-1673. [Google Scholar] [CrossRef]
|
|
[43]
|
Matsui, M. (2011) Study on Electrochemically Deposited Mg Metal. Journal of Power Sources, 196, 7048-7055.
[Google Scholar] [CrossRef]
|
|
[44]
|
Ling, C., Banerjee, D. and Matsui, M. (2012) Study of the Electrochemical Deposition of Mg in the Atomic Level: Why It Prefers the Non-Dendritic Morphology. Electrochimica Acta, 76, 270-274.
[Google Scholar] [CrossRef]
|
|
[45]
|
Rosso, M., Gobron, T., Brissot, C., et al. (2001) Onset of Dendritic Growth in Lithium/Polymer Cells. Journal of Power Sources, 97, 804-806. [Google Scholar] [CrossRef]
|
|
[46]
|
Zhang, X.Q., Li, T., Li, B.Q., et al. (2020) A Sustainable Solid Electrolyte Interphase for High-Energy-Density Lithium Metal Batteries under Practical Conditions. Angewandte Chemie, 132, 3278-3283.
[Google Scholar] [CrossRef]
|
|
[47]
|
Zhang, Q., Pan, J., Lu, P., et al. (2016) Synergetic Effects of Inorganic Components in Solid Electrolyte Interphase on High Cycle Efficiency of Lithium Ion Batteries. Nano Letters, 16, 2011-2016.
[Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Lu, Y., Tu, Z. and Archer, L.A. (2014) Stable Lithium Electrodeposition in Liquid and Nanoporous Solid Electrolytes. Nature Materials, 13, 961-969. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Li, T., Zhang, X.Q., Shi, P., et al. (2019) Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries. Joule, 3, 2647-2661. [Google Scholar] [CrossRef]
|
|
[50]
|
Suo, L., Xue, W., Gobet, M., et al. (2018) Fluorine-Donating Electrolytes Enable Highly Reversible 5-V-Class Li Metal Batteries. Proceedings of the National Academy of Sciences of the United States of America, 115, 1156-1161.
[Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Zhang, X.Q., Cheng, X.B., Chen, X., et al. (2017) Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries. Advanced Functional Materials, 27, Article ID: 1605989.
[Google Scholar] [CrossRef]
|
|
[52]
|
Thirumalraj, B., Hagos, T.T., Huang, C.J., et al. (2019) Nucleation and Growth Mechanism of Lithium Metal Electroplating. Journal of the American Chemical Society, 141, 18612-18623. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Heine, J., Hilbig, P., Qi, X., et al. (2015) Fluoroethylene Carbonate as Electrolyte Additive in Tetraethylene Glycol Dimethyl Ether Based Electrolytes for Application in Lithium Ion and Lithium Metal Batteries. Journal of the Electrochemical Society, 162, A1094. [Google Scholar] [CrossRef]
|
|
[54]
|
Xu, C., Lindgren, F., Philippe, B., et al. (2015) Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive. Chemistry of Materials, 27, 2591-2599. [Google Scholar] [CrossRef]
|
|
[55]
|
Choudhury, S. (2019) Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities. In: Rational Design of Nanostructured Polymer Electrolytes and Solid-Liquid Interphases for Lithium Batteries, Springer, Cham, 81-94. [Google Scholar] [CrossRef]
|
|
[56]
|
Pan, J., Cheng, Y.T. and Qi, Y. (2015) General Method to Predict Voltage-Dependent Ionic Conduction in a Solid Electrolyte Coating on Electrodes. Physical Review B, 91, Article ID: 134116.
[Google Scholar] [CrossRef]
|
|
[57]
|
Jie, Y., Liu, X., Lei, Z., et al. (2020) Enabling High-Voltage Lithium Metal Batteries by Manipulating Solvation Structure in Ester Electrolyte. Angewandte Chemie, 132, 3533-3538. [Google Scholar] [CrossRef]
|
|
[58]
|
Li, W., Yao, H., Yan, K., et al. (2015) The Synergetic Effect of Lithium Polysulfide and Lithium Nitrate to Prevent Lithium Dendrite Growth. Nature Communications, 6, Article No. 7436. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Xiong, S., Xie, K., Diao, Y., et al. (2014) Characterization of the Solid Electrolyte Interphase on Lithium Anode for Preventing the Shuttle Mechanism in Lithium-Sulfur Batteries. Journal of Power Sources, 246, 840-845.
