植物中ABA和JA对盐胁迫的响应
Response of ABA and JA to Salt Stress in Plants
DOI: 10.12677/BP.2023.131005, PDF, HTML, XML, 下载: 249  浏览: 465 
作者: 王佳敏:浙江师范大学生命科学学院,浙江 金华
关键词: 土壤盐碱化盐胁迫脱落酸茉莉酸 Soil Salinization Salt Stress Abscisic Acid Jasmonates
摘要: 土壤盐碱化是农业发展面临的重大难题,改良土壤难度大,花费多,很难解决大规模的农产品抗盐问题。研究植物的耐盐机制为研发耐盐植物提供理论依据,植物激素在植物对盐胁迫响应中起重要作用。本文通过查阅资料,总结了已经明确了的植物对盐胁迫响应途径及植物激素ABA和JA在抵抗盐胁迫方面的作用,为研制耐盐植物提供参考。
Abstract: Soil salinization is a major problem facing ag-ricultural development. It is difficult to improve the soil and spend more, and it is difficult to solve the problem of large-scale agricultural products. Studying the salt resistance mechanism of plant provides theoretical basis for the development of salt-resistant plants, and plant hormones play an important role in plant’s response to salt coercion. By consulting the information, this article sum-marizes the clear plants that have been clarified to salt coercion response pathway and vegetable hormone ABA and JA in resisting salt stress, and provides a reference for the development of salt-resistant plants.
文章引用:王佳敏. 植物中ABA和JA对盐胁迫的响应[J]. 生物过程, 2023, 13(1): 33-38. https://doi.org/10.12677/BP.2023.131005

1. 引言

土壤盐碱化是一个影响农业发展的全球性问题,因为土壤的盐碱化会导致农作物减产,甚至严重影响作物的生长发育。土壤中的盐对植物造成的不良胁迫包括渗透胁迫和盐毒性胁迫 [1] 。当外界离子浓度较高时,由于渗透作用植物的生长变得缓慢,侧芽的发育缓慢或保持静止。除了渗透胁迫,盐离子在植物体内大量累积造成的盐毒性胁迫,也会引起一系列不良的生理生化反应,进一步影响植物的正常生长发育 [2] 。植物面临盐胁迫时有着复杂的反应机制以应对损害。脱落酸(Abscisic Acid, ABA)和茉莉酸(Jasmonates, JA)是植物在响应盐胁迫调节机制中的重要组成部分,发挥了至关重要的作用。

2. 植物对盐胁迫的响应机制

应激信号被膜上的受体(离子通道、G蛋白偶联受体、组氨酸激酶或受体类激酶)感知,从而产生许多次级信号分子,如:Ca2+、肌醇磷酸盐、活性氧(Reactive Oxygen Species, ROS)和ABA。胁迫信号随后在细胞核内转导,诱导许多胁迫响应基因,最终使植物能适应胁迫 [3] 。

Ca2+通过质膜和细胞器膜流入细胞质,导致细胞质和某些细胞器(如细胞核)中的触发Ca2+峰值 [4] [5] ,在盐胁迫期间,拟南芥中的盐过度敏感(Salt Overly Sensitive, SOS)通路感知到特定的Ca2+信号,从而维持细胞内的稳定已经做出一系列的生理响应 [6] ;蛋白质磷酸化是植物响应各种非生物胁迫条件期间信号转导中常见且关键的生理反应,如2C型蛋白磷酸酶(PP2C)家族和SnRK2蛋白激酶亚家族的成员是多种应激信号通路的核心参与者。它们调节各种下游蛋白质,包括转录因子、控制气孔关闭的通道蛋白和产生过氧化氢(H2O2)的氧化酶RbohF [7] ;ABA是气孔关闭和其他植物对盐、干旱和其他几种高渗胁迫诱导条件的反应的关键介质;植物响应非生物胁迫的另一个主要特征是产生ROS,包括超氧阴离子、H2O2、羟基自由基和单态氧 [8] 。当ROS的水平超过细胞的解毒能力时,它们对生物分子有害,但它们也在应激信号中发挥重要作用 [8] 。尽管渗透压下的ROS积累可以独立于ABA而发生 [9] ,但H2O2的产生显然受ABA信号调节 [10] 。

