带混合非线性项的非线性薛定谔方程驻波解的强不稳定性
Strong Instability of Standing Wave Solutions for the Nonlinear Schrodinger Equation with Mixed Nonlinearities
DOI: 10.12677/PM.2023.133044, PDF, HTML, 下载: 169  浏览: 361 
作者: 赵利芳:西北师范大学数学与统计学院,甘肃 兰州
关键词: 非线性薛定谔方程驻波解爆破准则强不稳定性Nonlinear Schrodinger Equation StandingWave Solutions Blow-Up Criterion Strong Instability
摘要: 本文主要研究了如下带有混合的幂形式和卷积形式非线性项的非线性薛定谔方程驻波解的强不稳定性其中并且是复值函数.当时,通过建立爆破准则,证明了驻波解的强不稳定性。
Abstract: In this paper, we consider the strong instability of standing wave solutions for the nonlinear Schrodinger equation with mixed power-type and Choquard-type nonlinearities Where , and is the complex function with When and we prove the strong instability of standing wave solutions by using blow-up criterion.
文章引用:赵利芳. 带混合非线性项的非线性薛定谔方程驻波解的强不稳定性[J]. 理论数学, 2023, 13(3): 405-415. https://doi.org/10.12677/PM.2023.133044

参考文献

[1] Cazenave, T. (2003) Semilinear Schrodinger Equations (Courant Lecture Notes in Mathematics,Vol. 10). New York University, Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence, RI.
[2] Feng, B. and Yuan, X. (2015) On the Cauchy Problem for the Schrodinger-Hartree Equation. Evolution Equations and Control Theory, 4, 431-445.
https://doi.org/10.3934/eect.2015.4.431
[3] Feng, B. and Zhang, H. (2018) Stability of Standing Waves for the Fractional Schrodinger-Hartree Equation. Journal of Mathematical Analysis and Applications, 460, 352-364.
https://doi.org/10.1016/j.jmaa.2017.11.060
[4] Pekar, S.I. (1954) Untersuchung uber die Elektronentheorie der Kristalle. Akademie Verlag, Berlin.
[5] Lieb, E.H. (1977) Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation. Studies in Applied Mathematics, 57, 93-105.
https://doi.org/10.1002/sapm197757293
[6] Penrose, R. (1996) On Gravity's Role in Quantum State Reduction. General Relativity and Gravitation, 28, 581-600.
https://doi.org/10.1007/BF02105068
[7] Chen, Z., Shen, Z. and Yang, M. (2017) Instability of Standing Waves for a Generalized Choquard Equation with Potential. Journal of Mathematical Physics, 58, Article ID: 011504.
https://doi.org/10.1063/1.4974251
[8] Du, L., Gao, F. and Yang, M. (2022) Existence and Qualitative Analysis for Nonlinear Weighted Choquard Equations.
https://arxiv.org/abs/1810.11759
[9] Feng, B. (2018) On the Blow-Up Solutions for the Fractional Nonlinear Schrodinger Equation with Combined Power-Type Nonlinearities. Communications on Pure and Applied Analysis, 17, 1785-1804.
https://doi.org/10.3934/cpaa.2018085
[10] Feng, B., Liu, J., Niu, H. and Zhang, B. (2020) Strong Instability of Standing Waves for a Fourth-Order Nonlinear Schrodinger Equation with the Mixed Dispersions. Nonlinear Analysis, 196, Article ID: 111791.
https://doi.org/10.1016/j.na.2020.111791
[11] Feng, B. and Wang, Q. (2021) Strong Instability of Standing Waves for the Nonlinear Schrodinger Equation in Trapped Dipolar Quantum Gases. Journal of Dynamics Differential Equations, 33, 1989-2008.
https://doi.org/10.1007/s10884-020-09881-0
[12] Feng, B., Chen, R. and Liu, J. (2021) Blow-Up Criteria and Instability of Normalized Standing Waves for the Fractional Schrodinger-Choquard Equation. Advances in Nonlinear Analysis, 10, 311-330.
https://doi.org/10.1515/anona-2020-0127
[13] Feng, B. and Zhu, S. (2021) Stability and Instability of Standing Waves for the Fractional Nonlinear Schrodinger Equations. Journal of Differential Equations, 292, 287-324.
https://doi.org/10.1016/j.jde.2021.05.007
[14] Wang, Y. and Feng, B. (2019) Sharp Thresholds of Blow-Up and Global Existence for the Schrodinger Equation with Combined Power-Type and Choquard-Type Nonlinearities. Bound- ary Value Problems, 2019, Article No. 195.
https://doi.org/10.1186/s13661-019-01310-6
[15] Zhang, J. and Zhu, S. (2017) Stability of Standing Waves for the Nonlinear Fractional Schrodinger Equation. Journal of Dynamics and Differential Equations, 29, 1017-1030.
https://doi.org/10.1007/s10884-015-9477-3
[16] Berestycki, H. and Cazenave, T. (1981) Instabilite des etats stationaires dans les euations de Schrodinger et de Klein-Gordon non lineires. Comptes Rendus de l'Academie des Sciences—Series I, 293, 489-492.
https://zbmath.org/0492.35010
[17] Le Coz, S. (2008) A note on Berestycki-Cazenave's Classical Instability Result for Nonlinear Schrodinger Equations. Advanced Nonlinear Studies, 8, 455-463.
https://doi.org/10.1515/ans-2008-0302
[18] Feng, B., Chen, R. and Wang, Q. (2020) Instability of Standing Waves for the Nonlinear Schrodinger-Poisson Equation in the L2-Critical Case. Journal of Dynamics and Differential Equations, 32, 1357-1370.
https://doi.org/10.1007/s10884-019-09779-6
[19] Weinstein, M.I. (1983) Nonlinear Schrodinger Equations and Sharp Interpolation Estimates. Communications in Mathematical Physics, 87, 567-576.
https://doi.org/10.1007/BF01208265
[20] Ohta, M. (1995) Blow-Up Solutions and Strong Instability of Standing Waves for the Generalized Davey-Stewartson System in R2. Annales de l'Institut Henri Poincare-Physique Theorique, 63, 111-117.
https://eudml.org/doc/76684
[21] Chen, J. and Guo, B. (2007) Strong Instability of Standing Waves for a Nonlocal Schrodinger Equation. Physica D: Nonlinear Phenomena, 227, 142-148.
https://doi.org/10.1016/j.physd.2007.01.004
[22] Shi, C. (2022) Existence of Stable StandingWaves for the Nonlinear Schrodinger Equation with Mixed Power-Type and Choquard-Type Nonlinearities. AIMS Mathematics, 7, 3802-3825.
https://doi.org/10.3934/math.2022211
[23] Brezis, H. and Lieb, E.H. (1983) A Relation between Pointwise Convergence of Functions and Convergence of Functionals. Proceedings of the American Mathematical Society, 88, 486-493.
https://doi.org/10.2307/2044999
[24] Lieb, E.H. (1983) Sharp Constants in the Hardy-Littlewood-Sobolev and Related Inequalities. Annals of Mathematics, 118, 349-374.
https://doi.org/10.2307/2007032