基于二硒化铌的1.5 μm被动调Q光纤激光器
1.5 μm Passively Q-Switched Fiber Laser Based on Niobium Diselenide
DOI: 10.12677/OE.2023.131001, PDF, HTML, XML, 下载: 215  浏览: 368 
作者: 郭伟钦, 李星星*:五邑大学,智能制造学部,数字光芯片联合实验室,广东 江门;肖晓晟:北京邮电大学电子工程学院,北京;张 玲:中国科学院半导体研究所,中国科学院半导体材料科学重点实验室,北京
关键词: 液相剥离法二硒化铌非线性光学光纤激光器光学材料Liquid Phase Exfoliation Niobium Diselenide Nonlinear Optics Fiber Laser Optical Material
摘要: 采用液相剥离法制备了具有优异的非线性光学响应、宽工作带宽的二硒化铌可饱和吸收体。将该可饱和吸收体应用到1.5 μm光纤激光器中实现了被动调Q运转。在泵浦功率125 mW时,此时调Q激光脉冲宽度4.1 μs,重复频率39.6 kHz,输出功率3.27 mW。随着泵浦功率增大时,激光脉冲宽度下降,重复频率上升。泵浦功率达到350 mW时,获得重复频率最大78.4 kHz,脉冲宽度最小2.3 μs,此时激光中心波长1559.9 nm,输出功率可达7.03 mW。其结果说明,二硒化铌是一种优良的光学材料,在超快非线性光学中具有重要的应用前景。
Abstract: The niobium diselenide saturable absorber with wide working bandwidth and excellent nonlinear optical response was prepared by liquid phase exfoliation. The niobium diselenide saturable absorber is applied to 1.5 μm fiber laser to realize passively Q-switched operation. When the pump power is 125 mW, the laser output power is 3.27 mW, the repetition rate and pulse width are 39.6 kHz and 4.1 μs. With the increase of pump power, the laser pulse width decreases and the repetition rate increases. When the pump power reaches 350 mW, the maximum repetition rate and minimum pulse width are 78.4 kHz and 2.3 μs, the central wavelength of the laser is 1559.9 nm, and the output power can reach 7.03 mW. The experimental results show that niobium diselenide is an excellent optical material, which has great application prospects in ultrafast nonlinear optics.
文章引用:郭伟钦, 肖晓晟, 李星星, 张玲. 基于二硒化铌的1.5 μm被动调Q光纤激光器[J]. 光电子, 2023, 13(1): 1-7. https://doi.org/10.12677/OE.2023.131001

1. 引言

在精密加工、医疗诊断、材料加工和光谱学等各个领域都广泛使用了短脉冲全光纤激光器 [1] [2] 。调Q技术是实现激光脉冲输出的重要手段,它能将连续激光转变成微秒(μs)甚至纳秒(ns)使得脉冲能量和峰值功率成倍提升 [3] 。调Q技术分两种,一种是主动调Q,在谐振腔内加入有源调制器,借助于外界输入信号来调节激光输出;另一种是将可饱和吸收体(SA)插入在谐振腔,其对光的吸收作用会随着入射光的增大而减小,依靠这种光学特性对光进行调制的被动调Q。被动调Q技术由于效率高、成本低、易于集成等优点,是最为常见的方法之一 [4] [5] [6] 。

