|
[1]
|
Neal, B., Perkovic, V., Mahaffey, K.W., et al. (2017) Canagliflozin and Cardiovascular and Renal Events in Type 2 Dia-betes. New England Journal of Medicine, 377, 644-657. [Google Scholar] [CrossRef]
|
|
[2]
|
Zinman, B., Wanner, C., Lachin, J.M., et al. (2015) Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. New England Journal of Medicine, 373, 2117-2128. [Google Scholar] [CrossRef]
|
|
[3]
|
Birkeland, K.I., Jørgensen, M.E., Carstensen, B., et al. (2017) Cardiovascular Mortality and Morbidity in Patients with Type 2 Diabetes Following Initiation of Sodium-Glucose Co-Transporter-2 Inhibitors versus Other Glucose-Lowering Drugs (CVD-REAL Nordic): A Multinational Observational Analysis. The Lancet Diabetes & Endocrinology, 5, 709-717. [Google Scholar] [CrossRef]
|
|
[4]
|
Seefeldt, J.M., Lassen, T.R., Hjortbak, M.V., et al. (2021) Cardioprotective Effects of Empagliflozin after Ischemia and Reperfusion in Rats. Scientific Reports, 11, Article No. 9544. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Lahnwong, S., Palee, S., Apaijai, N., et al. (2020) Acute Dapagliflozin Administration Exerts Cardioprotective Effects in Rats with Cardiac Ischemia/Reperfusion Injury. Cardio-vascular Diabetology, 19, Article No. 91. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Baker, H.E., Tune, J.D., Mather, K.J., et al. (2022) Acute SGLT-2i Treatment Improves Cardiac Efficiency during Myocardial Ischemia Independent of Na+/H+ Exchanger-1. In-ternational Journal of Cardiology, 363, 138-148. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Nikolaou, P.E., Efentakis, P., Abu Qourah, F., et al. (2021) Chronic Empagliflozin Treatment Reduces Myocardial Infarct Size in Nondiabetic Mice Through STAT-3-Mediated Pro-tection on Microvascular Endothelial Cells and Reduction of Oxidative Stress. Antioxidants & Redox Signaling, 34, 551-571. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lee, S.Y., Lee, T.W., Park, G.T., et al. (2021) Sodi-um/Glucose Co-Transporter 2 Inhibitor, Empagliflozin, Alleviated Transient Expression of SGLT2 after Myocardial In-farction. Korean Circulation Journal, 51, 251-262. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Andreadou, I., Efentakis, P., Balafas, E., et al. (2017) Empagliflozin Limits Myocardial Infarction in Vivo and Cell Death in Vitro: Role of STAT3, Mitochondria, and Redox Aspects. Fron-tiers in Physiology, 8, Article 1077. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Connelly, K.A., Zhang, Y., Desjardins, J.-F., Thai, K. and Gilbert, R.E. (2018) Dual Inhibition of Sodium-Glucose Linked Cotransporters 1 and 2 Exacerbates Cardiac Dysfunction Fol-lowing Experimental Myocardial Infarction. Cardiovascular Diabetology, 17, Article No. 99. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Karmazyn, M., Kilic, A. and Javadov, S. (2008) The Role of NHE-1 in Myocardial Hypertrophy and Remodelling. Journal of Molecular and Cellular Cardiology, 44, 647-653. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Roberts, B.N. and Christini, D.J. (2011) NHE Inhibition Does Not Improve Na+ or Ca2+ Overload during Reperfusion: Using Modeling to Illuminate the Mechanisms Underlying a Therapeutic Failure. PLOS Computational Biology, 7, e1002241. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Karmazyn, M. (1998) The Myocardial Sodium-Hydrogen Ex-changer (NHE) and Its Role in Mediating Ischemic and Reperfusion Injury. The Keio Journal of Medicine, 47, 65-72,( [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Miura, T., Ogawa, T., Suzuki, K., Goto, M. and Shimamoto, K. (1997) Infarct Size Limitation by a New Na-H Exchange Inhibitor, Hoe 642: Difference from Preconditioning in the Role of Protein Kinase C. Journal of the American College of Cardiology, 29, 693-701. [Google Scholar] [CrossRef]
