miRNA在胃癌及结直肠癌中的研究进展
Research Progress of miRNA in Gastric Cancer and Colorectal Cancer
DOI: 10.12677/ACM.2023.132405, PDF, HTML, XML, 下载: 181  浏览: 346 
作者: 马海明*, 马新福:青海大学附属医院,青海 西宁
关键词: miR-21癌症胰腺肝脏胃肠道消化系统miR-21 Cancer Pancreas Liver Gastrointestinal Tract Digestive System
摘要: 微小核糖核酸是小的非编码核糖核酸。它们可以调节靶基因的表达,因此,它们的失调显著促进了癌症的发展。越来越多的证据表明,miRNAs可以用作癌症生物标志物。miRNA作为诊断和预后生物标志物的作用及其治疗应用已被广泛研究。本文就miRNA在胃癌及结直肠癌中促癌机制的研究进展作一综述。
Abstract: MicroRNA is a small noncoding RNA. They can regulate the expression of target genes, so their dis-order significantly promotes the development of cancer. More and more evidence shows that miR-NAs can be used as cancer biomarkers. The role of miRNA as a biomarker for diagnosis and progno-sis and its therapeutic application have been widely studied. In this paper, the research progress of miRNA in promoting cancer in gastric cancer and colorectal cancer is reviewed.
文章引用:马海明, 马新福. miRNA在胃癌及结直肠癌中的研究进展[J]. 临床医学进展, 2023, 13(2): 2866-2872. https://doi.org/10.12677/ACM.2023.132405

1. 介绍

消化系统肿瘤,包括结肠直肠癌、胃癌、肝癌、食道癌和胰腺癌,是导致全球癌症相关死亡的常见恶性肿瘤 [1] 。根据最新统计,消化系统肿瘤是最常被诊断的癌症。结肠直肠癌、胃癌、肝癌和食道癌分别在男性恶性肿瘤新病例中排名第三、第四、第五和第七,而它们分别在女性癌症新病例中排名第二、第五和第九 [2] 。尽管诊断和治疗方法有所进步,但消化系统肿瘤的最佳治疗方法仍然是手术切除。此外,早期诊断的困难和消化系统肿瘤的高复发率是其预后不良的原因 [3] [4] [5] 。因此,迫切需要对消化系统肿瘤进行准确的早期诊断。而有研究表明,miRNA有助于癌症的早期诊断。

微小核糖核酸是一组长度为18~24个核苷酸的小的非编码核糖核酸 [6] 。它们可以与靶mRNA分子的3’-非翻译区(3’-UTR)结合,发挥降解和/或翻译抑制作用,从而调节靶基因的表达 [7] 。因此,MiRNAs在许多生理和细胞过程中发挥重要作用,包括分化、增殖和凋亡 [8] 。它们可能作为致癌的miRNAs (肿瘤细胞 [9] )或肿瘤抑制剂 [10] [11] 。miRNAs,被认为是一种在多种人类中过度表达的肿瘤标志物癌症类型,包括乳腺癌、胃癌、肺癌、食道癌、结肠直肠癌、胆道癌、鼻咽癌和肝癌,以及骨肉瘤、神经胶质瘤、白血病、视网膜母细胞瘤和淋巴瘤 [12] [13] 。因此,它们在癌症的发生和发展中起着重要的作用 [14] [15] [16] 。miRNAs被认为通过调节肿瘤细胞的细胞周期、DNA修复、增殖、凋亡、自我更新和分化而参与肿瘤的发生 [17] [18] [19] 。

