年龄相关性黄斑变性相关信号通路的研究进展
Research Progress of Signal Pathways Related to Age-Related Macular Degeneration
DOI: 10.12677/ACM.2023.133587, PDF, HTML, XML, 下载: 180  浏览: 288 
作者: 邵 欢, 刘 锦, 高春婷:延安大学医学院,陕西 延安;霍 昭*:延安大学附属医院眼科,陕西 延安
关键词: 年龄相关性黄斑变性信号通路综述Age-Related Macular Degeneration Signaling Pathway Review
摘要: 年龄相关性黄斑变性(AMD)是主要的致盲眼病之一,它的发病机制暂不明确,研究发现年龄,环境,生活方式,遗传等均是其危险因素。目前针对干性AMD并没有好的治疗方法,而对于湿性AMD最主要的方式也是针对新生血管的抗血管内皮生长因子(VEGF)的治疗。因此研究人员也在积极寻找AMD的发病机制,以期对于AMD有更好的预防及治疗措施。本文介绍了嘌呤能信号通路、Nrf2/Keap1信号通路、Rho/ROCK通路、线粒体自噬信号通路、Ang/Tie信号通路与AMD之间的关系,以期为AMD的治疗及预防提供新的思路。
Abstract: Age-related macular degeneration (AMD) is one of the leading causes of blindness. The pathogene-sis of AMD is still unclear. Many studies have found that age, environment, lifestyle, and genetics are the risk factors. At present, there is no good treatment for dry AMD, and the main treatment for wet AMD is anti-vascular endothelial growth factor (VEGF) treatment for neovascularization. Therefore, researchers are also actively looking for the pathogenesis of AMD in order to have better prevention and treatment measures for AMD. This article reviews the relationship between purinergic signal-ing pathway, Nrf2/Keap1 signaling pathway, Rho/ROCK signaling pathway, mitautophagy signaling pathway, and Ang/Tie signaling pathway and AMD, in order to provide new ideas for the treatment and prevention of AMD.
文章引用:邵欢, 刘锦, 高春婷, 霍昭. 年龄相关性黄斑变性相关信号通路的研究进展[J]. 临床医学进展, 2023, 13(3): 4088-4094. https://doi.org/10.12677/ACM.2023.133587

1. 引言

年龄相关性黄斑变性(Age-Related Macular Degeneration, AMD)是一种视网膜退行性的疾病,它的发病率与年龄成正比,可造成不可逆性视力下降。由于经济的发展和人口老龄化,预计2040年AMD患者将达到2.88亿人 [1]。AMD早期特征为玻璃膜疣沉积,晚期又可分为干性AMD和湿性AMD。干性AMD又名萎缩型AMD,它是以地图状萎缩为主要特征;而湿性AMD又称新生血管型AMD (nAMD),它是以脉络膜新生血管(Choroidal Neovasular, CNV)的形成为主要特征。目前AMD的发病机制并不明确,一些研究表明嘌呤能信号通路、Nrf2/Keap1信号通路、Rho/ROCK通路、线粒体自噬信号通路、Ang/Tie通路等多种信号通路参与了AMD的形成,本文就AMD的相关信号通路研究进展进行综述。

2. 嘌呤能信号通路与干性AMD

干性AMD发病过程涉及了许多病理改变,包括氧化应激、炎症、脂褐素及drusen的形成、视网膜水肿和视网膜细胞死亡等,最终形成了地图样萎缩(Geographic Atrophy, GA),导致视力下降。嘌呤能信号通路是由三磷酸腺苷(Adenosine Triphosphate, ATP)和腺苷及其受体组成的。嘌呤能信号通路参与了视网膜的多种生理过程,其中ATP参与了光学信号的传递,同时也对视网膜稳态的维持发挥了作用;而腺苷通过调控小胶质细胞的活性从而影响视网膜免疫炎症反应。嘌呤能信号通路异常激活可导致视网膜细胞产生坏死、凋亡、炎症、氧化应激等损伤反应。

