转录激活因子3在肿瘤中的研究进展
Research Progress of Activating Transcription Factor 3 in Tumors
DOI: 10.12677/ACM.2023.133413, PDF, HTML, XML, 下载: 277  浏览: 742  科研立项经费支持
作者: 王少霞:烟台大学药学院,山东 烟台;烟台毓璜顶医院药学部,山东 烟台;高 婷:烟台大学药学院,山东 烟台;王 菲, 赵 泉*, 陈娇娇*:烟台毓璜顶医院药学部,山东 烟台
关键词: 转录激活因子3肿瘤信号通路作用机制Activating Transcription Factor 3 Tumor Signal Pathway Mechanism of Action
摘要: 转录激活因子3 (ATF3)属于ATF/环AMP反应元件结合(ATF/CREB)转录因子家族的成员,是一种应激诱导转录因子,在调节代谢、免疫和肿瘤发生中起着至关重要的作用。近几年,大量研究表明,ATF3在癌症的发生、发展、治疗和预后中发挥着关键作用,并且随着细胞类型和所处环境的不同,发挥着促癌或抑癌两种作用。本文详细阐述了ATF3在乳腺癌、前列腺癌、肝细胞癌、结直肠癌等多种恶性肿瘤中的调节作用,为其在肿瘤领域的深入研究及应用提供理论基础。
Abstract: Activating transcription factor 3 (ATF3) is a member of the ATF/cyclic AMP response element binding (ATF/CREB) transcription factor family. It’s a stress-induced transcription factor that plays a vital role in regulating metabolism, immunity and tumorigenesis. In recent years, a large number of studies have shown that ATF3 plays a key role in the occurrence, development, treatment and prognosis of cancer. ATF3 can promote or inhibit cancer depending on cell type and environment. In this paper, the role of ATF3 in breast cancer, prostate cancer, hepatocellular carcinoma, colorectal cancer and other malignant tumors is reviewed, which will provide a theoretical basis for the deep-er research and application in the field of cancer.
文章引用:王少霞, 高婷, 王菲, 赵泉, 陈娇娇. 转录激活因子3在肿瘤中的研究进展[J]. 临床医学进展, 2023, 13(3): 2918-2925. https://doi.org/10.12677/ACM.2023.133413

1. 引言

肿瘤是一类严重危害人类健康的复杂性疾病,致死率极高且极难治疗。《2020全球癌症报告》显示 [1] ,全球新发恶性肿瘤1929万例、死亡病例996万例,发病率和死亡率一直呈上升趋势。肿瘤的发病机制较为复杂,是个体基因与环境相互作用,经过多阶段进程形成的结果。因此,深入探索肿瘤发病机制,寻找疾病治疗的潜在靶点,是改善抗肿瘤治疗现状的重要策略。

近年来,随着分子生物学的发展与进步,大量实验表明,转录激活因子3 (activating transcription factor 3, ATF3)的异常表达在肿瘤的发生、发展过程中发挥着重要作用 [2] 。ATF3是一种适应性反应基因,体内外均可被一系列损伤性应激信号诱导表达。目前,ATF3在肿瘤细胞发生发展过程中的作用机制还存在一定争议 [3] 。本文对近年来国内外ATF3在肿瘤中作用的最新研究进展进行归纳、整理,并根据ATF3在不同肿瘤中的作用机制和相关信号通路调节进行了分类综述。

2. ATF3的结构与功能

ATF3最早在经十四烷酰佛波醇乙酸酯处理后的HeLa细胞中分离得到,是转录因子ATF/cAMP反应元件结合蛋白(cAMP-response element-binding, ATF/CREB)家族的一员,该家族成员富含碱性亮氨酸拉链(basic leucine zipper, bZIP)结构,通过与体内的共同DNA序列“TGACGTCA”结合从而对基因的转录起调控作用 [4] 。ATF3基因由A、B、C、E 4个外显子组成,编码生成的蛋白质含有181个氨基酸,分子量为22 kDa。目前已从不同的细胞系中验证出5种ATF3的可变剪接体,分别是ATF3Δzip、ATF3Δzip2 (ATF3Δzip2a, ATF3Δzip2b)、ATF3Δzip2c、ATF3Δzip3和ATF3b,除ATF3b外,其他具有缺陷亮氨酸拉链结构域的同工型不能形成二聚体与DNA结合 [3] 。ATF3已被证明可与其他含有bZIP结构的蛋白结合形成同源二聚体或异源二聚体,作为转录的阻遏物或激活物发挥作用;还可以与ATF/CERB家族其他成员(如ATF2,c-Jun,JunB,或JunD)结合形成异源二聚体,根据启动子和细胞状态发挥转录激活或抑制作用 [4] 。