|
|
[15]
|
Theroux, P., Chaitman, B.R., Danchin, N., Erhardt, L., Meinertz, T., Schroeder, J.S., et al. (2000) Inhibition of the Sodium-Hydrogen Exchanger with Cariporide to Prevent Myocardial Infarction in High-Risk Ischemic Situations: Main Results of the GUARDIAN Trial. Circulation, 102, 3032-3038.( [Google Scholar] [CrossRef]
|
|
[16]
|
Zeymer, U., Suryapranata, H., Monassier, J.P., et al. (2001) The Na+/H+ Exchange Inhibitor Eniporide as an Adjunct to Early Reperfusion Therapy for Acute Myocardial In-farction. Results of the Evaluation of the Safety and Cardioprotective Effects of Eniporide in Acute Myocardial Infarction (ESCAMI) Trial. Journal of the American College of Cardiology, 38, 1644-1650. [Google Scholar] [CrossRef]
|
|
[17]
|
Chung, Y.J., Park, K.C., Tokar, S., et al. (2021) Off-Target Effects of Sodium-Glucose Co-Transporter 2 Blockers: Empagliflozin Does Not Inhibit Na+/H+ Exchanger-1 or Lower [Na+]i in the Heart. Cardiovascular Research, 117, 2794-2806. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zuurbier, C.J., Baartscheer, A., Schumacher, C.A., Fiolet, J. and Coronel, R. (2021) Sodium-Glucose Co-Transporter 2 Inhibitor Empagliflozin Inhibits the Cardiac Na+/H+ Exchanger 1: Persistent Inhibition under Various Experimental Conditions. Cardiovascular Research, 117, 2699-2701. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Uthman, L., Baartscheer, A., Bleijlevens, B., et al. (2018) Class Effects of SGLT2 Inhibitors in Mouse Cardiomyocytes and Hearts: Inhibition of Na+/H+ Exchanger, Lowering of Cytosolic Na+ and Vasodilation. Diabetologia, 61, 722-726. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Lee, T.-I., Chen, Y.-C., Lin, Y.-K., et al. (2019) Empagliflozin Attenuates Myocardial Sodium and Calcium Dysregulation and Reverses Cardiac Remodeling in Streptozotocin-Induced Diabetic Rats. International Journal of Molecular Sciences, 20, Article No. 1680. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Baartscheer, A., Schumacher, C.A., Wüst, R.C.I., et al. (2017) Em-pagliflozin Decreases Myocardial Cytoplasmic Na+ through Inhibition of the Cardiac Na+/H+ Exchanger in Rats and Rabbits. Diabetologia, 60, 568-573. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Trum, M., Riechel, J., Lebek, S., et al. (2020) Empagliflozin In-hibits Na+ /H+ Exchanger Activity in Human Atrial Cardiomyocytes. ESC Heart Failure, 7, 4429-4437. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Osaka, N., Mori, Y., Terasaki, M., et al. (2022) Luseogliflozin Inhibits High Glucose-Induced TGF-β2 Expression in Mouse Cardiomyocytes by Suppressing NHE-1 Activity. Journal of In-ternational Medical Research, 50, Article ID: 3000605221097490. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Goerg, J., Sommerfeld, M., Greiner, B., et al. (2021) Low-Dose Empagliflozin Improves Systolic Heart Function after Myocardial Infarction in Rats: Regulation of MMP9, NHE1, and SERCA2a. International Journal of Molecular Sciences, 22, Article No. 5337. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Takagi, S., Li, J., Takagaki, Y., et al. (2018) Ipragliflozin Improves Mitochondrial Abnormalities in Renal Tubules Induced by a High-Fat Diet. Journal of Diabetes Investigation, 9, 1025-1032. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Maejima, Y. (2019) SGLT2 Inhibitors Play a Salutary Role in Heart Failure via Modulation of the Mitochondrial Function. Frontiers in Cardiovascular Medicine, 6, Article 186. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ong, S.-B., Subrayan, S., Lim, S-Y., et al. (2010) Inhibiting Mito-chondrial Fission Protects the Heart against Ischemia/Reperfusion Injury. Circulation, 121, 2012-2022. [Google Scholar] [CrossRef]