绝大多数的视网膜细胞中都含有腺苷的受体P1,P1有4种亚型,分别是A1、A2A、A2B与A3 [2]。同时,视网膜的各层细胞中也存在着ATP的受体:离子型P2X受体和G蛋白偶联代谢型P2Y受体 [3]。研究发现P2X受体,特别是P2X7受体的激活参与了视网膜细胞死亡的关键步骤,使用P2X7受体的不可逆抑制剂氧化的ATP或拮抗剂亮蓝G和KN-62能够阻断或显著抑制视网膜色素(Retinal Pigment Epithelium, RPE)细胞凋亡。提示过度激活嘌呤信号通路可能促进RPE细胞死亡,促进GA的发展 [4]。所以针对性减少ATP的释放或者适当抑制ATP受体的活性可能对干性AMD起一定的保护作用。大胶质细胞和RPE细胞中的P2Y受体激活后通过参与视网膜炎症反应,促进细胞死亡 [5] ;又一研究发现敲除P2X7受体基因的小鼠会发生缺血性视网膜病变,诱导视网膜全层细胞凋亡 [6]。AMD的发展也与视网膜免疫系统中参与炎症反应的小胶质细胞相关。腺苷A2A受体(A2AR)可调节小胶质细胞反应性,使其产生促炎或抗炎的作用。ATP可通过P2X7受体活化小胶质细胞,加重炎症反应,而ATP长时间激活P2X7受体会抑制小胶质细胞增生并诱导细胞凋亡 [7]。推测ATP可通过不同的受体对小胶质细胞进行调控,从而调节炎症反应。研究发现细胞外ATP和腺苷的平衡改变能够调节RPE细胞中溶酶体PH从而改变溶酶体活性,影响脂褐质的产生 [8]。活化的P2Y2受体可诱导RPE细胞中Ca2+途径激活,使得跨膜离子传递速率升高,从而使视网膜下液的清除率升高 [9]。以上研究均表明嘌呤能信号通路在干性AMD的病理过程中发挥着了很多作用,它参与了RPE细胞、光感受器等多种视网膜细胞的死亡,沉积物的生成以及炎症和氧化应激等多个损伤机制的调控。深入的研究嘌呤能信号通路与视网膜细胞间的相互作用,探讨其在干性AMD中的作用机制,能够为干性AMD的治疗提供新的思路,有助于开启多种途径治疗AMD的可能。

3. Nrf2/Keap1信号通路与干性AMD

核因子E2相关因子2 (Nuclear Factor-Erythroid 2-Related Factor 2, Nrf2)是一种转录因子,它主要参与了机体的抗氧化应激过程。敲除Nrf2基因的小鼠视网膜表现出与人类AMD相似病理改变 [10]。一般情况下,Kelch样环氧氯丙烷相关蛋白1 (Kelch-like ECH-associated protein-1, Keap1)与Nrf2结合导致Nrf2降解;当氧化应激发生时,Nrf2与Keap1解离并与血红素单加氧酶(Heme Oxygenase-1, HO-1)结合,从而发挥抗氧化作用。因此激活Nrf2/Keap1信号通路可以改善细胞的抗氧化能力,减少氧化损伤的程度 [11]。已有一些miRNAs被证实可以通过调控Nrf2来影响AMD的发病 [12]。利用光感受器细胞氧化应激模型,研究miR-125b在干性AMD中对Keap1/Nrf2/HO-1通路的调控作用,发现在氧化应激模型中miR-125b表达显著降低,Nrf2和下游基因HO-1表达增加,Keap1表达降低。这表明miR-125b可促进光感受器细胞的抗氧化应激能力,这种效果可能是通过调控Keap1/Nrf2/HO-1信号通路实现的 [13]。深入探究Nrf2/Keap1信号通路及其相关调控因子,可以为预防和治疗干性AMD提供一个新的靶点。