ATF3是一种应激早期快反应基因,其在静息细胞内呈低浓度稳态表达,然而当细胞受到如缺血缺氧、活性氧、紫外线、DNA损伤等应激刺激后,其表达迅速增加,同时调控相关靶基因的转录水平,引起一系列细胞生物学变化 [5] [6] 。ATF3不仅在应激反应中是个关键调控因子,还广泛参与了机体稳态维持、创伤愈合、细胞黏附、细胞凋亡、肿瘤形成等生理和病理过程,尤其在肿瘤的进展过程中的作用机制更为复杂。

3. ATF3与肿瘤

随着近年来对ATF3的不断深入研究,大量研究表明,ATF3在肿瘤的发生与发展过程中发挥着关键作用。然而,ATF3在细胞转录调控中的作用机制是极其复杂的,以信号类型和细胞类型依赖性方式起作用,随着细胞类型和所处环境的不同,发挥着促癌或抑癌两种截然不同的作用 [7] 。

3.1. ATF3与乳腺癌

Yin等 [8] 研究结果显示,ATF3促进了未转化的MCF10A人乳腺上皮细胞的凋亡,却保护了MCF10CA1a细胞(MCF10A的恶性衍生物)免受应激诱导的细胞周期停滞,并增强了该细胞的运动性,该结果证实了ATF3在乳腺癌发展中具有二分化作用。随后,Yin等 [9] 进一步研究发现,ATF3在MCF10CA1a细胞中被转化生长因子-β (transforming growth factor-β, TGF-β)诱导,同时ATF3上调了TGF-β基因自身的表达,形成了TGF-β信号传导的正反馈回路。此外,ATF3的高表达导致MCF10CA1a细胞上皮-间质转化(epithelial-mesenchymal transition, EMT)分子标志物的表达发生改变(E-cadherin表达下调,N-cadherin、vimentin和FN的表达上调)、CD44high/CD24low细胞群的比例增加以及肿瘤的形成。Rohini等 [10] 也在MDA-MB231人乳腺癌细胞中发现,ATF3在TGF-β1的持续刺激下稳定高表达,并且能与Smad4相互作用形成复合物,激活侵袭性基因基质金属蛋白酶-13 (matrix metalloproteinase-13, MMP-13)的表达,从而促进肿瘤细胞的侵袭和转移。然而,用siRNA技术敲除Smad4后,MDA-MB231细胞中ATF3的表达下调,MMP-13的活性也被抑制,表明靶向Smad4可以降低ATF3的表达和稳定性,延缓乳腺癌的进展。

另有研究发现 [11] ,在乳腺上皮细胞中ATF3过表达可通过激活典型Wnt/β-catenin信号通路诱导乳腺癌的形成。在ATF3转基因小鼠(BK5.ATF3小鼠)的乳腺肿瘤中,Wnt/β-catenin信号通路的下游靶基因(包括CCND1,Jun,Axin2和Dkk4)、通路中发挥作用的配体(包括Wnt3、Wnt3a、Wnt7b和Wnt5a)以及ATF3的两个已知转录靶点Snai1和Snai2的表达均被上调。当利用siRNA敲除ATF3的表达后,观察到Wnt7b、Snai2和Jun的表达显著降低,表明这些基因可能是ATF3在小鼠乳腺癌细胞中发挥促癌作用的直接转录靶点。

然而,Li等 [12] 发现在MDA-MB-231和MDA-MB-435人乳腺癌细胞中,ATF3和ADP-糖基化样因子4C (ADP-ribosylation factor-like 4C, ARL4C)的表达水平均明显下降。研究表明ATF3是ARL4C表达的转录调节因子,ATF3能与MDA-MB-231和MDA-MB-435细胞中的ARL4C启动子结合,增强ARL4C启动子的活性。此外,AFT3的表达受高甲基化的负调控,ATF3的去甲基化刺激了ATF3的表达,进一步促进了ARL4C的转录,而ARL4C过表达可以抑制肿瘤细胞的生长、迁移和侵袭。因此,ATF3/ARL4C轴可能是乳腺癌治疗的潜在靶点 [12] [13] 。

