|
[1]
|
顾景范. 《中国居民营养与慢性病状况报告(2015)》解读[J]. 营养学报, 2016, 38(6): 525-529.
|
|
[2]
|
Moran, A., Gu, D., Zhao, D., et al. (2010) Future Cardiovascular Disease in China: Markov Model and Risk Factor Scenario Projections from the Coronary Heart Disease Policy Model-China. Circulation Cardiovascular Quality and Outcomes, 3, 243-252. [Google Scholar] [CrossRef]
|
|
[3]
|
诸骏仁, 高润霖, 赵水平, 等. 中国成人血脂异常防治指南(2016年修订版) [J]. 中华健康管理学杂志, 2017, 16(1): 7-28.
|
|
[4]
|
Liu, H.H., Cao, Y.X., Jin, J.L., et al. (2020) Predicting Cardiovascular Outcomes by Baseline Lipoprotein(a) Concentrations: A Large Cohort and Long-Term Follow-Up Study on Real-World Patients Receiving Percutaneous Coronary Intervention. Journal of the American Heart Association, 9, e014581. [Google Scholar] [CrossRef]
|
|
[5]
|
Ginsberg, H.N., Packard, C.J., Chapman, M.J., et al. (2021) Triglyceride-Rich Lipoproteins and Their Remnants: Metabolic Insights, Role in Atherosclerotic Car-diovascular Disease, and Emerging Therapeutic Strategies—A Consensus Statement from the European Atherosclerosis Society. European Heart Journal, 42, 4791-4806. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Gill, P.K., Dron, J.S. and Hegele, R.A. (2021) Genetics of Hypertri-glyceridemia and Atherosclerosis. Current Opinion in Cardiology, 36, 264-271. [Google Scholar] [CrossRef]
|
|
[7]
|
Ballantyne, C.M., Olsson, A.G., Cook, T.J., et al. (2001) Influence of Low High-Density Lipoprotein Cholesterol and Elevated Triglyceride on Coronary Heart Disease Events and Response to Simvastatin Therapy in 4S. Circulation, 104, 3046-3051. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Miller, M., Cannon, C.P., Murphy, S.A., et al. (2008) Impact of Tri-glyceride Levels beyond Low-Density Lipoprotein Cholesterol after Acute Coronary Syndrome in the PROVE IT-TIMI 22 Trial. Journal of the American College of Cardiology, 51, 724-730. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Marston, N.A., Giugliano, R.P., Im, K., et al. (2019) Association between Triglyceride Lowering and Reduction of Cardiovascular Risk across Multiple Lipid-Lowering Therapeutic Clas-ses: A Systematic Review and Meta-Regression Analysis of Randomized Controlled Trials. Circulation, 140, 1308-1317. [Google Scholar] [CrossRef]
|
|
[10]
|
Das Pradhan, A., Glynn, R.J., Fruchart, J.C., et al. (2022) Triglyceride Lowering with Pemafibrate to Reduce Cardiovascular Risk. The New England Journal of Medicine, 387, 1923-1934. [Google Scholar] [CrossRef]
|
|
[11]
|
Virani, S.S. (2022) The Fibrates Story—A Tepid End to a Prominent Drug. The New England Journal of Medicine, 387, 1991-1992. [Google Scholar] [CrossRef]
|
|
[12]
|
Nurmohamed, N.S., Dallinga-Thie, G.M. and Stroes, E.S.G. (2020) Targeting apoC-III and ANGPTL3 in the Treatment of Hypertriglyceridemia. Expert Review of Cardiovascular Therapy, 18, 355-361. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Burdett, H. (2016) Antisense Inhibition of Apolipoprotein C-III in Patients with Hypertriglyceridemia. Annals of Clinical Biochemistry, 53, 415. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Sahebkar, A., Reiner, Ž., Simental-Mendía, L.E., et al. (2016) Ef-fect of Extended-Release Niacin on Plasma Lipoprotein(a) Levels: A Systematic Review and Meta-Analysis of Random-ized Placebo-Controlled Trials. Metabolism: Clinical and Experimental, 65, 1664-1678. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
O’Donoghue, M.L., Fazio, S., Giugliano, R.P., et al. (2019) Lipoprotein(a), PCSK9 Inhibition, and Cardiovascular Risk. Circulation, 139, 1483-1492. [Google Scholar] [CrossRef]
|
|
[16]
|
张冰, 程玉宏, 刘洋, 等. 极低密度脂蛋白受体在肝脏脂类代谢中的研究进展[J]. 医学综述, 2016, 22(21): 4177-4182.