4. Rho/ROCK通路

Rho-GTP酶是20~30 kD单体GTP结合蛋白,它参与真核细胞中多种信号通路的调控 [14]。Rho家族包括了三种亚型,分别是RhoA、RhoB、RhoC,它们发挥着不同的功能。Rho激酶(ROCK),是一种丝氨酸/苏氨酸激酶,它包括了两个异构体ROCK1和ROCK2 [15]。ROCK作为Rho-GTP酶的主要下游效应因子之一,参与调控细胞增殖、收缩、迁移和黏附等多种生理功能。Rho/ROCK信号通路具有一系列重要的生物学功能,可以作为细胞调控过程中的“开关”。早期关于Rho/ROCK信号通路的研究主要集中在癌细胞方面 [16],而现在越来越多的研究表明Rho/ROCK信号通路在年龄相关性疾病中也发挥了重要作用,其中就包括了AMD [17]。研究表明Rho/ROCK通路介导了AMD中炎症反应、内皮细胞迁移、神经轴突再生、微血管病变和新生血管的发生等病理变化 [18]。研究显示 [19],当RhoB缺失时,小鼠的视网膜血管的发育会受到影响,而RhoB修饰了VEGF受体信号转导的关键介质Akt,其可促进内皮细胞中多种VEGF受体的表达。抑制ROCK信号传导机制能够显著降低RPE细胞的黏附力,从而有效地推动RPE细胞参与到伤口愈合的过程中 [20]。抑制ROCK信号传导机制能够显著降低RPE细胞的黏附力,从而有效地推动RPE细胞参与到伤口愈合的过程中 [21]。nAMD晚期最主要的特征是脉络膜新生血管(CNV),它可导致老年人严重的视力损伤。在激光诱导的小鼠CNV模型中发现RhoA/ROCK信号通路被激活,其增加了血管渗漏和血管增殖的风险 [22]。而一种新型ROCK抑制剂(AMA0428)在此小鼠模型中发挥了抗炎、抗血管生成和抗纤维化的作用 [23]。在激光诱导的新生血管性AMD小鼠模型中,AMA0428可减少视网膜炎症反应,防止异常血管生成,使CNV的面积减小同时减少渗漏的风险 [24]。这些结果表明,RhoA/ROCK信号通路在CNV中起着重要作用。在晚期干性AMD大鼠视网膜中发现视锥细胞和视杆细胞大量的减少,并发现了在视杆细胞中Rho蛋白特异性表达,其在视觉信号转导过程发挥了重要作用 [25]。RhoA/ROCK途径调节AMD新生血管中的巨噬细胞/小胶质细胞极化,在实验性视网膜病变和角膜损伤模型中ROCK抑制剂显示出了抗炎作用,表明Rho/ROCK信号通路可能介导了眼部的炎症反应 [26]。Narimatsu等研究 [27] 显示,在光诱导下的AMD小鼠模型RPE细胞中发现ROCK被激活,从而诱导IL-6水平增加,并促进了视网膜的炎症反应。因此,全面了解Rho/ROCK信号转导的生物学特性以及制定针对Rho/ROCK靶向治疗AMD的策略,将使AMD的治疗取得积极进展。

