|
[1]
|
Wong, W.L., Su, X., Li, X., et al. (2014) Global Prevalence of Age-Related Macular Degeneration and Disease Burden Projection for 2020 and 2040: A Systematic Review and Meta-Analysis. The Lancet Global Health, 2, e106-e116. [Google Scholar] [CrossRef]
|
|
[2]
|
Fredholm, B.B., Chen, J.F., Cunha, R.A., Svenningsson, P. and Vaugeois, J.M. (2005) Adenosine and Brain Function. International Review of Neurobiology, 63, 191-270. [Google Scholar] [CrossRef]
|
|
[3]
|
North, R.A. and Barnard, E.A. (1997) Nucleotide Receptors. Current Opinion in Neurobiology, 7, 346-357. [Google Scholar] [CrossRef]
|
|
[4]
|
Akhtar-Schafer, I., Wang, L., Krohne, T.U., Xu, H. and Langmann, T. (2018) Modulation of Three Key Innate Immune Pathways for the Most Common Retinal Degenerative Diseases. EMBO Molecular Medicine, 10, e8259. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Tovell, V.E. and Sanderson, J. (2008) Distinct P2Y Receptor Subtypes Regulate Calcium Signaling in Human Retinal Pigment Epithelial Cells. Investigative Ophthalmology & Visual Science, 49, 350-357. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Pannicke, T., Frommherz, I., Biedermann, B., et al. (2014) Differential Effects of P2Y1 Deletion on Glial Activation and Survival of Photoreceptors and Amacrine Cells in the Ischemic Mouse Retina. Cell Death & Disease, 5, e1353. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
胡一凡. 嘌呤能信号在干性年龄相关性黄斑变性中损伤作用的研究进展[J]. 中华实验眼科杂志, 2022, 40(1): 78-82.
|
|
[8]
|
Guha, S., Baltazar, G.C., Coffey, E.E., et al. (2013) Lyso-somal Alkalinization, Lipid Oxidation, and Reduced Phagosome Clearance Triggered by Activation of the P2X7 Receptor. The FASEB Journal, 27, 4500-4509. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Meyer, C.H., Hotta, K., Peterson, W.M., Toth, C.A. and Jaffe, G.J. (2013) Effect of INS37217, a P2Y2 Receptor Agonist, on Experimental Retinal Detachment and Electroretinogram in Adult Rabbits. Investigative Ophthalmology & Visual Science, 43, 3567-3574.
|
|
[10]
|
Zhao, Z., Chen, Y., Wang, J., et al. (2011) Age-Related Retinopathy in NRF2-Deficient Mice. PLOS ONE, 6, e19456. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Nakagami, Y. (2016) Nrf2 Is an Attractive Therapeutic Target for Retinal Diseases. Oxidative Medicine and Cellular Longevity, 2016, Article ID: 7469326. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Natoli, R. and Fernando, N. (2018) MicroRNA as Therapeutics for Age-Related Macular Degeneration. In: Ash, J., Anderson, R., LaVail, M., Bowes Rickman, C., Hollyfield, J. and Grimm, C., Eds., Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, Vol. 1074, Springer, Cham, 37-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
刘金霞, 王钰池, 郭卓, 等. microRNA-125b通过调控Nrf2/Keap1信号通路影响光感受器细胞氧化应激[J]. 中国医科大学学报, 2021, 50(11): 976-980.
|
|
[14]
|
Etienne-Manneville, S. and Hall, A. (2002) Rho GTPases in Cell Biology. Nature, 420, 629-635. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Loirand, G. (2015) Rho Kinases in Health and Disease: From Basic Sci-ence to Translational Research. Pharmacological Reviews, 67, 1074-1095. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Crosas-Molist, E., Samain, R., Kohlhammer, L., et al. (2022) Rho GTPase Signaling in Cancer Progression and Dissemination. Physiological Reviews, 102, 455-510. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Bravo-Nuevo, A., Sugimoto, H., Iyer, S., et al. (2011) RhoB Loss Prevents Streptozotocin-Induced Diabetes and Ameliorates Diabetic Complications in Mice. The American Journal of Pathology, 178, 245-252. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Lu, W., Wen, J. and Chen, Z. (2020) Distinct Roles of ROCK1 and ROCK2 on the Cerebral Ischemia Injury and Subsequently Neurodegenerative Changes. Pharmacology, 105, 3-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Adini, I., Rabinovitz, I., Sun, J.F., et al. (2003) RhoB Controls Akt Traf-ficking and Stage-Specific Survival of Endothelial Cells during Vascular Development. Genes & Development, 17, 2721-2732. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Souied, E., Pulido, J. and Staurenghi, G. (2017) Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration. New England Journal of Medicine, 377, 792-793. [Google Scholar] [CrossRef]
|
|
[21]
|
Tsuji, T., Inatani, M., Tsuji, C., Cheranov, S.M. and Kadonosono, K. (2020) Oxytocin Induced Epithelium-Mesenchimal Transition through Rho-ROCK Pathway in ARPE-19 Cells, a Human Retinal Pigmental Cell Line. Tissue and Cell, 64, Article ID: 101328. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Xu, Y., Cui, K., Li, J., et al. (2020) Melatonin Attenuates Choroidal Neovascularization by Regulating Macrophage/microglia Polarization via Inhibition of RhoA/ROCK Signaling Pathway. Journal of Pineal Research, 69, e12660. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Hollanders, K., Van Bergen, T., Kindt, N., et al. (2015) The Effect of AMA0428, a Novel and Potent ROCK Inhibitor, in a Model of Neovascular Age-Related Macular Degeneration. Inves-tigative Ophthalmology & Visual Science, 56, 1335-1348. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Kitahata, S., Ichikawa, H., Tanaka, Y., Inoue, T. and Kadonosono, K. (2020) Transient Rho-Associated Coiled-Coil Containing Ki-nase (ROCK) Inhibition on Human Retinal Pigment Epithelium Results in Persistent Rho/ROCK Downregulation. Bio-chemistry and Biophysics Reports, 24, Article ID: 100841. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Tang, K., Wang, W., Wang, Q., et al. (2015) Haplotypes of RHO Polymorphisms and Susceptibility to Age-Related Macular Degeneration. International Journal of Clinical and Experimental Pathology, 8, 3174-3179.