实现被动调Q的关键是依靠可饱和吸收体。传统的可饱和吸收体由于稳定性高、制备工艺成熟而在脉冲激光器中广泛应用,但其制备成本高、工作带宽窄 [7] ,所以探索廉价且性能优异的新型SA已成为不可忽视的工作。随着非线性光学材料的发展,二维材料因其新颖的电子和光学性能而受到广泛研究 [8] [9] [10] 。许多二维材料在可见光到中红外波段表现出对光的强烈饱和吸收作用 [11] [12] ,比如石墨烯 [13] [14] 、黑磷(BP) [15] [16] 、拓扑绝缘体(TIs) [17] [18] 、MXenes [19] [20] 和过渡金属二卤族化合物(TMDs) [21] [22] [23] 等,特别是家族成员广泛的TMDs引起了广泛关注。TMDs的化学式为MX2,其中硫属元素(Se、S、Te等)为X,过渡金属元素(W、Nb、Hf、Ta等)为M [24] 。许多TMDs已经得到充分的研究 [25] [26] ,而具有快速的光电流响应和载流子迁移率等独特性能的二硒化铌(NbSe2)研究还相对较少 [27] ,特别是作为SA在超快激光器的应用上。2018年YihuanShi团队通过将NbSe2量子点溶液滴到侧面抛光的光纤上,获得调Q激光输出,输出功率4.44 mW、波长1533 nm [28] ;2021年PingHu团队采用光驱动沉积法制备NbSe2 SA,在泵浦功率515 mW时,实现被动调Q运转,输出功率3.1 mW,波长1560.38 nm [29] 。

我们采用液相剥离法制备了NbSe2-PVA SA,把它插入优化设计的掺铒光纤激光器谐振腔,成功地实现了被动调Q运转。泵浦功率增大到350 mW时,测得7.03 mW的输出功率,78.4 kHz重复频率和2.3 μs脉冲宽度,在此条件下计算得89.7 nJ单脉冲能量和39.0 mW峰值功率。测量激光器一小时的输出功率变化,计算得激光器RMS功率不稳定性小于1%。

2. NbSe2可饱和吸收体制备

实验采用液相剥离法制备NbSe2-PVA SA,制备过程如图1所示。首先,在20 ml去离子水(DI)中加入20 mg NbSe2粉末,充分搅拌,然后放到超声波清洗器中进行超声液相剥离6小时。其次,将混合物以5000 rpm的速度离心30分钟,选取1/2的上层清液,加入200 mg聚乙烯醇(PVA)并超声1小时混合溶液,以确保混合均匀,NbSe2-PVA纳米片溶液就制备完成了。最后,将上述操作制得的NbSe2-PVA纳米片溶液倒入培养皿中,放到25℃的通风柜里干燥一晚形成薄膜,然后将薄膜转移到光纤连接器端面上,这样就制得我们实验所用的NbSe2-PVA SA。

Figure 1. Complete process of preparing NbSe2-PVA saturable absorber

图1. NbSe2-PVA可饱和吸收体的制备过程

3. 实验装置

图2为实验用激光器装置图。掺铒光纤是激光器增益光纤(EDF),长度为0.7 m。泵浦源(LD)为半导体激光器,输出激光中心波长976 nm。976/1550 nm的波分复用器(WDM)将泵浦光耦合进谐振腔内。激光腔内插入偏振不敏感隔离器(PI-ISO)确保腔内的光可以沿一个方向传播。为了能调节谐振腔的偏振态,加入一个三环偏振控制器(PC)。可饱和吸收体(SA)通过一个法兰夹在两个光纤跳线之间插入谐振腔里。谐振腔采用环形腔结构,90/10的输出耦合器(OC)用来将激光分流,10%的激光输出,用测试设备来检测激光输出性能,90%的激光继续在环形腔内循环。

Figure 2. Diagram of Q-switched fiber laser based on NbSe2-PVA SA

图2. 基于NbSe2-PVA SA的调Q光纤激光器示意图

4. 实验结果

实验过程中,转动偏振控制器改变谐振腔内的偏振态,同时增加泵浦功率,通过5 GHz光电探头(Thorlabs, DET08CFC/M)以及500 MHz带宽、5 GSa/s采样率的示波器(KEYSIGHT DSOX3052T)观测激光器输出脉冲。改变泵浦功率,当达到125 mW时,我们可以从示波器显示屏上清楚的看到激光器的输出从连续光变成了脉冲光。当泵浦功率增加到350 mW的时候,调Q激光都能维持稳定状态。不同泵浦功率下的输出脉冲序列如图3所示。