5. 线粒体自噬信号通路

自噬是复杂的溶酶体清除过程的统称,可分为选择性自噬与非选择性自噬。线粒体自噬是选择性自噬的一种,它通过选择性清除功能失调和多余的线粒体,为细胞产生能量并调节能量稳态。第10号染色体缺失的磷酸酶及张力蛋白同源基因(PTEN)诱导的激酶1/细胞质E3-泛素连接酶(PINK1/Parkin)信号轴是目前研究最多的线粒体自噬途径。有研究表明,在AMD供体RPE细胞中发现有线粒体的异常,包括线粒体数量减少、线粒体嵴丢失、线粒体基质密度减少以及线粒体DNA (mtDNA)突变 [28] [29] [30]。Lee等 [31] 发现,RPE细胞受到病理刺激后,PINK1会在线粒体膜表面聚集,并启动线粒体自噬,从而防止RPE细胞进一步受损。另有研究显示,AMD与线粒体铁蛋白(FtMt)突变密切相关 [32]。RPE细胞中的FtMt增加可能通过触发线粒体自噬而起到保护作用,但由于VEGF表达增加会引起新生血管的产成,从而导致nAMD。而在低氧状态下RPE细胞中功能性FtMt水平降低导致线粒体自噬减少,从而使得保护作用减弱,可能导致部分RPE细胞变性,最终演变为干性AMD [33]。靶向线粒体自噬相关蛋白,如FtMt,以增加清除被线粒体自噬破坏的线粒体,增加RPE细胞的活力,可能是阻止AMD进展的一种治疗方法。

6. Ang/Tie通路

血管生成素(Ang)/酪氨酸激酶受体Tie通路(Ang/Tie通路)包括了Tie1和Tie2两个酪氨酸激酶受体和Ang1、Ang2、Ang3、Ang4四个配体。Ang1激活Tie2,从而阻止血管渗漏和病理性新生血管的生长,同时还减轻了炎症反应。而Ang2是一种环境依赖性的激动剂/拮抗剂,在病理条件下Ang2可作为竞争性抑制剂抑制Tie2,进而导致血管处于不稳定的状态,更易受到VEGF和其他炎症因子的影响 [34]。Ang/Tie通路参与调节血管内稳态、血管通透性、炎症及新生血管的生成 [35]。目前临床上治疗nAMD的主要方法是抗VEGF治疗,而研究发现Ang/Tie通路与VEGF有相互作用。利用Ang1和VEGFA双转基因小鼠研究发现Ang1对VEGFA诱导的新生血管有抑制作用 [36] ;相反,通过Ang2和VEGFA的共同表达可以加速新生血管的形成,并且Ang2可以增强VEGFA的作用,使VEGF诱导的血管通透性增加3倍 [37]。一项对中国和日本受试者的研究发现,在AMD的发生中Ang2基因是其易感基因 [38]。在nAMD患者手术切除的CNV膜血管化程度最高的区域发现了Ang2和VEGF的高表达 [39]。在激光诱导的CNV小鼠模型中,通过腺病毒介导的Ang1基因治疗对于CNV的形成以及渗漏有很大的改善 [40] ;而通过激活Tie2和抗Ang2联合治疗可抑制CNV的生长和渗漏,并且还能促进脉络膜毛细血管稳态的维持,缓解缺氧状态 [41]。有研究在自发性CNV小鼠模型中发现抗VEGF/Ang2联合治疗在减少白细胞浸润方面发挥了很大作用 [42]。对增生型糖尿病视网膜病变患者玻璃体切除物的蛋白质谱分析也显示,Ang2浓度与患者的纤维化程度和纤维血管膜的形成密切相关 [43]。然而,Ang/Tie信号通路对视网膜下纤维化的影响还没有完全了解,需要进一步研究。Ang/Tie信号轴参与了AMD尤其是nAMD的发病,这也为针对靶向Ang/Tie信号轴治疗nAMD的药物提供理论依据,为更好地治疗nAMD提供新思路。

7. 结语

综上所述,嘌呤能信号通路、Nrf2/Keap1信号通路、Rho/ROCK通路、线粒体自噬信号通路、Ang/Tie通路均在AMD的发病机制中发挥了作用,并且AMD发病是多种通路共同作用的结果。深入对AMD发病机制的研究,了解相关分子、蛋白及信号通路在其中的作用,可能为AMD的治疗提供新的方向,为AMD的靶向治疗提供新思路。