3. ABA的作用机制

ABA属于倍半萜类物质,其前体是一种常见的C5化合物,是一种通常与植物应对胁迫有关的激素 [11] [12] 。ABA通过产生渗透保护蛋白和代谢物的以及调节气孔导度的方式来保护植物免受非生物胁迫,特别是渗透胁迫和盐胁迫 [13] 。ABA生物合成、转运、分解代谢等许多细节已经被阐明。然而,我们在ABA信号转导途径的揭示中仍然存在许多重大的空白 [14] [15] [16] [17] 。

ABA早先被认为是生长抑制因子,后发现广泛参与植物的萌发和成长 [18] ,在应答非生物胁迫中发挥重要作用 [19] ,ABA信号转导途径位于植物对盐胁迫响应途径网络中的核心 [13] 。在植物体内,ABA可以与其受体家族RCARs/PYR1/PYLs结合 [20] ,在受体家族下游的是ABA信号转导通路的中心–蛋白磷酸酶2C (PP2Cs) [21] 。当没有ABA时,PP2C可以与SnRK2激酶结合,抑制SnRK2激酶包括ABI1、ABI2和HAB1的活性。当存在ABA时,ABA和受体RCARs/PYR1/PYLs结合后又结合到PP2C的催化位点,以上的过程导致PP2C的酶活性被抑制,释放SnRK2激酶 [22] ,于是恢复活性的SnRK2激酶又参与了bZIP转录因子的磷酸化,又促进了ABA基因的表达。此外,与PP2C相互作用的蛋白质数量相对较多,这表明PP2C下游可能存在其他信息传递途径 [23] 。

在拟南芥中有多个PYL但功能并不完全相同。PYL8的敲除导致在在胁迫抑制恢复侧根生长对ABA不敏感 [24] ,PYL6与MYC2 (JA反应中的关键转录因子)相互作用,从而连接ABA途径和JA途径 [25] 。ABA激活的SnRK2s也可以在质外体中产生H2O2,这是一种信号分子,可以介导各种ABA反应以及调节钙信号 [26] ;钙信号对于ABA调节气孔关闭至关重要;除了上述外,ABA 还会促使一氧化氮(NO)和磷脂(如磷脂酸)的产生,NO会亚硝基化SnRK2s催化位点附近的半胱氨酸残基,这会导致激酶失活 [27] 。NO还会导致PYL的酪氨酸硝化和亚硝基化 [28] ;酪氨酸硝化会抑制PYL的活性,并且还会伴随PYL的泛素化和蛋白酶体介导的降解。

4. 茉莉酸的作用机制

JA及其衍生物统称为JAs,是脂质衍生的信号化合物,在植物发育和对生物及非生物胁迫反应过程中发挥重要的作用 [29] 。然而在植物激素的研究中,对茉莉酸及其衍生物的研究开展较晚。茉莉酸的生物合成和信号转导途径只存在于一些原核生物,一些低等植物和所有高等植物中,在动物,人类组织和酵母中不存在 [30] ,之后在陆地植物中发现茉莉酸普遍存在 [29] 。

JA及其衍生物是植物的内源性生长调节激素 [31] ,也是响应盐胁迫的调控因子 [32] 。许多研究表明,JA在非生物胁迫耐受中发挥着重要作用,由于JA能够诱导植物在胁迫下的保护作用。有研究表JAs是耐盐性的正向调节因子 [32] [33] [34] 。编码AOC的小麦基因TaAOC1在拟南芥中的异位表达可以提高JA水平并提高耐盐性,表明JAs正向调节植物的耐盐性。编码OPR1的小麦基因TaOPR1在拟南芥中过表达时也可以提高耐盐性 [33] ,JAs增强了小麦抗氧化酶的活性以及耐盐性 [32] 。拟南芥中介体亚基MEDIATOR25 (MED25)和MYC2通过螺旋–环–螺旋(helix-loop-helix)的方式相互作用从而调节JA信号。与此同时,MED25还可以与转录因子ABA-INSENSITIVE5 (ABI5)的启动子区域的亮氨酸拉链结合,负调控ABI5的转录功能。可以看出,MED25与MYC2和ABI5的相互作用机制是不同的。这些说明拟南芥的MED25选择性地与特定转录因子相互作用来调节不同激素信号通路 [35] 。JA途径在耐盐胁迫中的作用并不局限于拟南芥。在水稻中,RICE SALT SENSITIVE3 (RSS3)是一种在根尖表达的核蛋白,通过抑制根的JA反应来促进细胞伸长,这是在盐条件下根生长所必需的。因此,在盐胁迫下,丧失了RSS3功能的植物通过激活根尖的JA响应基因导致根的生长受到抑制 [36] 。综上所述,这些发现表明JA通路正向调控植物的耐盐性。