Figure 3. Diagram of pulse train under different pump power

图3. 不同泵浦功率下脉冲序列图

图4为泵浦功率350 mW的激光器输出脉冲特性图。此时重复频率最大为78.4 kHz,脉冲间隔12.75 μs,脉冲最小宽度2.3 μs。借助于分辨率0.06 nm的光谱分析仪(Agilent 86142B)对激光进行光谱测量,测得输出激光中心波长为1559.9 nm。采用射频信号分析仪(Agilent N9020A)进一步测量输出激光的频谱,在78.4 kHz处发现一处高频信号,这也再次验证了脉冲重复频率,除此之外,还可以看出激光信噪比为47 dB。

Figure 4. Laser output characteristics at 350 mW pump power

图4. 泵浦功率处于350 mW下激光输出特性图

图5为泵浦功率增加时激光器的脉冲宽度和重复频率之间的关系。可以看出,随着泵浦功率的增加,重复频率增加,脉宽减小。当泵浦功率从125 mW增加到350 mW时,重复频率从39.6 kHz增加到78.4 kHz,脉冲宽度从4.1 μs减小到2.3 μs。图6为脉冲能量和输出功率与泵浦功率的关系。泵浦功率350 mW时,

Figure 5. Diagram of repetition rate and pulse width versus pump power

图5. 重复频率和脉冲宽度与泵浦功率之间的关系图

Figure 6. Diagram of pulse energy and output power versus pump power

图6. 脉冲能量和输出功率与泵浦功率之间的关系图

Figure 7. Schematic diagram of laser output power within one hour

图7. 激光输出功率在1小时内变化示意图

输出7.03 mW最大输出功率,89.7 nJ脉冲能量,对应的峰值功率39.0 mW。为了验证调Q掺铒光纤激光器中NbSe2-PVA SA的作用,保持腔长不变,谐振腔内取出可饱和吸收体,此时无论怎样调节PC和改变泵浦功率,示波器上都没有检测到调Q激光。结果证实,激光器输出的脉冲光确实是我们制备的NbSe2-PVA SA引起的。

为了表征激光器的稳定性,我们在泵浦功率350 mW下观察其一小时内功率输出变化。测得激光器在1小时内的输出功率不稳定性小于1%,图7为输出功率测量结果。

5. 结论

实验所用NbSe2-PVA可饱和吸收体采用液相剥离法制备,将其应用于1.5 μm光纤激光器中,由于可饱和吸收体对光的可饱和吸收特性,激光器实现稳定地被动调Q运转。在泵浦功率125 mW时激光器开始进入调Q状态,此时重复频率和脉冲宽度为39.6 kHz和4.1 μs。继续增大泵浦功率到350 mW,此时重复频率增大到78.4 kHz,脉冲宽度减小到2.3 μs,最大输出功率达到7.03 mW,相应的脉冲能量和峰值功率为89.7 nJ和39.0 mW,输出激光中心波长为1559.9 nm。实验结果表明,NbSe2具有优异的非线性光学特性,在超快光子器件的应用上有广阔的发展空间。