NOTES

*通讯作者。

参考文献

[1] Wong, W.L., Su, X., Li, X., et al. (2014) Global Prevalence of Age-Related Macular Degeneration and Disease Burden Projection for 2020 and 2040: A Systematic Review and Meta-Analysis. The Lancet Global Health, 2, e106-e116.
https://doi.org/10.1016/S2214-109X(13)70145-1
[2] Fredholm, B.B., Chen, J.F., Cunha, R.A., Svenningsson, P. and Vaugeois, J.M. (2005) Adenosine and Brain Function. International Review of Neurobiology, 63, 191-270.
https://doi.org/10.1016/S0074-7742(05)63007-3
[3] North, R.A. and Barnard, E.A. (1997) Nucleotide Receptors. Current Opinion in Neurobiology, 7, 346-357.
https://doi.org/10.1016/S0959-4388(97)80062-1
[4] Akhtar-Schafer, I., Wang, L., Krohne, T.U., Xu, H. and Langmann, T. (2018) Modulation of Three Key Innate Immune Pathways for the Most Common Retinal Degenerative Diseases. EMBO Molecular Medicine, 10, e8259.
https://doi.org/10.15252/emmm.201708259
[5] Tovell, V.E. and Sanderson, J. (2008) Distinct P2Y Receptor Subtypes Regulate Calcium Signaling in Human Retinal Pigment Epithelial Cells. Investigative Ophthalmology & Visual Science, 49, 350-357.
https://doi.org/10.1167/iovs.07-1040
[6] Pannicke, T., Frommherz, I., Biedermann, B., et al. (2014) Differential Effects of P2Y1 Deletion on Glial Activation and Survival of Photoreceptors and Amacrine Cells in the Ischemic Mouse Retina. Cell Death & Disease, 5, e1353.
https://doi.org/10.1038/cddis.2014.317
[7] 胡一凡. 嘌呤能信号在干性年龄相关性黄斑变性中损伤作用的研究进展[J]. 中华实验眼科杂志, 2022, 40(1): 78-82.
[8] Guha, S., Baltazar, G.C., Coffey, E.E., et al. (2013) Lyso-somal Alkalinization, Lipid Oxidation, and Reduced Phagosome Clearance Triggered by Activation of the P2X7 Receptor. The FASEB Journal, 27, 4500-4509.
https://doi.org/10.1096/fj.13-236166
[9] Meyer, C.H., Hotta, K., Peterson, W.M., Toth, C.A. and Jaffe, G.J. (2013) Effect of INS37217, a P2Y2 Receptor Agonist, on Experimental Retinal Detachment and Electroretinogram in Adult Rabbits. Investigative Ophthalmology & Visual Science, 43, 3567-3574.
[10] Zhao, Z., Chen, Y., Wang, J., et al. (2011) Age-Related Retinopathy in NRF2-Deficient Mice. PLOS ONE, 6, e19456.
https://doi.org/10.1371/journal.pone.0019456
[11] Nakagami, Y. (2016) Nrf2 Is an Attractive Therapeutic Target for Retinal Diseases. Oxidative Medicine and Cellular Longevity, 2016, Article ID: 7469326.
https://doi.org/10.1155/2016/7469326
[12] Natoli, R. and Fernando, N. (2018) MicroRNA as Therapeutics for Age-Related Macular Degeneration. In: Ash, J., Anderson, R., LaVail, M., Bowes Rickman, C., Hollyfield, J. and Grimm, C., Eds., Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, Vol. 1074, Springer, Cham, 37-43.
https://doi.org/10.1007/978-3-319-75402-4_5
[13] 刘金霞, 王钰池, 郭卓, 等. microRNA-125b通过调控Nrf2/Keap1信号通路影响光感受器细胞氧化应激[J]. 中国医科大学学报, 2021, 50(11): 976-980.
[14] Etienne-Manneville, S. and Hall, A. (2002) Rho GTPases in Cell Biology. Nature, 420, 629-635.
https://doi.org/10.1038/nature01148
[15] Loirand, G. (2015) Rho Kinases in Health and Disease: From Basic Sci-ence to Translational Research. Pharmacological Reviews, 67, 1074-1095.