3.2. ATF3与前列腺癌

ATF3在前列腺癌中可能也发挥着双重作用。有研究表明,ATF3作为促癌基因,参与了前列腺癌细胞的增殖、迁移和侵袭。Pelzer等 [14] 在经pCMV-ATF3转染的DU-145人前列腺癌细胞中观察到,G1期的细胞数减少,而S期的细胞数却明显增加,这表明ATF3的过表达促进了细胞由G1期到S期的转换,从而诱导了细胞增殖。Wang等 [15] 也发现,ATF3的过表达会增加PC3和DU-145(两种雄激素非依赖性前列腺癌细胞)的增殖,但SUMO化修饰后的ATF3激活CCND1/2 (细胞周期G1/S转换的前提)的能力降低,从而抑制这两种前列腺癌细胞的增殖。Bandyopadhyay等 [16] 通过对前列腺癌标本的免疫组织化学分析发现,ATF3的表达与分化相关基因Drg-1 (differentiation-related gene-1)的表达呈负相关,而与前列腺肿瘤细胞的转移呈正相关。Drg-1作为前列腺癌的转移抑制因子,能抑制ATF3启动子的活性,通过下调ATF3在mRNA和蛋白水平的表达抑制前列腺癌细胞的转移和侵袭能力。

当然,ATF3也被证实是诱导前列腺癌细胞凋亡的关键因子。Huang等 [17] 发现,在应激条件下(如星形孢菌素暴露和叠氮化钠诱导的缺氧),ATF3的表达被上调,同时抑癌基因Kruppel样因子6 (KLF6)在ATF3的介导下诱导PC3细胞凋亡。此外,一些具有抗癌活性的化合物也可以通过靶向ATF3诱导细胞凋亡。依地福新是一种人工合成的抗肿瘤醚酯类药物,可以破坏与细胞生存有关的众多信号转导途径(如ERK1/2、p38 MAPK、PKB/AKT等信号通路),选择性地诱导肿瘤细胞凋亡 [18] 。之前的研究已表明 [13] ,ATF3的表达可能受到雄激素的调节。随后Udayakumar等 [19] 发现,依地福新能显著增强雄激素依赖性前列腺癌细胞对雄激素剥夺疗法(androgen deprivation therapy, ADT)的反应,从而抑制肿瘤细胞增殖并促进细胞凋亡。具体机制是,依地福新联合ADT可使AKT的活性呈剂量依赖性下降,并通过诱导AFT3的表达抑制雄激素受体(androgen receptor, AR)的转录活性。此外,也有研究 [18] [20] 证实了ATF3是一种雄激素信号抑制因子。ATF3可以通过其亮氨酸拉链结构直接与雄激素的DNA结合区和受体结合区结合,防止雄激素与其受体结合,进而抑制雄激素介导的信号转导通路。体外实验显示,ATF3表达缺失导致雄激素依赖性基因转录增加以及前列腺癌细胞体外增殖能力增强;同时在ATF3基因敲除的小鼠前列腺中,前列腺上皮细胞增殖活性增加。以上结果均表明,靶向调控ATF3的表达可能是一种治疗前列腺癌的新方法。

3.3. ATF3与肝细胞癌

在肝细胞癌(hepatocellular carcinoma, HCC)发生过程中,ATF3扮演着抑癌基因的角色。Li等 [21] 发现,ATF3在HCC中表达水平很低,其中未被包膜侵犯的HCC患者体内ATF3的表达高于被侵犯组。随后该课题组又通过构建慢病毒(LV)-ATF3-EGFP过表达载体来评估ATF3对HepG2人肝癌细胞增殖、迁移、凋亡和细胞周期进程的影响 [22] 。结果显示,过表达ATF3的细胞表现出较弱的生长活力,细胞增殖减慢,凋亡速度加快,周期进程减慢(P < 0.05);细胞迁移虽然无明显变化(P > 0.05),但也有逐渐减少的趋势,说明高水平的ATF3能抑制HCC的发展。Chen等 [23] 通过研究也证实,ATF3的高表达能抑制HCC细胞系(SK-Hep1、Li-7、MHCC-LM3和MHCC-97H细胞)的增殖和迁移。其中,半胱氨酸丰富血管生成诱导因子61 (cysteine rich angiogenic inducer 61, CYR61)参与了ATF3的转录调控过程,且二者的表达水平呈正相关,表明ATF3通过靶向调控CYR61抑制HCC的转移生长,对ATF3表达的干预有望成为一种预防和治疗人类HCC的新方法。