MYC2被认为在激活JA的信号途径中是一个主要调节因子 [37] 。MYC2包括N端的一个JAZ相互作用的结构域(JID) [38] ,一个与MED25进行反式激活的转录激活结构域(TAD) [39] [40] ,C端一个可以聚集JAZ到细胞核的NLS [41] ,以及C端一个用于二聚化和结合G-box (CACGTG)或类G-box的bHLH结构域 [42] 。MYC2也是是不同激素信号途径的一个交叉点。JAZ和赤霉素(GA)通路中的抑制因子DELLA均与MYC2相互作用,以抑制花中倍半萜的生物合成 [43] ,JA和GA可以激活MYC2并诱导倍半萜的生物合成。脱落酸(ABA)可以促进ABA的受体PYL6与MYC2相互作用,并阻碍MYC2与靶启动子的结合能力 [25] 。

5. 结论和展望

最近的研究彻底改变了只有某些特定激素在植物生理调节中起主要作用的观点。相反,所有的植物激素都与多种植物过程直接或间接相关,包括生物和非生物胁迫 [36] 。ABA和JA在植物对盐胁迫响应中发挥了重要作用,是植物抵抗盐胁迫的重要途径,当前对ABA和JA两种植物激素的研究很多,在生产实践当中也取得了一定的成果,然而它们在盐胁迫下的作用机制还未被完全揭露,有待我们去发掘。在不同的发育阶段、组织类型中,ABA和JA似乎协同或拮抗地发挥着作用,ABA途径和JA途径之间存在着交联作用,但具体机制尚未明确,需要进一步研究来确认。