https://doi.org/10.1124/pr.115.010595
[16] Crosas-Molist, E., Samain, R., Kohlhammer, L., et al. (2022) Rho GTPase Signaling in Cancer Progression and Dissemination. Physiological Reviews, 102, 455-510.
https://doi.org/10.1152/physrev.00045.2020
[17] Bravo-Nuevo, A., Sugimoto, H., Iyer, S., et al. (2011) RhoB Loss Prevents Streptozotocin-Induced Diabetes and Ameliorates Diabetic Complications in Mice. The American Journal of Pathology, 178, 245-252.
https://doi.org/10.1016/j.ajpath.2010.11.040
[18] Lu, W., Wen, J. and Chen, Z. (2020) Distinct Roles of ROCK1 and ROCK2 on the Cerebral Ischemia Injury and Subsequently Neurodegenerative Changes. Pharmacology, 105, 3-8.
https://doi.org/10.1159/000502914
[19] Adini, I., Rabinovitz, I., Sun, J.F., et al. (2003) RhoB Controls Akt Traf-ficking and Stage-Specific Survival of Endothelial Cells during Vascular Development. Genes & Development, 17, 2721-2732.
https://doi.org/10.1101/gad.1134603
[20] Souied, E., Pulido, J. and Staurenghi, G. (2017) Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration. New England Journal of Medicine, 377, 792-793.
https://doi.org/10.1056/NEJMc1706274
[21] Tsuji, T., Inatani, M., Tsuji, C., Cheranov, S.M. and Kadonosono, K. (2020) Oxytocin Induced Epithelium-Mesenchimal Transition through Rho-ROCK Pathway in ARPE-19 Cells, a Human Retinal Pigmental Cell Line. Tissue and Cell, 64, Article ID: 101328.
https://doi.org/10.1016/j.tice.2019.101328
[22] Xu, Y., Cui, K., Li, J., et al. (2020) Melatonin Attenuates Choroidal Neovascularization by Regulating Macrophage/microglia Polarization via Inhibition of RhoA/ROCK Signaling Pathway. Journal of Pineal Research, 69, e12660.
https://doi.org/10.1111/jpi.12660
[23] Hollanders, K., Van Bergen, T., Kindt, N., et al. (2015) The Effect of AMA0428, a Novel and Potent ROCK Inhibitor, in a Model of Neovascular Age-Related Macular Degeneration. Inves-tigative Ophthalmology & Visual Science, 56, 1335-1348.
https://doi.org/10.1167/iovs.14-15681
[24] Kitahata, S., Ichikawa, H., Tanaka, Y., Inoue, T. and Kadonosono, K. (2020) Transient Rho-Associated Coiled-Coil Containing Ki-nase (ROCK) Inhibition on Human Retinal Pigment Epithelium Results in Persistent Rho/ROCK Downregulation. Bio-chemistry and Biophysics Reports, 24, Article ID: 100841.
https://doi.org/10.1016/j.bbrep.2020.100841
[25] Tang, K., Wang, W., Wang, Q., et al. (2015) Haplotypes of RHO Polymorphisms and Susceptibility to Age-Related Macular Degeneration. International Journal of Clinical and Experimental Pathology, 8, 3174-3179.
[26] Sijnave, D., Van Bergen, T., Castermans, K., et al. (2015) Inhibition of Rho-Associated Kinase Prevents Pathological Wound Healing and Neovascularization after Corneal Trauma. Cornea, 34, 1120-1129.
https://doi.org/10.1097/ICO.0000000000000493
[27] Narimatsu, T., Ozawa, Y., Miyake, S., et al. (2013) Disrup-tion of Cell-Cell Junctions and Induction of Pathological Cytokines in the Retinal Pigment Epithelium of Light-Exposed Mice. Investigative Ophthalmology & Visual Science, 54, 4555-4562.
https://doi.org/10.1167/iovs.12-11572