|
|
[28]
|
Shiraki, A., Oyama, J.-I., Shimizu, T., et al. (2022) Empagliflozin Improves Cardiac Mitochondrial Function and Survival through Energy Regulation in a Murine Model of Heart Failure. European Journal of Pharmacology, 931, Article ID: 175194. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Mizuno, M., Kuno, A., Yano, T., et al. (2018) Empagliflozin Normalizes the Size and Number of Mitochondria and Prevents Reduction in Mitochondrial Size after Myocardial Infarc-tion in Diabetic Hearts. Physiological Reports, 6, e13741. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhou, H., Wang, S., Zhu, P., et al. (2018) Empagliflozin Rescues Diabetic Myocardial Microvascular Injury via AMPK-Mediated Inhibition of Mitochondrial Fission. Redox Biology, 15, 335-346. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Yu, J.D. and Miyamoto, S. (2021) Molecular Signaling to Pre-serve Mitochondrial Integrity against Ischemic Stress in the Heart: Rescue or Remove Mitochondria in Danger. Cells, 10, Article No. 3330. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Durak, A., Olgar, Y., Degirmenci, S., et al. (2018) A SGLT2 Inhibitor Dapagliflozin Suppresses Prolonged Ventricular-Repolarization through Augmentation of Mitochondrial Function in In-sulin-Resistant Metabolic Syndrome Rats. Cardiovascular Diabetology, 17, Article No. 144. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Olgar, Y., Tuncay, E., Degirmenci, S., et al. (2020) Age-ing-Associated Increase in SGLT2 Disrupts Mitochondrial/Sarcoplasmic Reticulum Ca2+ Homeostasis and Promotes Cardiac Dysfunction. Journal of Cellular and Molecular Medicine, 24, 8567-8578. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Williams, G.S., Boyman, L., Chikando, A. C., Khairallah, R.J. and Le-derer, W.J. (2013) Mitochondrial Calcium Uptake. Proceedings of the National Academy of Sciences of the United States of America, 110, 10479-10486. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Xu, L., Xu, C., Liu, X., et al. (2021) Empagliflozin Induces White Adipocyte Browning and Modulates Mitochondrial Dynamics in KK Cg-Ay/J Mice and Mouse Adipocytes. Frontiers in Physiology, 12, Article 745058. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Liu, Y. and Levine, B. (2015) Autosis and Autophagic Cell Death: The Dark Side of Autophagy. Cell Death & Differentiation, 22, 367-376. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Nah, J., Zablocki, D. and Sadoshima, J. (2022) The Role of Autophagic Cell Death in Cardiac Disease. Journal of Molecular and Cellular Cardiology, 173, 16-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Shan, X., Lv, Z.-Y., Yin, M.-J., et al. (2021) The Protective Ef-fect of Cyanidin-3-Glucoside on Myocardial Ischemia-Reperfusion Injury through Ferroptosis. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 8880141. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Nah, J., Zhai, P., Huang, C.-Y., et al. (2020) Upregulation of Rubicon Promotes Autosis during Myocardial Ischemia/Reperfusion Injury. Journal of Clinical Investigation, 130, 2978-2991. [Google Scholar] [CrossRef]
|
|
[40]
|
Wang, D., Lv, L., Xu, Y., et al. (2021) Cardioprotection of Panax Noto-ginseng Saponins against Acute Myocardial Infarction and Heart Failure through Inducing Autophagy. Biomedicine & Pharmacotherapy, 136, Article ID: 111287. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Aisa, Z., Liao, G.-C., Shen, X.-L., Chen, J., Li, L. and Jiang, S.-B. (2017) Effect of Autophagy on Myocardial Infarction and Its Mechanism. European Review for Medical and Pharmacological Sciences, 21, 3705-3713.