参考文献

[1] van Zelm, E., Zhang, Y. and Testerink, C. (2020) Salt Tolerance Mechanisms of Plants. Annual Review of Plant Biology, 71, 403-433.
https://doi.org/10.1146/annurev-arplant-050718-100005
[2] Munns, R. and Tester, M. (2008) Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59, 651-681.
https://doi.org/10.1146/annurev.arplant.59.032607.092911
[3] Toledo-Ortiz, G., Huq, E. and Quail, P.H. (2003) The Arabidopsis Basic/Helix-Loop-Helix Transcription Factor Family. The Plant Cell, 15, 1749-1770.
https://doi.org/10.1105/tpc.013839
[4] Tuteja, N. (2007) Mechanisms of High Salinity Tolerance in Plants. Meth-ods in Enzymology, 428, 419-438.
https://doi.org/10.1016/S0076-6879(07)28024-3
[5] McAinsh, M.R. and Pittman, J.K. (2009) Shaping the Cal-cium Signature. The New Phytologist, 181, 275-294.
https://doi.org/10.1111/j.1469-8137.2008.02682.x
[6] Martí, M.C., Stancombe, M.A. and Webb, A.A.R. (2013) Cell- and Stimulus Type-Specific Intracellular Free Ca2+ Signals in Arabidopsis. Plant Physiology, 163, 625-634.
https://doi.org/10.1104/pp.113.222901
[7] Zhu, J.-K. (2016) Abiotic Stress Signaling and Responses in Plants. Cell, 167, 313-324.
https://doi.org/10.1016/j.cell.2016.08.029
[8] Geiger, D., Scherzer, S., Mumm, P., Stange, A., Marten, I., Bauer, H., Ache, P., Matschi, S., Liese, A., Al-Rasheid, K.A.S., Romeis, T. and Hedrich, R. (2009) Activity of Guard Cell An-ion Channel SLAC1 Is Controlled by Drought-Stress Signaling Kinase-Phosphatase Pair. Proceedings of the National Academy of Sciences of the United States of America, 106, 21425-21430.
https://doi.org/10.1073/pnas.0912021106
[9] Qi, J., Song, C.-P., Wang, B., Zhou, J., Kangasjärvi, J., Zhu, J.-K. and Gong, Z. (2018) Reactive Oxygen Species Signaling and Stomatal Movement in Plant Responses to Drought Stress and Pathogen Attack. Journal of Integrative Plant Biology, 60, 805-826.
https://doi.org/10.1111/jipb.12654
[10] Min, M.K., Choi, E.-H., Kim, J.-A., Yoon, I.S., Han, S., Lee, Y., Lee, S. and Kim, B.-G. (2019) Two Clade A Phosphatase 2Cs Expressed in Guard Cells Physically Interact with Abscisic Acid Signaling Components to Induce Stomatal Closure in Rice. Rice (New York, N.Y.), 12, 37.
https://doi.org/10.1186/s12284-019-0297-7
[11] Oritani, T. and Kiyota, H. (2003) Biosynthesis and Metabolism of Abscisic Acid and Related Compounds. Natural Product Reports, 20, 414-425.
https://doi.org/10.1039/b109859b
[12] Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamagu-chi-Shinozaki, K. and Shinozaki, K. (2006) Crosstalk between Abiotic and Biotic Stress Responses: A Current View from the Points of Convergence in the Stress Signaling Networks. Current Opinion in Plant Biology, 9, 436-442.
https://doi.org/10.1016/j.pbi.2006.05.014
[13] Zhu, J.-K. (2002) Salt and Drought Stress Signal Transduction in Plants. Annual Review of Plant Biology, 53, 247-273.
https://doi.org/10.1146/annurev.arplant.53.091401.143329
[14] Nambara, E. and Marion-Poll, A. (2005) Abscisic Acid Biosynthesis and Catabolism. Annual Review of Plant Biology, 56, 165-185.
https://doi.org/10.1146/annurev.arplant.56.032604.144046
[15] Christmann, A., Moes, D., Himmelbach, A., Yang, Y., Tang, Y. and Grill, E. (2006) Integration of Abscisic Acid Signalling into Plant Responses. Plant Biology (Stuttgart, Germany), 8, 314-325.
https://doi.org/10.1055/s-2006-924120
[16] Verslues, P.E. and Zhu, J.-K. (2007) New Developments in Abscisic Acid Perception and Metabolism. Current Opinion in Plant Biology, 10, 447-452.
https://doi.org/10.1016/j.pbi.2007.08.004
[17] Urano, K., Maruyama, K., Ogata, Y., Morishita, Y., Takeda, M., Sakurai, N., Suzuki, H., Saito, K., Shibata, D., Kobayashi, M., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2009) Characterization of the ABA-Regulated Global Responses to Dehydration in Arabidopsis by Metabolomics. The Plant Journal: For Cell and Molecular Biology, 57, 1065-1078.
https://doi.org/10.1111/j.1365-313X.2008.03748.x