[Google Scholar] [CrossRef]
|
|
[60]
|
Zhang, X.Q., Chen, X., Hou, L.P., et al. (2019) Regulating Anions in the Solvation Sheath of Lithium Ions for Stable Lithium Metal Batteries. ACS Energy Letters, 4, 411-416. [Google Scholar] [CrossRef]
|
|
[61]
|
Cohen, Y.S., Cohen, Y. and Aurbach, D. (2000) Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy. The Journal of Physical Chemistry B, 104, 12282-12291.
[Google Scholar] [CrossRef]
|
|
[62]
|
Sun, H.H., Dolocan, A., Weeks, J.A., et al. (2019) In Situ Formation of a Multicomponent Inorganic-Rich SEI Layer Provides a Fast Charging and High Specific Energy Li-Metal Battery. Journal of Materials Chemistry A, 7, 17782-17789.
[Google Scholar] [CrossRef]
|
|
[63]
|
Li, G., Gao, Y., He, X., et al. (2017) Organosulfide-Plasticized Solid-Electrolyte Interphase Layer Enables Stable Lithium Metal Anodes for Long-Cycle Lithium-Sulfur Batteries. Nature Communications, 8, Article No. 850.
[Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Wu, F., Lee, J.T., Nitta, N., et al. (2015) Lithium Iodide as a Promising Electrolyte Additive for Lithium-Sulfur Batteries: Mechanisms of Performance Enhancement. Advanced Materials, 27, 101-108.
[Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Ma, L., Kim, M.S. and Archer, L.A. (2017) Stable Artificial Solid Electrolyte Interphases for Lithium Batteries. Chemistry of Materials, 29, 4181-4189. [Google Scholar] [CrossRef]
|
|
[66]
|
Lin, Z., Liu, Z., Fu, W., et al. (2013) Phosphorous Pentasulfide as a Novel Additive for High-Performance Lithium-Sulfur Batteries. Advanced Functional Materials, 23, 1064-1069. [Google Scholar] [CrossRef]
|
|
[67]
|
Tong, B., Wang, J., Liu, Z., et al. (2018) (CH3) (CH3)3Si-N[(FSO2)(n-C4F9SO2)]: An Additive for Dendrite-Free Lithium Metal Anode. Journal of Power Sources, 400, 225-231. [Google Scholar] [CrossRef]
|
|
[68]
|
Ho, V.C., Ngo, D.T., Le, H.T.T., et al. (2018) Effect of an Organic Additive in the Electrolyte on Suppressing the Growth of Li Dendrites in Li Metal-Based Batteries. Electrochimica Acta, 279, 213-223.
[Google Scholar] [CrossRef]
|
|
[69]
|
Yan, X., Zhang, H., Huang, M., et al. (2019) Self-Formed Protection Layer on a 3D Lithium Metal Anode for Ultrastable Lithium-Sulfur Batteries. ChemSusChem, 12, 2263-2270. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Li, G., Huang, Q., He, X., et al. (2018) Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium-Sulfur Batteries. ACS Nano, 12, 1500-1507. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Monroe, C. and Newman, J. (2005) The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces. Journal of the Electrochemical Society, 152, A396. [Google Scholar] [CrossRef]
|
|
[72]
|
Khurana, R., Schaefer, J.L., Archer, L.A., et al. (2014) Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(Ethylene Oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries. Journal of the American Chemical Society, 136, 7395-7402. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Xiong, S., Liu, Y., Jankowski, P., et al. (2020) Design of a Multifunctional Interlayer for NASCION-Based Solid-State Li Metal Batteries. Advanced Functional Materials, 30, Article ID: 2001444. [Google Scholar] [CrossRef]
|
|
[74]
|
Guo, X., Hao, L., Yang, Y., et al. (2019) High Cathode Utilization Efficiency through Interface Engineering in All-Solid-State Lithium-Metal Batteries. Journal of Materials Chemistry A, 7, 25915-25924. [Google Scholar] [CrossRef]
|
|
[75]
|
Jiang, Z., Wang, S., Chen, X., et al. (2020) Tape-Casting Li0.34La0.56TiO3 Ceramic Electrolyte Films Permit High Energy Density of Lithium-Metal Batteries. Advanced Materials, 32, Article ID: 1906221.
[Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Li, Y., Zhang, W., Dou, Q., et al. (2019) Li7La3Zr2O12 Ceramic Nanofiber-Incorporated Composite Polymer Electrolytes for Lithium Metal Batteries. Journal of Materials Chemistry A, 7, 3391-3398.