有研究表明ATF3在HCC治疗过程中对药物的疗效也有一定影响。早期,Germain等 [24] 发现顺铂的细胞毒性作用是通过激活ATF3信号转导途径实现的。这一结论随后被Shen等 [25] 证实,调控睾丸孤核受体4 (testicular orphan receptor 4, TR4)-ATF3信号转导途径可以增强顺铂的抗肿瘤疗效,从而更好地抑制HCC进展。机制剖析显示,可能是TR4通过与位于其5'启动子区域的ATF3-TR4RE序列结合,从而上调ATF3在肝细胞中的表达。氯硝柳胺(一种抗肠蠕虫药)被发现在白血病、结肠癌、胶质瘤等不同肿瘤类型中均表现出抗肿瘤作用 [26] 。Weng等 [27] 的研究揭示了氯硝柳胺在HCC中的抗肿瘤新机制。氯硝柳胺可激活蛋白激酶R样内质网激酶(PERK),并上调其下游基因ATF3、ATF4、CCAAT/增强子结合蛋白–同源蛋白(CHOP)的表达,抑制肿瘤细胞活性并诱导凋亡。沉默ATF3后,氯硝柳胺的抗肿瘤活性明显降低,表明ATF3在氯硝柳胺诱导的HCC细胞内质网应激活化和细胞凋亡中发挥着关键作用。

此外,Li等 [28] 通过公共数据库研究ATF3的表达在HCC患者中的预后价值,发现ATF3表达水平在HCC中下调,且与患者临床特征相关,表现出较低的总生存期和无病生存期,证实了该基因在HCC中充当肿瘤抑制因子。更重要的是,研究还发现低水平表达的ATF3也与索拉非尼治疗后较低的总生存期和无进展生存期相关,提示ATF3可能是HCC预后的生物标志物,可用于评估HCC的治疗效果。

3.4. ATF3与结直肠癌

ATF3在结直肠癌中的作用机制较为复杂且存在争议。据报道 [29] ,在HCT116人结直肠癌中,ATF3的表达明显低于其在周围非癌组织中的表达,并且阻断热休克蛋白90 (Hsp90)可以诱导ATF3的表达。采用shRNA下调ATF3的表达能促进肿瘤细胞的生长和转移,表明ATF3通过Hsp90的诱导对结肠癌起到抑制作用。在此基础上,Inoue等 [30] 研究发现,ATF3是HCT116细胞中Wnt/β-catenin信号通路的直接转录靶基因,β-catenin通过与ATF3基因近端启动子的TCF4元件结合从而激活ATF3的表达,并在结肠癌进程中发挥负调节作用,抑制肿瘤细胞的迁移和侵袭。袁明等 [31] 也通过体外实验表明,ATF3的过表达抑制了HCT116细胞中的Wnt/β-catenin信号通路的激活以及EMT,进而抑制结直肠癌细胞的增殖和转移。由于Wnt/β-catenin信号通路是人结直肠癌中经常发生突变的信号通路之一 [32] ,加速肿瘤细胞的进展,因此ATF3可能成为结直肠癌治疗和预防的候选生物标志物和目标。

另有证据表明,一些植物化学物质通过上调ATF3的表达在结肠癌中发挥抗肿瘤作用。柚皮素(naringenin, NAR)是在葡萄柚中发现的一种具有抗肿瘤活性的黄酮类化合物。Song等 [33] 研究发现,NAR通过激活p38依赖的ATF3诱导人结肠癌细胞凋亡。NAR激活了人结肠癌细胞系(如HCT116、SW480、LoVo和HT-29)中ATF3在蛋白质和mRNA水平的表达,使ATF3启动子的活性增加,但抑制p38后却阻断了NAR介导的ATF3表达、启动子活性以及细胞凋亡。蔓荆子的主要成分木脂素通过活性氧的积累引发人结直肠癌细胞凋亡 [34] ,其在体内通过转录调控ATF3的表达,随后抑制作为抗凋亡蛋白的B淋巴细胞瘤-2基因(Bcl-2)的表达,从而诱导人结直肠癌细胞的凋亡 [35] 。