2. miRNA在各恶性肿瘤中的促癌机制

2.1. 癌症中的miRNA失调

在过去的几十年中,miRNAs被证明在人类癌症中被广泛地去调控,突出了它们在肿瘤发生、生长和转移中的重要作用。Lu等证明了来自正常和人类癌症样品的217种哺乳动物miRNA的分布图,并发现与正常细胞相比,miRNA表达在肿瘤细胞中被全面抑制 [20] 。除了miRNA表达的整体下调外,Volinia等提出了540个实体瘤样本中差异表达的miRNA,表明在肿瘤中个别miRNA表达的特定改变也是明显的 [21] ,因为miRNA表达在癌症发展过程中已被解除调控,产生了明确的表达模式;例如,在弥漫性大B细胞淋巴瘤(DLBCL)的早期,miR-21的表达水平高于晚期 [13] 。有趣的是,一些miRNAs被包装成一种称为分泌外泌体的囊泡样结构,它可以在全身循环,并以组织依赖的方式发挥不同的作用。其中包括miR-21、miR-200家族和miR-17~92簇,这些外体miRNAs已被证明在癌症中具有功能相关性和临床相关性 [22] 。肿瘤微环境(TME)调节解释了患者治疗反应的异质性 [23] 。因此,基于miRNA的外泌体代表了肿瘤微环境的一个动态方面,TME中的外泌体miRNA可能对肿瘤的进展和治疗效果产生深远的影响。

Calin等人首先认识到特定miRNAs在癌症中的作用 [24] 。在慢性淋巴细胞白血病患者的大多数样本中,miR-15和miR-16基因组座位缺失。Cimmino等人进一步证实,miR-15和miR-16通过靶向白血病中的B细胞淋巴瘤2 (BCL2)诱导凋亡 [25] 。此后,大量研究报道了miRNA在不同类型癌症中的表达改变,并且通过动物模型和人类癌细胞系中的功能丧失和功能获得实验,研究了这些miRNA在癌症中的意义。例如,let-7在乳腺癌、结肠癌和肺癌中下调 [26] 并被证明是一种肿瘤抑制因子miR,通过抑制RAS或MYC来防止肿瘤发展 [27] [28] 。还观察到属于p53反应性miR-34家族的miR-34a在几种类型的癌症中减少。鼻咽癌患者中miRNA-331-3p的表达水平降低,其过表达诱导细胞凋亡,从而抑制细胞增殖 [29] 。与那些抑制肿瘤的miRNAs相反,其他的miRNAs被认为是上调的并具有致癌作用。这些包括多种实体瘤和血液恶性肿瘤中的miR-21 [30] [31] [32] [33] ,miR-155 [34] [35] [36] 和miR-17~19b星团 [37] [38] 在B细胞淋巴瘤和乳腺癌中,以及miR-106b-5p在肺癌中 [39] 和转移性乳腺癌。

2.2. miRNA与胃癌

MiR-21是哺乳动物中最先报道的miRNAs之一。它的普遍过度表达模式及其在人类癌症中的功能已经被充分阐明。众所周知,miR-21通过直接抑制其靶标来促进癌细胞的存活和增殖,这些靶标包括PTEN、程序性细胞死亡4 (PDCD4)、具有kazal基序的逆转诱导半胱氨酸富集蛋白(RECK)和sprouty RTK信号传导拮抗剂2 (SPRY2)。因此,miR-21在人类癌症中的过度表达导致肿瘤抑制蛋白PTEN、PDCD4、SPRY2和/或RECK的水平降低,从而促进细胞增殖 [40] 。这种效应是通过多种分子途径实现的。特别是,通过靶向和下调PTEN,miR-21刺激核因子κB (NF-κB) [41] 或AKT/细胞外信号调节激酶(ERK)通路 [42] ,从而诱导细胞增殖和肿瘤发生。在HCC,miR-21水平的增加下调其直接靶点白细胞介素(IL)-12,从而抑制细胞凋亡并促进细胞增殖 [42] 。此外,miR-21高迁移率族蛋白B1 (HMGB1)的诱导表达导致其靶蛋白TIMP金属肽酶抑制剂3 (TIMP3)的下调,并进而增加基质金属肽酶(MMP)蛋白的水平,从而介导胃癌进展和转移。

miRNAs通过与不同的分子信号通路相互作用来调节胃癌细胞的增殖、细胞周期、凋亡、侵袭、迁移和转移。最近有报道称,与配对的正常标本相比,胃癌组织中miRNA-144-3p的表达显著下调 [43] 并且在晚期和较大肿瘤的组织中以及在转移组织中相对于对照组较低 [43] 。它的表达降低还与浸润深度、肿瘤大小、淋巴结转移和TNM分期显著相关 [43] 。发现miRNA-647在胃癌组织中显著下调,这与肿瘤大小和转移显著相关 [44] 。miRNA-647的过表达抑制细胞增殖,促进GC细胞系的细胞周期停滞和凋亡,并显著抑制体内肿瘤生长 [44] 。细胞周期失调和逃避凋亡是miRNA介导的胃癌的共同特征 [29] 。除了这些肿瘤抑制性miRNA,据报道miRNA-490-3p在从胃炎、肠化生到胃癌的病理进展中下调幽门螺杆菌和MNU诱导的胃癌发生过程中的癌 [45] 。miRNA-490-3p表达的显著下降在临床胃癌标本中得到进一步证实,其中其调控区被证明是高甲基化的 [45] 。这种miRNA通过直接靶向SMARCD1在GC细胞中发挥增殖和转移抑制作用。此外,miRNA-218作为肿瘤抑制因子在胃癌中表达下调,与肿瘤转移呈正相关 [46] 。