[18] Zeevaart, J.A.D. and Creelman, R.A. (1988) Metabolism and Physiology of Abscisic Acid. Annual Review of Plant Physiology and Plant Molecular Biology, 39, 439-473.
https://doi.org/10.1146/annurev.pp.39.060188.002255
[19] Finkelstein, R.R., Gampala, S.S.L. and Rock, C.D. (2002) Abscisic Acid Signaling in Seeds and Seedlings. The Plant Cell, 14, s15.
https://doi.org/10.1105/tpc.010441
[20] Park, S.-Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T.-F.F., Alfred, S.E., Bonetta, D., Finkelstein, R., Provart, N.J., Desveaux, D., Rodriguez, P.L., McCourt, P., Zhu, J.-K., Schroeder, J.I. and Cutler, S.R. (2009) Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins. Science (New York, N.Y.), 324, 1068-1071.
https://doi.org/10.1126/science.1173041
[21] Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A. and Grill, E. (2009) Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors. Science (New York, N.Y.), 324, 1064-1068.
https://doi.org/10.1126/science.1172408
[22] Soon, F.-F., Ng, L.-M., Zhou, X.E., West, G.M., Kovach, A., Tan, M.H.E., Suino-Powell, K.M., He, Y., Xu, Y., Chalmers, M.J., Brunzelle, J.S., Zhang, H., Yang, H., Jiang, H., Li, J., Yong, E.-L., Cutler, S., Zhu, J.-K., Griffin, P.R. and Xu, H.E. (2012) Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases. Science (New York, N.Y.), 335, 85-88.
https://doi.org/10.1126/science.1215106
[23] Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R. and Abrams, S.R. (2010) Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 61, 651-679.
https://doi.org/10.1146/annurev-arplant-042809-112122
[24] Zhao, Y., Xing, L., Wang, X., Hou, Y.-J., Gao, J., Wang, P., Duan, C.-G., Zhu, X. and Zhu, J.-K. (2014) The ABA Receptor PYL8 Promotes Lateral Root Growth by En-hancing MYB77-Dependent Transcription of Auxin-Responsive Genes. Science Signaling, 7, ra53.
https://doi.org/10.1126/scisignal.2005051
[25] Aleman, F., Yazaki, J., Lee, M., Takahashi, Y., Kim, A.Y., Li, Z., Kinoshita, T., Ecker, J.R. and Schroeder, J.I. (2016) An ABA-Increased Interaction of the PYL6 ABA Receptor with MYC2 Transcription Factor: A Putative Link of ABA and JA Signaling. Scientific Reports, 6, Article No. 28941.
https://doi.org/10.1038/srep28941
[26] Sirichandra, C., Gu, D., Hu, H.-C., Davanture, M., Lee, S., Djaoui, M., Valot, B., Zivy, M., Leung, J., Merlot, S. and Kwak, J.M. (2009) Phosphorylation of the Arabidopsis AtrbohF NADPH Oxidase by OST1 Protein Kinase. FEBS Letters, 583, 2982-2986.
https://doi.org/10.1016/j.febslet.2009.08.033
[27] Wang, P., Du, Y., Hou, Y.-J., Zhao, Y., Hsu, C.-C., Yuan, F., Zhu, X., Tao, W.A., Song, C.-P. and Zhu, J.-K. (2015) Nitric Oxide Negatively Regulates Abscisic Acid Signaling in Guard Cells by S-Nitrosylation of OST1. Proceedings of the National Academy of Sciences of the United States of Amer-ica, 112, 613-618.
https://doi.org/10.1073/pnas.1423481112
[28] Castillo, M.-C., Lozano-Juste, J., González-Guzmán, M., Rodriguez, L., Rodriguez, P.L. and León, J. (2015) Inactivation of PYR/PYL/RCAR ABA Receptors by Tyrosine Nitration May Enable Rapid Inhibition of ABA Signaling by Nitric Oxide in Plants. Science Signaling, 8, ra89.
https://doi.org/10.1126/scisignal.aaa7981
[29] Wasternack, C. and Hause, B. (2013) Jasmonates: Biosynthesis, Perception, Signal Transduction and Action in Plant Stress Response, Growth and Development. An Update to the 2007 Review in Annals of Botany. Annals of Botany, 111, 1021-1058.
https://doi.org/10.1093/aob/mct067
[30] Wasternack, C. and Song, S. (2017) Jasmonates: Biosynthesis, Metabo-lism, and Signaling by Proteins Activating and Repressing Transcription. Journal of Experimental Botany, 68, 1303-1321.
https://doi.org/10.1093/jxb/erw443
[31] Kang, D.-J., Seo, Y.-J., Lee, J.-D., Ishii, R., Kim, K.U., Shin, D.H., Park, S.K., Jang, S.W. and Lee, I.-J. (2005) Jasmonic Acid Differentially Affects Growth, Ion Uptake and Abscisic Acid Concentration in Salt-Tolerant and Salt-Sensitive Rice Cultivars. Journal of Agronomy and Crop Science, 191, 273-282.