NOTES

*通讯作者。

参考文献

[1] Laroche, M., Chardon, A.M., Nilsson, J., et al. (2002) Compact Diode-Pumped Passively Q-Switched Tunable Er-Yb Double-Clad Fiber Laser. Optics Letters, 27, 1980-1982.
https://doi.org/10.1364/OL.27.001980
[2] Richardson, D.J., Nilsson, J. and Clarkson, W.A. (2010) High Power Fiber Lasers: Current Status and Future Perspectives. Journal of the Optical Society of America B, 27, B63-B92.
https://doi.org/10.1364/JOSAB.27.000B63
[3] Shen, Y.L., Wang, Y.S., Luan, K.P., et al. (2017) High Peak Power Actively Q-Switched Mid-Infrared Fiber Lasers at 3 μm. Applied Physics B, 123, Article No. 105.
https://doi.org/10.1007/s00340-017-6684-0
[4] Dong, X.Z., Tian, J.R., Yu, Z.H., et al. (2014) Q-Switched Er-Doped Fiber Laser with Single-Walled Carbon Nanotube Saturable Absorber by Evanescent Field. Chinese Optics Letters, 12, S21402.
https://doi.org/10.3788/col201412.s21402
[5] Ahmad, H., Aidit, S.N., Ooi, S.I., et al. (2018) Tunable Passively Q-Switched Ytterbium-Doped Fiber Laser with Mechanically Exfoliated GaSe Saturable Absorber. Chinese Optics Letters, 16, Article ID: 020014.
https://doi.org/10.3788/COL201816.020014
[6] Liu, M.L., Liu, W.J., Yan, P.G., et al. (2018) High-Power MoTe2-Based Passively Q-Switched Erbium-Doped Fiber Laser. Chinese Optics Letters, 16, Article ID: 020007.
https://doi.org/10.3788/COL201816.020007
[7] 刘新星, 田振, 唐玉龙. NbSe2纳米颗粒锁模的2 μm光纤激光器[J]. 强激光与粒子束, 2020, 32(1): 75-80.
[8] Luo, Z.Q., Wu, D., Xu, B., et al. (2016) Two-Dimensional Material-Based Saturable Absorbers: Towards Compact Visible-Wavelength All-Fiber Pulsed Lasers. Nanoscale, 8, 1066-1072.
https://doi.org/10.1039/C5NR06981E
[9] Ma, C.Y., Wang, C., Gao, B., et al. (2019) Recent Progress in Ultrafast Lasers Based on 2D Materials as a Saturable Absorber. Applied Physics Reviews, 6, Article ID: 041304.
https://doi.org/10.1063/1.5099188
[10] Zhang, B.T., Liu, J., Wang, C., et al. (2020) Recent Progress in 2D Materi-al-Based Saturable Absorbers for All Solid-State Pulsed Bulk Lasers. Laser & Photonics Reviews, 14, Article ID: 1900240.
https://doi.org/10.1002/lpor.201900240
[11] Debnath, P.C. and Yeom, D.I. (2021) Ultrafast Fiber Lasers with Low-Dimensional Saturable Absorbers: Status and Prospects. Sensors, 21, 3676.
https://doi.org/10.3390/s21113676
[12] Yang, H.Y., Wang, Y.Z., Tiu, Z.C., et al. (2022) All-Optical Modulation Technology Based on 2D Layered Materials. Micromachines, 13, 92.
https://doi.org/10.3390/mi13010092
[13] Bao, Q.L., Zhang, H., Wang, Y., et al. (2009) Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers. Advanced Functional Materials, 19, 3077-3083.
https://doi.org/10.1002/adfm.200901007
[14] Sobon, G., Sotor, J. and Abramski, K.M. (2012) All-Polarization Maintaining Femtosecond Er-Doped Fiber Laser Mode-Locked by Graphene Saturable Absorber. Laser Physics Letters, 9, 581.
https://doi.org/10.7452/lapl.201210038
[15] Sotor, J., Sobon, G., Macherzynski, W., et al. (2015) Black Phosphorus Saturable Absorber for Ultrashort Pulse Generation. Applied Physics Letters, 107, Article ID: 051108.
https://doi.org/10.1063/1.4927673