相反,ATF3在结直肠癌中也可能作为促癌基因发挥作用。Wu等 [36] 实验发现,ATF3的过表达促进了HT29和CaCO2结直肠癌细胞在体外的迁移和侵袭;而两种细胞的异种移植实验结果显示,ATF3的低表达减弱了皮下肿瘤的生长、并抑制了CD31(+)新生血管的形成和肝转移。

3.5. ATF3与舌鳞状细胞癌

ATF3在舌鳞状细胞癌(tongue squamous cell carcinoma, TSCC)中同样发挥着关键作用。研究发现 [37] ,与非癌组织相比,ATF3的表达在TSCC组织和细胞系中显著上调,而这与低水平的miR-488密切相关。荧光素酶报告基因分析显示,miR-488的引入不仅降低了其潜在靶基因ATF3的表达并且降低了TSCC细胞侵袭和EMT能力。Hu等 [38] 表明,环状RNA circ_0001742作为竞争性内源性RNA,通过其下游靶点miR-431-5p下调ATF3的表达,对TSCC细胞的增殖、迁移、侵袭和EMT发挥抑制作用,并诱导细胞凋亡。这些研究均表明,ATF3可能促进TSCC的进展。

然而,Xu等 [39] 的研究却得出截然相反的结果,他们发现ATF3通过其下游靶标干扰素诱导蛋白6 (IFI6)和干扰素诱导蛋白27(IFI27)的负调控在TSCC中发挥抗肿瘤作用,这种差异可能是由于肿瘤细胞所处的环境造成的,表明ATF3在TSCC中的作用也是相当复杂的。

3.6. ATF3与其他肿瘤

Huang等 [40] 发现,ATF3的过表达可以抑制SGC-7901和MGC-803人胃癌细胞的增殖、集落形成、迁移和侵袭,减弱肿瘤球的形成、细胞干性,以及降低EMT标志物(Twist1、Snai1、Slug和CD44)的表达,还能抑制小鼠异种移植模型中肿瘤的发生。Wang等 [41] 发现ATF3通过抑制其相互作用蛋白JunB (具有致癌作用)的转录和翻译,抑制子宫内膜癌的增殖和侵袭,增加细胞凋亡。另有研究发现 [42] ,ATF3在霍奇金淋巴瘤的HRS细胞中高表达,利用siRNA选择性地敲除ATF3,结果显示ATF3的下调抑制了霍奇金细胞的增殖,并显著降低了细胞活力。此外,Guenzle等 [43] 研究表明,ATF3还可以通过参与基质金属蛋白酶及其组织抑制剂的调节来降低人类胶质母细胞瘤的迁移能力。

4. 总结与展望

总之,ATF3作为一种适应性反应基因,被证实在乳腺癌、前列腺癌、肝细胞癌、结直肠癌、舌鳞状细胞癌等多种恶性肿瘤中异常表达,影响肿瘤细胞的活力,促进或抑制肿瘤的发生和发展。由于肿瘤环境的复杂性及ATF3作用机制的多样性,其作为转录激活剂还是抑制剂不能一概而论。但是,相信随着对ATF3在不同肿瘤中的作用及其信号转导途径的深入研究,不仅可以更清晰地认识ATF3,还可通过合理调控ATF3,为各类肿瘤的发生、发展、治疗及预后提供新的思路。