https://doi.org/10.1111/j.1439-037X.2005.00153.x
[32] Qiu, Z., Guo, J., Zhu, A., Zhang, L. and Zhang, M. (2014) Exogenous Jasmonic Acid Can Enhance Tolerance of Wheat Seedlings to Salt Stress. Ecotoxicology and Environmental Safety, 104, 202-208.
https://doi.org/10.1016/j.ecoenv.2014.03.014
[33] Dong, W., Wang, M., Xu, F., Quan, T., Peng, K., Xiao, L. and Xia, G. (2013) Wheat Oxophytodienoate Reductase Gene TaOPR1 Confers Salinity Tolerance via Enhancement of Ab-scisic Acid Signaling and Reactive Oxygen Species Scavenging. Plant Physiology, 161, 1217-1228.
https://doi.org/10.1104/pp.112.211854
[34] Zhao, Y., Dong, W., Zhang, N., Ai, X., Wang, M., Huang, Z., Xiao, L. and Xia, G. (2014) A Wheat Allene Oxide Cyclase Gene Enhances Salinity Tolerance via Jasmonate Signaling. Plant Physiology, 164, 1068-1076.
https://doi.org/10.1104/pp.113.227595
[35] Chen, R., Jiang, H., Li, L., Zhai, Q., Qi, L., Zhou, W., Liu, X., Li, H., Zheng, W., Sun, J. and Li, C. (2012) The Arabidopsis Mediator Subunit MED25 Differentially Regulates Jasmonate and Abscisic Acid Signaling through Interacting with the MYC2 and ABI5 Transcription Factors. The Plant Cell, 24, 2898-2916.
https://doi.org/10.1105/tpc.112.098277
[36] Toda, Y., Tanaka, M., Ogawa, D., Kurata, K., Kurotani, K.-I., Habu, Y. ando, T., Sugimoto, K., Mitsuda, N., Katoh, E., Abe, K., Miyao, A., Hirochika, H., Hattori, T. and Takeda, S. (2013) Rice Salt Sensitive3 Forms a Ternary Complex with JAZ and Class-C bHLH Factors and Regulates Jasmonate-Induced Gene Expression and Root Cell Elongation. The Plant Cell, 25, 1709-1725.
https://doi.org/10.1105/tpc.113.112052
[37] Lorenzo, O., Chico, J.M., Sánchez-Serrano, J.J. and Solano, R. (2004) Jasmonate-Insensitive1 Encodes a MYC Transcription Factor Essential to Discriminate between Different Jasmonate-Regulated Defense Responses in Arabidopsis. The Plant Cell, 16, 1938-1950.
https://doi.org/10.1105/tpc.022319
[38] Fernández-Calvo, P., Chini, A., Fernández-Barbero, G., Chico, J.-M., Gimenez-Ibanez, S., Geerinck, J., Eeckhout, D., Schweizer, F., Godoy, M., Franco-Zorrilla, J.M., Pauwels, L., Witters, E., Puga, M.I., Paz-Ares, J., Goossens, A., Reymond, P., De Jaeger, G. and Solano, R. (2011) The Arabidopsis bHLH Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activa-tion of Jasmonate Responses. The Plant Cell, 23, 701-715.
https://doi.org/10.1105/tpc.110.080788
[39] Chen, Q., Sun, J., Zhai, Q., Zhou, W., Qi, L., Xu, L., Wang, B., Chen, R., Jiang, H., Qi, J., Li, X., Palme, K. and Li, C. (2011) The Basic Helix-Loop-Helix Transcription Factor MYC2 Directly Represses PLETHORA Expression during Jasmonate-Mediated Modulation of the Root Stem Cell Niche in Arabidopsis. The Plant Cell, 23, 3335-3352.
https://doi.org/10.1105/tpc.111.089870
[40] Zhai, Q., Yan, L., Tan, D., Chen, R., Sun, J., Gao, L., Dong, M.-Q., Wang, Y. and Li, C. (2013) Phosphorylation-Coupled Proteolysis of the Transcription Factor MYC2 Is Important for Jasmonate-Signaled Plant Immunity. PLoS Genetics, 9, e1003422.
https://doi.org/10.1371/journal.pgen.1003422
[41] Withers, J., Yao, J., Mecey, C., Howe, G.A., Melotto, M. and He, S.Y. (2012) Transcription Factor-Dependent Nuclear Localization of a Transcriptional Repressor in Jasmonate Hor-mone Signaling. Proceedings of the National Academy of Sciences of the United States of America, 109, 20148-20153.
https://doi.org/10.1073/pnas.1210054109
[42] Klingler, J. P., Batelli, G. and Zhu, J.-K. (2010) ABA Receptors: The START of a New Paradigm in Phytohormone Signalling. Journal of Experimental Botany, 61, 3199-3210.
https://doi.org/10.1093/jxb/erq151
[43] Hong, G.-J., Xue, X.-Y., Mao, Y.-B., Wang, L.-J. and Chen, X.-Y. (2012) Arabidopsis MYC2 Interacts with DELLA Proteins in Regulating Sesquiterpene Synthase Gene Expression. The Plant Cell, 24, 2635-2648.
https://doi.org/10.1105/tpc.112.098749