[Google Scholar] [CrossRef]
|
|
[77]
|
Zhao, F., Liang, J., Yu, C., et al. (2020) A Versatile Sn-Substituted Argyrodite Sulfide Electrolyte for All-Solid-State Li Metal Batteries. Advanced Energy Materials, 10, Article ID: 1903422. [Google Scholar] [CrossRef]
|
|
[78]
|
Lee, Y.G., Fujiki, S., Jung, C., et al. (2020) High-Energy Long-Cycling All-Solid-State Lithium Metal Batteries Enabled by Silver-Carbon Composite Anodes. Nature Energy, 5, 299-308. [Google Scholar] [CrossRef]
|
|
[79]
|
Wen, J., Huang, Y., Duan, J., et al. (2019) Highly Adhesive Li-BN Nanosheet Composite Anode with Excellent Interfacial Compatibility for Solid-State Li Metal Batteries. ACS Nano, 13, 14549-14556.
[Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Pervez, S.A., Ganjeh-Anzabi, P., Farooq, U., et al. (2019) Fabrication of a Dendrite-Free all Solid-State Li Metal Battery via Polymer Composite/Garnet/Polymer Composite Layered Electrolyte. Advanced Materials Interfaces, 6, Article ID: 1900186. [Google Scholar] [CrossRef]
|
|
[81]
|
Pan, Q., Smith, D.M., Qi, H., et al. (2015) Hybrid Electrolytes with Controlled Network Structures for Lithium Metal Batteries. Advanced Materials, 27, 5995-6001. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Zhang, X., Wang, S., Xue, C., et al. (2019) Self-Suppression of Lithium Dendrite in All-Solid-State Lithium Metal Batteries with Poly(Vinylidene Difluoride)-Based Solid Electrolytes. Advanced Materials, 31, Article ID: 1806082.
[Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Zhou, W., Wang, Z., Pu, Y., et al. (2019) Double-Layer Polymer Electrolyte for High-Voltage All-Solid-State Rechargeable Batteries. Advanced Materials, 31, Article ID: 1805574. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Wang, X., Zhai, H., Qie, B., et al. (2019) Rechargeable Solid-State Lithium Metal Batteries with Vertically Aligned Ceramic Nanoparticle/Polymer Composite Electrolyte. Nano Energy, 60, 205-212.
[Google Scholar] [CrossRef]
|
|
[85]
|
Zhao, C.Z., Zhang, X.Q., Cheng, X.B., et al. (2017) An Anion-Immobilized Composite Electrolyte for Dendrite-Free Lithium Metal Anodes. Proceedings of the National Academy of Sciences of the United States of America, 114, 11069-11074. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Duan, H., Fan, M., Chen, W.P., et al. (2019) Extended Electrochemical Window of Solid Electrolytes via Heterogeneous Multilayered Structure for High-Voltage Lithium Metal Batteries. Advanced Materials, 31, Article ID: 1807789.
[Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Zhang, C., Lyu, R., Lv, W., et al. (2019) A Lightweight 3D Cu Nanowire Network with Phosphidation Gradient as Current Collector for High-Density Nucleation and Stable Deposition of Lithium. Advanced Materials, 31, Article ID: 1904991. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Hou, Z., Yu, Y., Wang, W., et al. (2019) Lithiophilic Ag Nanoparticle Layer on Cu Current Collector toward Stable Li Metal Anode. ACS Applied Materials & Interfaces, 11, 8148-8154. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Zhang, C., Lv, W., Zhou, G., et al. (2018) Vertically Aligned Lithiophilic CuO Nanosheets on a Cu Collector to Stabilize Lithium Deposition for Lithium Metal Batteries. Advanced Energy Materials, 8, Article ID: 1703404.
[Google Scholar] [CrossRef]
|
|
[90]
|
Luan, J., Zhang, Q., Yuan, H., et al. (2019) Plasma-Strengthened Lithiophilicity of Copper Oxide Nanosheet-Decorated Cu Foil for Stable Lithium Metal Anode. Advanced Science, 6, Article ID: 1901433.
[Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Zhang, Q., Luan, J., Tang, Y., et al. (2018) A Facile Annealing Strategy for Achieving in Situ Controllable Cu2O Nanoparticle Decorated Copper Foil as a Current Collector for Stable Lithium Metal Anodes. Journal of Materials Chemistry A, 6, 18444-18448. [Google Scholar] [CrossRef]
|
|
[92]
|
Li, N., Ye, Q., Zhang, K., et al. (2019) Normalized Lithium Growth from the Nucleation Stage for Dendrite-Free Lithium Metal Anodes. Angewandte Chemie, 131, 18414-18419. [Google Scholar] [CrossRef]
|
|
[93]
|
Hu, M., Yuan, Y., Guo, M., et al. (2018) A Substrate-Influenced Three-Dimensional Unoriented Dispersion Pathway for Dendrite-Free Lithium Metal Anodes. Journal of Materials Chemistry A, 6, 14910-14918.