|
|
[17]
|
Iwasaki, T., Takahashi, S., Takahashi, M., et al. (2005) Deficiency of the Very Low-Density Lipoprotein (VLDL) Receptors in Streptozotocin-Induced Diabetic Rats: Insulin Dependency of the VLDL Receptor. Endocrinology, 146, 3286-3294. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Goudriaan, J.R., Espirito Santo, S.M., Voshol, P.J., et al. (2004) The VLDL Receptor Plays a Major Role in Chylomicron Metabolism by Enhancing LPL-Mediated Triglyceride Hydrolysis. Journal of Lipid Research, 45, 1475-1481. [Google Scholar] [CrossRef]
|
|
[19]
|
Yu, Y., Kuang, Y.L., Lei, D., et al. (2016) Polyhedral 3D Structure of Human Plasma Very Low Density Lipoproteins by Individual Particle Cryo-Electron Tomography. Journal of Lipid Research, 57, 1879-1888. [Google Scholar] [CrossRef]
|
|
[20]
|
Ramms, B., Patel, S., Nora, C., et al. (2019) ApoC-III ASO Promotes Tissue LPL Activity in the Absence of apoE-Mediated TRL Clearance. Journal of Lipid Research, 60, 1379-1395. [Google Scholar] [CrossRef]
|
|
[21]
|
Heidemann, B.E., Koopal, C., Bots, M.L., et al. (2021) The Relation be-tween VLDL-Cholesterol and Risk of Cardiovascular Events in Patients with Manifest Cardiovascular Disease. Interna-tional Journal of Cardiology, 322, 251-257. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Jawi, M.M., Frohlich, J. and Chan, S.Y. (2020) Lipoprotein(a) the Insurgent: A New Insight into the Structure, Function, Metabolism, Pathogenicity, and Medications Affecting Lipopro-tein(a) Molecule. Journal of Lipids, 2020, Article ID: 3491764. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
DeFilippis, A.P., Trainor, P.J., Thanassoulis, G., et al. (2022) Athero-thrombotic Factors and Atherosclerotic Cardiovascular Events: The Multi-Ethnic Study of Atherosclerosis. European Heart Journal, 43, 971-981. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
McCormick, S.P. (2004) Lipoprotein(a): Biology and Clinical Im-portance. The Clinical Biochemist Reviews, 25, 69-80.
|
|
[25]
|
Takahashi, S. (2017) Triglyceride Rich Lipopro-tein-LPL-VLDL Receptor and Lp(a)-VLDL Receptor Pathways for Macrophage Foam Cell Formation. Journal of Ath-erosclerosis and Thrombosis, 24, 552-559. [Google Scholar] [CrossRef]
|
|
[26]
|
Oka, K., Pastore, L., Kim, I.H., et al. (2001) Long-Term Stable Correc-tion of Low-Density Lipoprotein Receptor-Deficient Mice with a Helper-Dependent Adenoviral Vector Expressing the Very Low-Density Lipoprotein Receptor. Circulation, 103, 1274-1281. [Google Scholar] [CrossRef]
|
|
[27]
|
Turunen, T.A., Kurkipuro, J., Heikura, T., et al. (2016) Sleeping Beauty Transposon Vectors in Liver-Directed Gene Delivery of LDLR and VLDLR for Gene Therapy of Familial Hy-percholesterolemia. Molecular Therapy: The Journal of the American Society of Gene Therapy, 24, 620-635. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Rader, D.J. (2001) Gene Therapy for Familial Hypercholesterolemia. Nu-trition, Metabolism, and Cardiovascular Diseases: NMCD, 11, 40-44.
|
|
[29]
|
Colella, P., Ronzitti, G. and Mingozzi, F. (2018) Emerging Issues in AAV-Mediated in Vivo Gene Therapy. Molecular Therapy Methods & Clinical Development, 8, 87-104. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Jo, H., Choe, S.S., Shin, K.C., et al. (2013) Endoplas-mic Reticulum Stress Induces Hepatic Steatosis via Increased Expression of the Hepatic Very Low-Density Lipoprotein Receptor. Hepatology (Baltimore, Md), 57, 1366-1377. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Shin, K.C., Hwang, I., Choe, S.S., et al. (2017) Macrophage VLDLR Me-diates Obesity-Induced Insulin Resistance with Adipose Tissue Inflammation. Nature Communications, 8, 1087. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Fuchs, C.D., Claudel, T., Kumari, P., et al. (2012) Absence of Adipose Triglyceride Lipase Protects from Hepatic Endoplasmic Reticulum Stress in Mice. Hepatology (Baltimore, Md), 56, 270-280. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zarei, M., Barroso, E., Palomer, X., et al. (2018) Hepatic Regulation of VLDL Receptor by PPARβ/δ and FGF21 Modulates Non-Alcoholic Fatty Liver Disease. Molecular Me-tabolism, 8, 117-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Oshio, Y., Hattori, Y., Kamata, H., et al. (2021) Very Low-Density Lipoprotein Receptor Increases in a Liver-Specific Manner Due to Protein Deficiency but Does Not Affect Fatty Liver in Mice. Scientific Reports, 11, Article No. 8003. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Leibowitz, M.L., Papathanasiou, S., Doerfler, P.A., et al. (2021) Chromothripsis as an On-Target Consequence of CRISPR-Cas9 Genome Editing. Nature Genetics, 53, 895-905. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Ivics, Z., Li, M.A., Mátés, L., et al. (2009) Transposon-Mediated Genome Manipulation in Vertebrates. Nature Methods, 6, 415-422. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wilber, A., Frandsen, J.L., Geurts, J.L., et al. (2006) RNA as a Source of Transposase for Sleeping Beauty-Mediated Gene In-sertion and Expression in Somatic Cells and Tissues. Molecular Therapy: The Journal of the American Society of Gene Therapy, 13, 625-630. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Sebastiani, F., Yanez Arteta, M., Lerche, M., et al. (2021) Apolipoprotein E Binding Drives Structural and Compositional Rearrangement of mRNA-Containing Lipid Nanoparticles. ACS Nano, 15, 6709-6722. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Debacker, A.J., Voutila, J., Catley, M., et al. (2020) Delivery of Ol-igonucleotides to the Liver with GalNAc: From Research to Registered Therapeutic Drug. Molecular Therapy: The Journal of the American Society of Gene Therapy, 28, 1759-1771. [Google Scholar] [CrossRef] [PubMed]
|