相反,一些miRNAs在GC中上调。一项研究表明,miRNA-30在胃癌组织和细胞系中的表达都增加了 [47] 。miRNA-30的下调抑制了HGC-27细胞的生长并诱导了细胞凋亡。p53的敲除抑制了miRNA-30抑制剂诱导的细胞生长抑制和促进细胞凋亡。这表明miRNA-30在线粒体凋亡途径中通过p53介导的调节起致癌miRNA的作用 [47] 。根据郭等人的研究 [47] ,miRNA-181b在GC细胞中异常过表达。研究发现,miRNA-181b的过表达直接下调金属蛋白酶组织抑制因子3 (TIMP)的蛋白水平,从而影响肿瘤的发生、发展和转移。此外,胃癌组织中升高的miRNA-148a水平与转移、器官和腹膜浸润以及患者生存率下降显著相关 [48] 。它的功能可能是通过激发miRNA调控的蛋白质相互作用网络(PIN) [49] 。在最近的研究发现,miRNA-374b-5p的上调与胃癌的转移和侵袭呈正相关,其通过转录后途径抑制具有Kazal基序的诱导逆转的富含半胱氨酸蛋白(RECK)的表达,这是一种膜锚定糖蛋白 [50] 。

2.3. miRNA与结直肠癌

越来越多的证据表明miR-215-5p是结直肠癌中的肿瘤抑制因子;然而,它在转移中的作用仍不清楚。最近,发现miR-215-5p在包括CRC在内的许多病理条件下被解除调控。然而,它在该疾病发病机制中的确切作用仍不清楚。有趣的是,在不同物种中其结构是保守的,表明这种miRNA可能具有在进化过程中保持的重要功能 [51] 。以前,miR-215-5p在结肠上皮细胞、结肠肠和流动隔离的结肠上皮中被检测到;然而,它在成纤维细胞和内皮细胞中的表达未被证实。类似地,对于蛋白质编码基因,miRNAs的表达可能在转录或转录后水平受到调控。先前已经鉴定了几种不同的分子影响miR-215-5p的转录,包括p53 [51] ,尾侧型同源盒1 (CDX1) [51] ,HNF1/4α [51] ,或核因子κB NF-κB) [52] 。重要的是,miR-215-5p的过度表达可能是缺氧引起的 [52] ,而各种长的非编码RNA(lnc RNA)可以充当分子海绵负调节miR-215-5p的表达 [9] [52] 。先前的研究描述了miR-215-5p参与许多基本的细胞过程,包括细胞和组织发育、细胞存活、细胞周期和增殖、细胞迁移和侵袭、细胞微环境和代谢 [9] 。迄今为止,几个研究小组还研究了miR-215-5p作为CRC的潜在诊断、预后和预测生物标志物的临床效用。在2008年,布劳恩等人 [9] 发表了第一篇关于CRC中miR-215-5p去调控水平的研究。其表达在遗传性和炎性起源的早期肿瘤中显著下调,表明其参与了恶性转化的早期阶段 [9] 。低水平的miR-215-5p还与晚期临床阶段、未分化肿瘤、淋巴结阳性、存在远处转移相关 [53] ,更短的总生存期(OS) [53] ,对5-FU辅助化疗的反应降低,以及3年复发的高概率 [20] 。因此,基于微环境和不同的作用机制,miR-215-5p可能既作为肿瘤抑制因子又作为癌基因 [20] 。