[Google Scholar] [CrossRef]
|
|
[94]
|
Lu, W., Wu, C., Wei, W., et al. (2019) Lithiophilic NiO Hexagonal Plates Decorated Ni Collector Guiding Uniform Lithium Plating for Stable Lithium Metal Anode. Journal of Materials Chemistry A, 7, 24262-24270.
[Google Scholar] [CrossRef]
|
|
[95]
|
Park, G., Kang, H. and Lee, J.W. (2019) Fabrication and Characterization of Li-Coated Nickel Mesh for Anode of Lithium-Metal Batteries. Journal of Alloys and Compounds, 790, 847-852. [Google Scholar] [CrossRef]
|
|
[96]
|
Huang, G., Guo, P., Wang, J., et al. (2020) Lithiophilic V2O5 Nanobelt Arrays Decorated 3D Framework Hosts for Highly Stable Composite Lithium Metal Anodes. Chemical Engineering Journal, 384, Article ID: 123313.
[Google Scholar] [CrossRef]
|
|
[97]
|
Huang, K., Li, Z., Xu, Q., et al. (2019) Lithiophiliccuo Nanoflowers on Ti-Mesh Inducing Lithium Lateral Plating Enabling Stable Lithium-Metal Anodes with Ultrahigh Rates and Ultralong Cycle Life. Advanced Energy Materials, 9, Article ID: 1900853. [Google Scholar] [CrossRef]
|
|
[98]
|
Xia, S., Zhang, X., Zhao, H., et al. (2020) High-Performance Three-Dimensional Li Anode Scaffold Enabled by Homogeneous Zn Nanoclusters. Small, 16, Article ID: 2001257. [Google Scholar] [CrossRef] [PubMed]
|
|
[99]
|
Li, S., Liu, Q., Zhou, J., et al. (2019) Hierarchical Co3O4 Nanofiber-Carbon Sheet Skeleton with Superior Na/Li-Philic Property Enabling Highly Stable Alkali Metal Batteries. Advanced Functional Materials, 29, Article ID: 1808847.
[Google Scholar] [CrossRef]
|
|
[100]
|
Pu, J., Li, J., Shen, Z., et al. (2018) Interlayer Lithium Plating in Au Nanoparticles Pillared Reduced Graphene Oxide for Lithium Metal Anodes. Advanced Functional Materials, 28, Article ID: 1804133.
[Google Scholar] [CrossRef]
|
|
[101]
|
Wang, H., Cao, X., Gu, H., et al. (2020) Improving Lithium Metal Composite Anodes with Seeding and Pillaring Effects of Silicon Nanoparticles. ACS Nano, 14, 4601-4608. [Google Scholar] [CrossRef] [PubMed]
|
|
[102]
|
Lu, Y., Wang, J., Chen, Y., et al. (2021) Spatially Controlled Lithium Deposition on Silver-Nanocrystals-Decorated TiO2 Nanotube Arrays Enabling Ultrastable Lithium Metal Anode. Advanced Functional Materials, 31, Article ID: 2009605. [Google Scholar] [CrossRef]
|
|
[103]
|
Yang, G., Li, Y., Tong, Y., et al. (2018) Lithium Plating and Stripping on Carbon Nanotube Sponge. Nano Letters, 19, 494-499. [Google Scholar] [CrossRef] [PubMed]
|
|
[104]
|
Cao, Z., Yang, Y., Qin, J., et al. (2022) 3D TiO2/ZnO Hybrid Framework: Stable Host for Lithium Metal Anodes. Chemical Engineering Journal, 427, Article ID: 132026. [Google Scholar] [CrossRef]
|
|
[105]
|
Chen, Y., Elangovan, A., Zeng, D., et al. (2020) Vertically Aligned Carbon Nanofibers on Cu Foil as a 3D Current Collector for Reversible Li Plating/Stripping toward High-Performance Li-S Batteries. Advanced Functional Materials, 30, Article ID: 1906444. [Google Scholar] [CrossRef]
|
|
[106]
|
Wang, H., Li, Y., Li, Y., et al. (2019) Wrinkled Graphene Cages as Hosts for High-Capacity Li Metal Anodes Shown by Cryogenic Electron Microscopy. Nano Letters, 19, 1326-1335. [Google Scholar] [CrossRef] [PubMed]
|
|
[107]
|
Chi, S.S., Wang, Q., Han, B., et al. (2020) Lithiophilic Zn Sites in Porous CuZn Alloy Induced Uniform Li Nucleation and Dendrite-Free Li Metal Deposition. Nano Letters, 20, 2724-2732. [Google Scholar] [CrossRef] [PubMed]
|