|
|
[42]
|
Matsui, Y., Takagi, H., Qu, X., et al. (2007) Distinct Roles of Autoph-agy in the Heart during Ischemia and Reperfusion: Roles of AMP-Activated Protein Kinase and Beclin 1 in Mediating Autophagy. Circulation Research, 100, 914-922. [Google Scholar] [CrossRef]
|
|
[43]
|
Ma, H. and Ma, Y. (2022) Dapagliflozin Inhibits Ven-tricular Remodeling in Heart Failure Rats by Activating Autophagy through AMPK/mTOR Pathway. Computational and Mathematical Methods in Medicine, 2022, Article ID: 6260202. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Deng, R., Jiang, K., Chen, F., et al. (2022) Novel Cardioprotective Mechanism for Empagliflozin in Nondiabetic Myocardial Infarction with Acute Hyperglycemia. Biomedicine & Pharmacotherapy, 154, Article ID: 113606. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Jiang, K., Xu, Y., Wang, D., et al. (2021) Cardioprotective Mechanism of SGLT2 Inhibitor against Myocardial Infarction is through Reduction of Autosis. Protein & Cell, 13, 336-359. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Ren, C., Sun, K., Zhang, Y., et al. (2021) Sodi-um-Glucose CoTransporter-2 Inhibitor Empagliflozin Ameliorates Sunitinib-Induced Cardiac Dysfunction via Regulation of AMPK-mTOR Signaling Pathway-Mediated Autophagy. Frontiers in Pharmacology, 12, Article 664181. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Egan, D.F., Shackelford, D.B., Mihaylova, M.M., et al. (2011) Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy. Science, 331, 456-61. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Mack, H.I., Zheng, B., Asara, J.M. and Thomas, S.M. (2012) AMPK-Dependent Phosphorylation of ULK1 Regulates ATG9 Localization. Autophagy, 8, 1197-1214. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Kim, S.-J., Tang, T., Abbott, M., et al. (2016) AMPK Phosphorylates Desnutrin/ATGL and Hormone-Sensitive Lipase To Regulate Lipolysis and Fatty Acid Oxidation within Adipose Tissue. Molecular and Cellular Biology, 36, 1961- 1976. [Google Scholar] [CrossRef]
|
|
[50]
|
Packer, M. (2020) Autophagy Stimulation and Intracellular Sodium Reduction as Mediators of the Cardioprotective Effect of Sodi-um-Glucose Cotransporter 2 Inhibitors. European Journal of Heart Failure, 22, 618-628. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Wicik, Z., Nowak, A., Jarosz-Popek, J., et al. (2021) Characterization of the SGLT2 Interaction Network and Its Regulation by SGLT2 Inhibitors: A Bioinformatic Analysis. Frontiers in Pharma-cology, 13, Article 901340 [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Kume, S., Uzu, T., Horiike, K., et al. (2010) Calorie Restriction Enhances Cell Adaptation to Hypoxia through Sirt1- Dependent Mitochondrial Autophagy in Mouse Aged Kidney. Journal of Clinical Investigation, 120, 1043-1055. [Google Scholar] [CrossRef]
|
|
[53]
|
Packer, M. (2020) Role of Deranged Energy Deprivation Signaling in the Pathogenesis of Cardiac and Renal Disease in States of Perceived Nutrient Overabundance. Circulation, 141, 2095-2105. [Google Scholar] [CrossRef]
|