基金项目

烟台毓璜顶医院青年科研启动基金项目。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Zhou, H., Gou, H., Zong, J., et al. (2014) ATF3 Regulates Multiple Tar-gets and May Play a Dual Role in Cardiac Hypertrophy and Injury. International Journal of Cardiology, 174, 838-839.
https://doi.org/10.1016/j.ijcard.2014.04.160
[3] Rea, D. (2015) Management of Adverse Events Associated with Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia. Annals of Hematology, 94, S149-S158.
https://doi.org/10.1007/s00277-015-2318-y
[4] Hai, T.W., Liu, F., Coukos, W.J., et al. (1989) Transcription Fac-tor ATF cDNA Clones: An Extensive Family of Leucine Zipper Proteins Able to Selectively Form DNA-Binding Het-erodimers. Genes & Development, 3, 2083-2090.
https://doi.org/10.1101/gad.3.12b.2083
[5] Hai, T., Wolford, C.C. and Chang, Y.S. (2010) ATF3, a Hub of the Cellular Adaptive-Response Network, in the Pathogenesis of Diseases: Is Modulation of Inflammation a Unifying Com-ponent? Gene Expression, 15, 1-11.
https://doi.org/10.3727/105221610X12819686555015
[6] Rohini, M., Haritha, M.A. and Selvamuruganel, N. (2018) Role of Activating Transcription Factor 3 and Its Interacting Proteins under Physiological and Pathological Condi-tions. International Journal of Biological Macromolecules, 120, 310-317.
https://doi.org/10.1016/j.ijbiomac.2018.08.107
[7] Thompson, M.R., Xu, D. and Williams, B.R. (2009) ATF3 Transcription Factor and Its Emerging Roles in Immunity and Cancer. Molecular Medicine (Berl), 87, 1053-1060.
https://doi.org/10.1007/s00109-009-0520-x
[8] Yin, X., Dewille, J.W. and Hai, T. (2008) A Potential Dichoto-mous Role of ATF3, an Adaptive-Response Gene, in Cancer Development. Oncogene, 27, 2118-2127.
https://doi.org/10.1038/sj.onc.1210861
[9] Yin, X., Wolford, C.C., Chang, Y.S., et al. (2010) ATF3, an Adap-tive-Response Gene, Enhances TGF {beta} Signaling and Cancer-Initiating Cell Features in Breast Cancer Cells. Journal of Cell Science, 123, 3558-3565.
https://doi.org/10.1242/jcs.064915
[10] Rohini, M., Arumugam, B., Vairamani, M., et al. (2019) Stimulation of ATF3 Interaction with Smad4 via TGF-β1 for Matrix Metalloproteinase 13 Gene Activation in Human Breast Cancer Cells. International Journal of Biological Macromolecules, 134, 954-961.
https://doi.org/10.1016/j.ijbiomac.2019.05.062
[11] Yan, L., Della, L., Powell, K.L., et al. (2011) Activation of the Canonical Wnt/β-Catenin Pathway in ATF3-Induced Mammary Tumors. PLOS ONE, 6, e16515.
https://doi.org/10.1371/journal.pone.0016515
[12] Li, L., Sun, R.M. and Jiang, G.Q. (2020) ATF3 Demethylation Promotes the Transcription of ARL4C, Which Acts as a Tumor Suppressor in Human Breast Cancer. OncoTargets and Therapy, 13, 3467-3476.
https://doi.org/10.2147/OTT.S243632
[13] Muller, H.M., Widschwendter, A., Fiegl, H., et al. (2003) DNA Meth-ylation in Serum of Breast Cancer Patients: An Independent Prognostic Marker. Cancer Research, 63, 7641-7645.
[14] Pelzer, A.E., Bektic, J., Haag, P., et al. (2006) The Expression of Transcription Factor Activating Transcription Factor 3 in the Human Prostate and Its Regulation by Androgen in Prostate Cancer. Urology, 175, 1517-1522.
https://doi.org/10.1016/S0022-5347(05)00651-8
[15] Wang, C.M. and Yang, W.H. (2013) Loss of SUMOylation on ATF3 Inhibits Proliferation of Prostate Cancer Cells by Modulating CCND1/2 Activity. International Journal of Mo-lecular Sciences, 14, 8367-8380.
https://doi.org/10.3390/ijms14048367