3. 结论

大量研究证明了miRNAs在癌症中的异常表达以及miRNAs的致癌或肿瘤抑制作用。同样,控制miRNAs表达的调节机制与癌症的诊断、预后和治疗以及癌症的发病机理密切相关。参与生产miRNA的多个连续步骤过程的不同核心参与者及其伙伴在癌症中表现出不受调控的活性和丰度,其中一些已知受到癌症相关信号调节因子的影响。然而,目前的知识仍然落后于对每种miRNA如何在特定类型的癌症中被特异性控制的全面理解,强调对控制miRNA在癌症中表达的多层调控的系统方法。我们已经讨论了产生miRNA的一系列过程和在癌症中调节miRNA表达的可能调节机制。miRNA生物发生的失调不可避免地改变细胞中的mRNA谱,这反过来通过反馈环影响miRNA的表达和功能。因此,有必要在不久的将来全面研究涵盖miRNA表达及其对mRNA靶标的影响的基因表达调控网络。

参考文献

NOTES

*通讯作者。

参考文献

[1] Siegel, R.L., Miller, K.D. and Jemal, A. (2015) Cancer Statistics, 2015. CA: A Cancer Journal for Clinicians, 65, 5-29.
https://doi.org/10.3322/caac.21254
[2] Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet-Tieulent, J. and Jemal, A. (2015) Global Cancer Statistics, 2012. CA: A Cancer Journal for Clinicians, 65, 87-108.
https://doi.org/10.3322/caac.21262
[3] Wu, H.-H., Lin, W.-C. and Tsai, K.-W. (2014) Advances in Molecular Biomarkers for Gastric Cancer: MiRNAs as Emerging Novel Cancer Markers. Expert Reviews in Molecular Medicine, 16, e1.
https://doi.org/10.1017/erm.2013.16
[4] Brenner, H., Kloor, M. and Pox, C.P. (2014) Colorectal Cancer. Lan-cet, 383, 1490-1502.
https://doi.org/10.1016/S0140-6736(13)61649-9
[5] Forner, A., Llovet, J.M. and Bruix, J. (2012) Hepatocellular Carcinoma. Lancet, 379, 1245-1255.
https://doi.org/10.1016/S0140-6736(11)61347-0
[6] Bartel, D.P. (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116, 281-297.
https://doi.org/10.1016/S0092-8674(04)00045-5
[7] Bartel, D.P. (2009) MicroRNAs: Target Recognition and Regulatory Functions. Cell, 136, 215-233.
https://doi.org/10.1016/j.cell.2009.01.002
[8] Ambros, V. (2004) The Function of Animal microRNA. Nature, 431, 350-355.
https://doi.org/10.1038/nature02871
[9] Esquela-Kerscher, A. and Slack, F.J. (2006) On-comirs—MicroRNAs with a Role in Cancer. Nature Reviews Cancer, 6, 259-269.
https://doi.org/10.1038/nrc1840
[10] Asadzadeh, Z., Mansoori, B., Mohammadi, A., et al. (2019) Mi-croRNAs in Cancer Stem Cells: Biology, Pathways, and Therapeutic Opportunities. Journal of Cellular Physiology, 234, 10002-10017.
https://doi.org/10.1002/jcp.27885
[11] Svoronos, A.A., Engelman, D.M. and Slack, F.J. (2016) OncomiR or Tumor Suppressor? The Duplicity of MicroRNAs in Cancer. Cancer Research, 76, 3666-3670.
https://doi.org/10.1158/0008-5472.CAN-16-0359
[12] Wu, K., Li, L. and Li, S. (2015) Circulating microRNA-21 as a Biomarker for the Detection of Various Carcinomas: An Updated Meta-Analysis Based on 36 Studies. Tumor Biol-ogy, 36, 1973-1981.
https://doi.org/10.1007/s13277-014-2803-2
[13] Volinia, S., Calin, G.A., Liu, C.G., Ambs, S., Cimmino, A., Pet-rocca, F., et al. (2006) A Microrna Expression Signature of Human Solid Tumors Defines Cancer Gene Targets. Pro-ceedings of the National Academy of Sciences of the United States of America, 103, 2257-2261.
https://doi.org/10.1073/pnas.0510565103