[16] Ahmed, M.H.M., Latiff, A.A., Arof, H., et al. (2016) Ultrafast Erbium-Doped Fiber Laser Mode-Locked with a Black Phosphorus Saturable Absorber. Laser Physics Letters, 13, Article ID: 095104.
https://doi.org/10.1088/1612-2011/13/9/095104
[17] Yan, P.G., Lin, R.Y., Ruan, S.C., et al. (2015) A Practical Topological Insulator Saturable Absorber for Mode-Locked Fiber Laser. Scientific Reports, 5, Article No. 8690.
https://doi.org/10.1038/srep08690
[18] Haris, H., Harun, S.W., Muhammad, A.R., et al. (2017) Passively Q-Switched Erbium-Doped and Ytterbium-Doped Fibre Lasers with Topological Insulator Bismuth Selenide (Bi2Se3) as Saturable Absorber. Optics &Laser Technology, 88, 121-127.
https://doi.org/10.1016/j.optlastec.2016.09.015
[19] Jhon, Y.I., Koo, J., Anasori, B., et al. (2017) Metallic MXene Saturable Absorber for Femtosecond Mode-Locked Lasers. Advanced Materials, 29, Article ID: 1702496.
https://doi.org/10.1002/adma.201702496
[20] Wu, Q., Jin, X., Chen, S., et al. (2019) MXene-Based Saturable Absorber for Femtosecond Mode-Locked Fiber Lasers. Optics Express, 27, 10159-10170.
https://doi.org/10.1364/OE.27.010159
[21] Li, L., Wang, Y.G., Wang, Z.F., et al. (2018) High Energy Er-Doped Q-Switched Fiber Laser with WS2 Saturable Absorber. Optics Communications, 406, 80-84.
https://doi.org/10.1016/j.optcom.2017.01.007
[22] Yan, B.Z., Zhang, B.T., Nie, H.K., et al. (2018) High-Power Pas-sively Q-Switched 2.0 μm All-Solid-State Laser Based on a MoTe2 Saturable Absorber. Optics Express, 26, 18505-18512.
https://doi.org/10.1364/OE.26.018505
[23] Zhang, R.L., Wang, J., Zhang, X.Y., et al. (2019) Mode-Locked Fiber Laser with MoSe2 Saturable Absorber Based on Evanescent Field. Chinese Physics B, 28, Article ID: 014207.
https://doi.org/10.1088/1674-1056/28/1/014207
[24] Shang, X.X., Guo, L.G., Zhang, H.N., et al. (2020) Titanium Disulfide Based Saturable Absorber for Generating Passively Mode-Locked and Q-Switched Ultra-Fast Fiber Lasers. Nanomaterials, 10, 1922.
https://doi.org/10.3390/nano10101922
[25] Cui, Y.D., Lu, F.F. and Liu, X.M. (2017) Nonlinear Saturable and Polarization-Induced Absorption of Rhenium Disulfide. Scientific Reports, 7, Article No. 40080.
https://doi.org/10.1038/srep40080
[26] Wang, Y.D., Mao, D., Gan, X.T., et al. (2015) Harmonic Mode Locking of Bound-State Solitons Fiber Laser Based on MoS2 Saturable Absorber. Optics Express, 23, 205-210.
https://doi.org/10.1364/OE.23.000205
[27] Huang, Y.H., Chen, R.S., Zhang, J.R., et al. (2015) Electronic Transport in NbSe2 Two-Dimensional Nanostructures: Semiconducting Characteristics and Photoconductivity. Nanoscale, 7, 18964-18970.
https://doi.org/10.1039/C5NR05430C
[28] Shi, Y.H., Li, W.J., Lü, W., et al. (2018) Passively Q-Switched Er-Doped Fiber Laser Based on NbSe2 Quantum Dot Saturable Absorber. 2018 IEEE Asia Communications and Photonics Conference (ACP), Hangzhou, 26-29 October 2018, 1-3.
https://doi.org/10.1109/ACP.2018.8596095
[29] Hu, P., Mao, J.J., Nie, H.K., et al. (2021) Highly Stable Passively Q-Switched Erbium-Doped All-Fiber Laser Based on Niobium Diselenide Saturable Absorber. Molecules, 26, 4303.
https://doi.org/10.3390/molecules26144303