[16] Bandyopadhyay, S., Wang, Y., Zhan, R., et al. (2006) The Tumor Me-tastasis Suppressor Gene Drg-1 Down-Regulates the Expression of Activating Transcription Factor 3 in Prostate Cancer. Cancer Research, 66, 11983-11990.
https://doi.org/10.1158/0008-5472.CAN-06-0943
[17] Huang, X., Li, X. and Guo, B. (2008) KLF6 Induces Apoptosis in Prostate Cancer Cells through Up-Regulation of ATF3. Biological Chemistry, 283, 29795-29801.
https://doi.org/10.1074/jbc.M802515200
[18] Mollinedo, F. and Gajate, C. (2021) Mitochondrial Targeting In-volving Cholesterol-Rich Lipid Rafts in the Mechanism of Action of the Antitumor Ether Lipid and Alkylphospholipid Analog Edelfosine. Pharmaceutics, 13, 763.
https://doi.org/10.3390/pharmaceutics13050763
[19] Udayakumar, T.S., Stoyanova, R., Shareef, M.M., et al. (2016) Edelfosine Promotes Apoptosis in Androgen-Deprived Prostate Tumors by Increasing ATF3 and Inhibiting An-drogen Receptor Activity. Molecular Cancer Therapeutics, 15, 1353-1363.
https://doi.org/10.1158/1535-7163.MCT-15-0332
[20] Wang, H., Jiang, M., Cui, H., et al. (2012) The Stress Re-sponse Mediator ATF3 Represses Androgen Signaling by Binding the Androgen Receptor. Molecular and Cellular Bi-ology, 32, 3190-3202.
https://doi.org/10.1128/MCB.00159-12
[21] Li, X., Zang, S., Yu, Z., et al. (2014) Low Expression of Activating Transcription Factor 3 in Human Hepatocellular Carcinoma and Its Clinicopathological Significance. Pathology Research and Practice, 210, 477-481.
https://doi.org/10.1016/j.prp.2014.03.013
[22] Li, X., Zang, S., Cheng, H., et al. (2019) Overexpression of Acti-vating Transcription Factor 3 Exerts Suppressive Effects in HepG2 Cells. Molecular Medicine Reports, 19, 869-876.
https://doi.org/10.3892/mmr.2018.9707
[23] Chen, C., Ge, C., Liu, Z., et al. (2018) ATF3 Inhibits the Tumorigen-esis and Progression of Hepatocellular Carcinoma Cells via Upregulation of CYR61 Expression. Journal of Experimental & Clinical Cancer Research, 37, 263.
https://doi.org/10.1186/s13046-018-0919-8
[24] Germain, C., Niknejad, N., Ma, L., et al. (2010) Cisplatin Induces Cytotoxicity through the Mitogen-Activated Protein Kinase Pathways and Activating Transcription Factor 3. Neoplasia, 12, 527-538.
https://doi.org/10.1593/neo.92048
[25] Shen, J., Lin, H., Li, G., et al. (2016) TR4 Nuclear Receptor Enhances the Cisplatin Chemo-Sensitivity via Altering the ATF3 Expression to Better Suppress HCC Cell Growth. On-cotarget, 7, 32088-32099.
https://doi.org/10.18632/oncotarget.8525
[26] Xiang, D., Yuan, Y., Chen, L., et al. (2015) Niclosamide, an An-ti-Helminthic Molecule, Downregulates the Retroviral Oncoprotein Tax and Pro-Survival Bcl-2 Proteins in HTLV-1-Transformed T Lymphocytes. Biochemical and Biophysical Research Communications, 464, 221-228.
https://doi.org/10.1016/j.bbrc.2015.06.120
[27] Weng, S., Zhou, L., Deng, Q., et al. (2016) Niclosamide Induced Cell Apoptosis via Upregulation of ATF3 and Activation of PERK in Hepatocellular Carcinoma Cells. BMC Gastroen-terology, 16, 25.
https://doi.org/10.1186/s12876-016-0442-3
[28] Li, L., Song, S., Fang, X., et al. (2021) Role of ATF3 as a Prog-nostic Biomarker and Correlation of ATF3 Expression with Macrophage Infiltration in Hepatocellular Carcinoma. BMC Medical Genomics, 14, Article No. 8.
https://doi.org/10.1186/s12920-020-00852-4
[29] Hackl, C., Lang, S.A., Moser, C., et al. (2010) Activating Tran-scription Factor-3 (ATF3) Functions as a Tumor Suppressor in Colon Cancer and Is Up-Regulated upon Heat-Shock Protein 90 (Hsp90) Inhibition. BMC Cancer, 10, Article No. 668.