[14] Salameh, A., Lee, A.K., Cardó-Vila, M., Nunes, D.N., Efstathi-ou, E., Staquicini, F.I., Dobroff, A.S., Marchiò, S., Navone, N.M., Hosoya, H., Lauer, R.C., Wen, S., Salmeron, C.C., Hoang, A., Newsham, I., Lima, L.A., Carraro, D.M., Oliviero, S., Kolonin, M.G., Sidman, R.L., Do, K.A., Troncoso, P., Logothetis, C.J., Brentani, R.R., Calin, G.A., Cavenee, W.K., Dias-Neto, E., Pasqualini, R. and Arap, W. (2015) PRUNE2 Is a Human Prostate Cancer Suppressor Regulated by the Intronic Long Noncoding RNA PCA3. Proceedings of the National Academy of Sciences of the United States of America, 112, 8403-8408.
https://doi.org/10.1073/pnas.1507882112
[15] Bushati, N. and Cohen, S.M. (2007) MicroRNA Functions. Annual Review of Cell and Developmental Biology, 23, 175-205.
https://doi.org/10.1146/annurev.cellbio.23.090506.123406
[16] Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. and Burge, C.B. (2003) Prediction of Mammalian MicroRNA Targets. Cell, 115 787-798.
https://doi.org/10.1016/S0092-8674(03)01018-3
[17] Carleton, M., Cleary, M.A. and Linsley, P.S. (2007) Mi-croRNAs and Cell Cycle Regulation. Cell Cycle, 6, 2127-2132.
https://doi.org/10.4161/cc.6.17.4641
[18] Boehm, M. and Slack, F.J. (2006) MicroRNA Control of Lifespan and Metabolism. Cell Cycle, 5, 837-840.
https://doi.org/10.4161/cc.5.8.2688
[19] Wang, Y.-H., Hu, H.-N., Weng, H., Chen, H., Luo, C.-L., Ji, J., Yin, C.-Q., Yuan, C.-H. and Wang, F.B. (2017) Association between Polymorphisms in MicroRNAs and Risk of Urological Cancer: A Meta-Analysis Based on 17,019 Subjects. Frontiers in Physiology, 8, Article 325.
https://doi.org/10.3389/fphys.2017.00325
[20] Hou, Y., Zhen, J., Xu, X., Zhen, K., Zhu, B., Pan, R. and Zhao, C. (2015) MiR-215 Functions as a Tumor Suppressor and Directly Targets ZEB2 in Human Non-Small Cell Lung Cancer. Oncology Letters, 10, 1985-1992.
https://doi.org/10.3892/ol.2015.3587
[21] Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005) MicroRNA Expression Profiles Classify Human Cancers. Nature, 435, 834-838.
https://doi.org/10.1038/nature03702
[22] Chen, W., Wang, H., Chen, H., Liu, S., Lu, H., Kong, D., Huang, X., Kong, Q. and Lu, Z. (2014) Clinical Significance and Detection of microRNA-21 in Serum of Patients with Diffuse Large B-Cell Lymphoma in Chinese Population. European Journal of Haematology, 92, 407-412.
https://doi.org/10.1111/ejh.12263
[23] Cui, M., Wang, H., Yao, X., Zhang, D., Xie, Y., Cui, R. and Zhang, X. (2019) Circulating MicroRNAs in Cancer: Potential and Challenge. Frontiers in Genetics, 10, Article 626.
https://doi.org/10.3389/fgene.2019.00626
[24] Binnewies, M., Roberts, E.W., Kersten, K., Chan, V., Fearon, D.F., Merad, M., et al. (2018) Understanding the Tumor Immune Microenvironment (TIME) for Effective Therapy. Nature Medicine, 24, 541-550.
https://doi.org/10.1038/s41591-018-0014-x
[25] Calin, G.A., Dumitru, C.D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., et al. (2002) Frequent Deletions and Down- Regulation of Micro-RNA Genes miR15 and miR16 at 13q14 in Chronic Lymphocytic Leukemia. Proceedings of the National Academy of Sciences of the United States of America, 99, 15524-15529.
https://doi.org/10.1073/pnas.242606799