|
|
[26]
|
Sijnave, D., Van Bergen, T., Castermans, K., et al. (2015) Inhibition of Rho-Associated Kinase Prevents Pathological Wound Healing and Neovascularization after Corneal Trauma. Cornea, 34, 1120-1129. [Google Scholar] [CrossRef]
|
|
[27]
|
Narimatsu, T., Ozawa, Y., Miyake, S., et al. (2013) Disrup-tion of Cell-Cell Junctions and Induction of Pathological Cytokines in the Retinal Pigment Epithelium of Light-Exposed Mice. Investigative Ophthalmology & Visual Science, 54, 4555-4562. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Karunadharma, P.P., Nordgaard, C.L., Olsen, T.W. and Ferrington, D.A. (2010) Mitochondrial DNA Damage as a Potential Mechanism for Age-Related Macular Degeneration. Investiga-tive Ophthalmology & Visual Science, 51, 5470-5479. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Feher, J., Kovacs, I., Artico, M., et al. (2006) Mitochondrial Alterations of Retinal Pigment Epithelium in Age-Related Macular Degenera-tion. Neurobiology of Aging, 27, 983-993. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Jarrett, S.G., Lin, H., Godley, B.F. and Boulton, M.E. (2008) Mitochondrial DNA Damage and Its Potential Role in Retinal Degenera-tion. Progress in Retinal and Eye Research, 27, 596-607. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Lee, S.T., Oh, J.S., Rho, J.H., et al. (2014) Retinal Pigment Epithelial Cells Undergoing Mitotic Catastrophe Are Vulnerable to Autophagy Inhibition. Cell Death & Disease, 5, e1303. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Stenirri, S., Santambrogio, P., Setaccioli, M., et al. (2012) Study of FTMT and ABCA4 Genes in a Patient Affected by Age-Related Macular Degeneration: Identification and Anal-ysis of New Mutations. Clinical Chemistry and Laboratory Medicine, 50, 1021-1029. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Wang, X., Yang, H., Yanagisawa, D., et al. (2016) Mitochondrial Ferritin Affects Mitochondria by Stabilizing HIF-1α in Retinal Pigment Epithelium: Implications for the Pathophysiology of Age-Related Macular Degeneration. Neurobiology of Aging, 47, 168-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Benest, A.V., Kruse, K., Savant, S., et al. (2013) Angi-opoietin-2 Is Critical for Cytokine-Induced Vascular Leakage. PLOS ONE, 8, e70459. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Augustin, H., Young Koh, G., Thurston, G. and Alitalo, K. (2009) Control of Vascular Morphogenesis and Homeostasis through the Angiopoietin-Tie System. Nature Reviews Mo-lecular Cell Biology, 10, 165-177. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Nambu, H., Umeda, N., Kachi, S., et al. (2005) Angiopoietin 1 Prevents Retinal Detachment in an Aggressive Model of Proliferative Retinopathy, but Has No Effect on Established Neovascu-larization. Journal of Cellular Physiology, 204, 227-235. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Peters, S., Cree, I.A., Alexander, R., et al. (2007) Angiopoietin Modulation of Vascular Endothelial Growth Factor: Effects on Retinal Endothelial Cell Permeability. Cytokine, 40, 144-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Ma, L., Brelen, M.E., Tsujikawa, M., et al. (2017) Identification of ANGPT2 as a New Gene for Neovascular Age-Related Mac-ular Degeneration and Polypoidal Choroidal Vasculopathy in the Chinese and Japanese Populations. Investigative Oph-thalmology & Visual Science, 58, 1076-1083. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Otani, A., Takagi, H., Oh, H., et al. (1999) Expressions of Angiopoietins and Tie2 in Human Choroidal Neovascular Membranes. Investigative Ophthalmology & Visual Science, 40, 1912-1920.
|
|
[40]
|
Lambert, N.G., Zhang, X., Rai, R.R., et al. (2016) Subretinal AAV2.COMP-Ang1 Suppresses Choroidal Neovascularization and Vascular Endothelial Growth Factor in a Murine Model of Age-Related Macular Degeneration. Experimental Eye Research, 145, 248-257. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Kim, J., Park, J.R., Choi, J., et al. (2019) Tie2 Activation Promotes Choriocapillary Regeneration for Alleviating Neovascular Age-Related Macular Degeneration. Science Advances, 5, Arti-cle No. u6732. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Foxton, R.H., Uhles, S., Grüner, S., Revelant, F. and Ullmer, C. (2019) Efficacy of Simultaneous VEGF-A/ANG-2 Neutralization in Suppressing Spontaneous Choroidal Neovascularization. EMBO Molecular Medicine, 11, e10204. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Klaassen, I., de Vries, E.W., Vogels, I., et al. (2017) Identification of Proteins Associated With Clinical and Pathological Features of Proliferative Diabetic Retinopathy in Vitreous and Fi-brovascular Membranes. PLOS ONE, 12, e187304. [Google Scholar] [CrossRef] [PubMed]
|