https://doi.org/10.1186/1471-2407-10-668
[30] Inoue, M., Uchida, Y., Edagawa, M., et al. (2018) The Stress Re-sponse Gene ATF3 Is a Direct Target of the Wnt/β-Catenin Pathway and Inhibits the Invasion and Migration of HCT116 Human Colorectal Cancer Cells. PLOS ONE, 13, e0194160.
https://doi.org/10.1371/journal.pone.0194160
[31] 袁明, 张永盟, 张姗姗, 等. ATF3在结肠癌组织中表达及其对HCT116细胞增殖和迁移影响机制探讨[J]. 中华肿瘤防治杂志, 2018, 25(2): 106-111.
[32] Bian, J., Dannappel, M., Wan, C., et al. (2020) Transcriptional Regulation of Wnt/β-Catenin Pathway in Colorectal Cancer. Cells, 9, 2125.
https://doi.org/10.3390/cells9092125
[33] Song, H.M., Park, G.H., Eo, H.J., et al. (2016) Naringenin-Mediated ATF3 Expression Contributes to Apoptosis in Human Colon Cancer. Biomolecules & Therapeutics (Seoul), 24, 140-146.
https://doi.org/10.4062/biomolther.2015.109
[34] Qu, L., Liu, F.X., Cao, X.C., et al. (2014) Activation of the Apoptosis Signal-Regulating Kinase 1/c-Jun N-Terminal Kinase Pathway Is Involved in the Casticin-Induced Apoptosis of Colon Cancer Cells. Experimental and Therapeutic Medicine, 8, 1494-1500.
https://doi.org/10.3892/etm.2014.1934
[35] Song, H.M., Park, G.H., Koo, J.S., et al. (2017) Vitex Rotundifolia Fruit Extract Induces Apoptosis through the Downregulation of ATF3-Mediated Bcl-2 Expression in Human Colorectal Cancer Cells. The American Journal of Chinese Medicine, 45, 901-915.
https://doi.org/10.1142/S0192415X17500483
[36] Wu, Z.Y., Wei, Z.M., Sun, S.J., et al. (2014) Activating Tran-scription Factor 3 Promotes Colon Cancer Metastasis. Tumor Biology, 35, 8329-8334.
https://doi.org/10.1007/s13277-014-2044-4
[37] Shi, B., Yan, W., Liu, G., et al. (2018) MicroRNA-488 Inhibits Tongue Squamous Carcinoma Cell Invasion and EMT by Directly Targeting ATF3. Cellular & Molecular Biology Let-ters, 23, 28.
https://doi.org/10.1186/s11658-018-0094-0
[38] Hu, Y.T., Li, X.X. and Zeng, L.W. (2019) Circ_0001742 Promotes Tongue Squamous Cell Carcinoma Progression via miR-431-5p/ATF3 Axis. European Review for Medical and Pharmacological Sciences, 23, 10300-10312.
[39] Xu, L., Zu, T., Li, T., et al. (2021) ATF3 Downmodulates Its New Targets IFI6 and IFI27 to Suppress the Growth and Migration of Tongue Squamous Cell Car-cinoma Cells. PLOS Genetics, 17, e1009283.
https://doi.org/10.1371/journal.pgen.1009283
[40] Huang, C., Chen, R., Zheng, F., et al. (2021) Inhibitory Role of ATF3 in Gastric Cancer Progression through Regulating Cell EMT and Stemness. Cancer Cell International, 21, 127.
https://doi.org/10.1186/s12935-021-01828-9
[41] Wang, F., Li, J., Wang, H., et al. (2020) Activating Transcription Factor 3 Inhibits Endometrial Carcinoma Aggressiveness via JunB Suppression. International Journal of Oncology, 57, 707-720.
https://doi.org/10.3892/ijo.2020.5084
[42] Janz, M., Hummel, M., Truss, M., et al. (2006) Classical Hodgkin Lymphoma Is Characterized by High Constitutive Expression of Activating Transcription Factor 3 (ATF3), Which Promotes Viability of Hodgkin/Reed-Sternberg Cells. Blood, 107, 2536-2539.
https://doi.org/10.1182/blood-2005-07-2694
[43] Guenzle, J., Wolf, L., Garrelfs, N.W., et al. (2017) ATF3 Re-duces Migration Capacity by Regulation of Matrix Metalloproteinases via NFκB and STAT3 Inhibition in Glioblastoma. Cell Death Discovery, 3, Article No. 17006.
https://doi.org/10.1038/cddiscovery.2017.6