[26] Cimmino, A., Calin, G.A., Fabbri, M., Iorio, M.V., Ferracin, M., Shimizu, M., et al. (2005) MiR-15 and miR-16 Induce Apoptosis by Targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102, 13944-13949.
https://doi.org/10.1073/pnas.0506654102
[27] Thammaiah, C.K. and Jayaram, S. (2016) Role of let-7 Family mi-croRNA in Breast Cancer. Non-Coding RNA Research, 1, 77-82.
https://doi.org/10.1016/j.ncrna.2016.10.003
[28] Johnson, S.M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005) RAS Is Regulated by the let-7 MicroRNA Family. Cell, 120, 635-647.
https://doi.org/10.1016/j.cell.2005.01.014
[29] Manier, S., Powers, J.T., Sacco, A., Glavey, S.V., Huynh, D., Reagan, M.R., et al. (2017) The LIN28B/let-7 Axis Is a Novel Therapeutic Pathway in Multiple Myeloma. Leukemia, 31, 853-860.
https://doi.org/10.1038/leu.2016.296
[30] Zhang, X., Zheng, R., Jiang, L., Zhang, C., Zheng, Q., Jia, J., et al. (2020) miR-331-3p Inhibits Proliferation and Promotes Apoptosis of Nasopharyngeal Carcinoma Cells by Targeting elf4B-PI3K-AKT Pathway. Technology in Cancer Research & Treatment, 19, Article ID: 1533033819892251.
https://doi.org/10.1177/1533033819892251
[31] Medina, P.P., Nolde, M. and Slack, F.J. (2010) OncomiR Addic-tion in an in Vivo Model of microRNA-21-Induced Pre-B-Cell Lymphoma. Nature, 467, 86-90.
https://doi.org/10.1038/nature09284
[32] Wang, W., Li, J., Zhu, W., Gao, C., Jiang, R., Li, W., et al. (2014) Mi-croRNA-21 and the Clinical Outcomes of Various Carcinomas: A Systematic Review and Meta-Analysis. BMC Cancer, 14, Article No. 819.
https://doi.org/10.1186/1471-2407-14-819
[33] 李晓霞, 谢峰, 曾玉祥. 人乳腺癌中MicroRNA miR-21过表达与晚期临床分期、淋巴结转移和患者不良预后相关[J]. RNA, 2008(14): 2348-2360.
[34] Ahmadvand, M., Eskandari, M., Pashaiefar, H., Yaghmaie, M., Manoochehrabadi, S., Khakpour, G., et al. (2018) Over Expression of Circulating miR-155 Predicts Prognosis in Diffuse Large B-Cell Lymphoma. Leukemia Research, 70, 45-48.
https://doi.org/10.1016/j.leukres.2018.05.006
[35] Jiang, S., Zhang, H. W., Lu, M. H., He, X. H., Li, Y., Gu, H., et al. (2010) MicroRNA-155 Functions as an OncomiR in Breast Cancer by Targeting the Suppressor of Cytokine Signal-ing 1 Gene. Cancer Research, 70, 3119-3127.
https://doi.org/10.1158/0008-5472.CAN-09-4250
[36] Zuo, J., Yu, Y., Zhu, M., Jing, W., Yu, M., Chai, H., et al. (2018) Inhibition of miR-155, a Therapeutic Target for Breast Cancer, Prevented in Cancer Stem Cell Formation. Cancer Biomarkers, 21, 383-392.
[37] He, L., He, X., Lim, L.P., De Stanchina, E., Xuan, Z., Liang, Y., et al. (2007) A mi-croRNA Component of the p53 Tumour Suppressor Network. Nature, 447, 1130-1134.
https://doi.org/10.1038/nature05939
[38] Li, J., Lai, Y., Ma, J., Liu, Y., Bi, J., Zhang, L., et al. (2017) MiR-17-5p Suppresses Cell Proliferation and Invasion by Targeting ETV1 in Triple-Negative Breast Cancer. BMC Cancer, 17, Arti-cle No. 745.
https://doi.org/10.1186/s12885-017-3674-x
[39] Schrijver, W.A., van Diest, P.J., Moelans, C.B. and Dutch Distant Breast Cancer Metastases Consortium (2017) Unravelling Site-Specific Breast Cancer Metastasis: A microRNA Expres-sion Profiling Study. Oncotarget, 8, 3111-3123.
https://doi.org/10.18632/oncotarget.13623
[40] Wu, J.E., Ding, J., Yang, J., Guo, X. and Zheng, Y. (2018) Mi-croRNA Roles in the Nuclear Factor Kappa B Signaling Pathway in Cancer. Frontiers in Immunology, 9, Article 546.
https://doi.org/10.3389/fimmu.2018.00546
[41] Han, M., Liu, M., Wang, Y., Chen, X., Xu, J., Sun, Y., et al. (2012) Antagonism of miR-21 Reverses Epithelial-Mesenchymal Transition and Cancer Stem Cell Phenotype through AKT/ERK1/2 Inactivation by Targeting PTEN. PLOS ONE, 7, e39520.
https://doi.org/10.1371/journal.pone.0039520
[42] Ma, X., Becker Buscaglia, L.E., Barker, J.R. and Li, Y. (2011) MicroRNAs in NF-κB Signaling. Journal of Molecular Cell Biology, 3, 159-166.
https://doi.org/10.1093/jmcb/mjr007
[43] Yin, D., Wang, Y., Sai, W., Zhang, L., Miao, Y., Cao, L., et al. (2016) HBx-Induced miR-21 Suppresses Cell Apoptosis in Hepatocellular Carcinoma by Targeting Interleukin-12. Oncology Reports, 36, 2305-2312.
https://doi.org/10.3892/or.2016.5026
[44] 李伯泰, 张绍平, 沈海鹏, 李春林. MicroRNA-144-3p抑制胃癌靶向抑制上皮细胞向间质细胞转化的研究进展PBX3 [J]. 生物化学. 生物物理学, 共同决议, 2017, 484(2): 241-247.
[45] Shen, J., Xiao, Z., Wu, W.K., Wang, M.H., To, K.F., Chen, Y., et al. (2015) Epigenetic Silencing of miR-490-3p Reactivates the Chromatin Remodeler SMARCD1 to Promote Helicobacter pylori-Induced Gastric Carcin-ogenesismiR-490-3p Targets Oncogenic SMARCD1 in Gastric Cancer. Cancer Research, 75, 754-765.
https://doi.org/10.1158/0008-5472.CAN-14-1301
[46] Tie, J., Pan, Y., Zhao, L., Wu, K., Liu, J., Sun, S., et al. (2010) MiR-218 Inhibits Invasion and Metastasis of Gastric Cancer by Targeting the Robo1 Receptor. PLOS Genetics, 6, e1000879.
https://doi.org/10.1371/journal.pgen.1000879
[47] 王俊杰, 焦炎, 崔林明, 江立林. miR-30在胃癌中的作用肿瘤细胞通过调节P53介导的线粒体凋亡途径[J]. 生物技术, 生物化学, 2017, 81(1): 119-126.
[48] 郭俊兴, 陶庆生, 楼民. miR-181b作为一个项目——胃癌抗癌治疗的潜在分子靶点[J]. 癌症预防, 2012, 13(5): 2263-2267.
[49] 曾志伟, 林超群, 陈超群, 黄海春, 朱海峰. 综合网络分析揭示活性微小RNA及其在胃癌中的功能[J]. 生物, 2011(5): 99.
[50] 谭振辉, 唐晓霞, 莫明生, 刘延平, 甘瑞林, 李延林, 张立林, 李广庆. miR-NA-374b-5p抑制RECK表达并促进胃癌细胞侵袭和转移[J]. 世界胃肠杂志, 2014, 20(46): 17439-17447.
[51] Khella, H.W.Z., Bakhet, M., Allo, G., Jewett, M.A.S., Girgis, A.H., Latif, A., et al. (2013) MiR-192, miR-194 and miR-215: A Convergent microRNA Network Suppressing Tumor Progression in Renal Cell Carcinoma. Carcinogenesis, 34, 2231-2239.
https://doi.org/10.1093/carcin/bgt184
[52] Mechtler, P., Singhal, R., Kichina, J.V., Bard, J.E., Buck, M.J. and Kandel, E.S. (2015) MicroRNA Analysis Suggests an Additional Level of Feedback Regulation in the NF-κB Signaling Cascade. Oncotarget, 6, 17097-17106.
https://doi.org/10.18632/oncotarget.4005
[53] Vychytilova-Faltejskova, P., Merhautova, J., Machackova, T., et al. (2017) MiR-215-5p Is a Tumor Suppressor in Colorectal Cancer Targeting EGFR Ligand Epiregulin and Its Transcrip-tional Inducer HOXB9. Oncogenesis, 6, Article No. 399.
https://doi.org/10.1038/s41389-017-0006-6