[28] Karunadharma, P.P., Nordgaard, C.L., Olsen, T.W. and Ferrington, D.A. (2010) Mitochondrial DNA Damage as a Potential Mechanism for Age-Related Macular Degeneration. Investiga-tive Ophthalmology & Visual Science, 51, 5470-5479.
https://doi.org/10.1167/iovs.10-5429
[29] Feher, J., Kovacs, I., Artico, M., et al. (2006) Mitochondrial Alterations of Retinal Pigment Epithelium in Age-Related Macular Degenera-tion. Neurobiology of Aging, 27, 983-993.
https://doi.org/10.1016/j.neurobiolaging.2005.05.012
[30] Jarrett, S.G., Lin, H., Godley, B.F. and Boulton, M.E. (2008) Mitochondrial DNA Damage and Its Potential Role in Retinal Degenera-tion. Progress in Retinal and Eye Research, 27, 596-607.
https://doi.org/10.1016/j.preteyeres.2008.09.001
[31] Lee, S.T., Oh, J.S., Rho, J.H., et al. (2014) Retinal Pigment Epithelial Cells Undergoing Mitotic Catastrophe Are Vulnerable to Autophagy Inhibition. Cell Death & Disease, 5, e1303.
https://doi.org/10.1038/cddis.2014.266
[32] Stenirri, S., Santambrogio, P., Setaccioli, M., et al. (2012) Study of FTMT and ABCA4 Genes in a Patient Affected by Age-Related Macular Degeneration: Identification and Anal-ysis of New Mutations. Clinical Chemistry and Laboratory Medicine, 50, 1021-1029.
https://doi.org/10.1515/cclm-2011-0854
[33] Wang, X., Yang, H., Yanagisawa, D., et al. (2016) Mitochondrial Ferritin Affects Mitochondria by Stabilizing HIF-1α in Retinal Pigment Epithelium: Implications for the Pathophysiology of Age-Related Macular Degeneration. Neurobiology of Aging, 47, 168-179.
https://doi.org/10.1016/j.neurobiolaging.2016.07.025
[34] Benest, A.V., Kruse, K., Savant, S., et al. (2013) Angi-opoietin-2 Is Critical for Cytokine-Induced Vascular Leakage. PLOS ONE, 8, e70459.
https://doi.org/10.1371/journal.pone.0070459
[35] Augustin, H., Young Koh, G., Thurston, G. and Alitalo, K. (2009) Control of Vascular Morphogenesis and Homeostasis through the Angiopoietin-Tie System. Nature Reviews Mo-lecular Cell Biology, 10, 165-177.
https://doi.org/10.1038/nrm2639
[36] Nambu, H., Umeda, N., Kachi, S., et al. (2005) Angiopoietin 1 Prevents Retinal Detachment in an Aggressive Model of Proliferative Retinopathy, but Has No Effect on Established Neovascu-larization. Journal of Cellular Physiology, 204, 227-235.
https://doi.org/10.1002/jcp.20292
[37] Peters, S., Cree, I.A., Alexander, R., et al. (2007) Angiopoietin Modulation of Vascular Endothelial Growth Factor: Effects on Retinal Endothelial Cell Permeability. Cytokine, 40, 144-150.
https://doi.org/10.1016/j.cyto.2007.09.001
[38] Ma, L., Brelen, M.E., Tsujikawa, M., et al. (2017) Identification of ANGPT2 as a New Gene for Neovascular Age-Related Mac-ular Degeneration and Polypoidal Choroidal Vasculopathy in the Chinese and Japanese Populations. Investigative Oph-thalmology & Visual Science, 58, 1076-1083.
https://doi.org/10.1167/iovs.16-20575
[39] Otani, A., Takagi, H., Oh, H., et al. (1999) Expressions of Angiopoietins and Tie2 in Human Choroidal Neovascular Membranes. Investigative Ophthalmology & Visual Science, 40, 1912-1920.
[40] Lambert, N.G., Zhang, X., Rai, R.R., et al. (2016) Subretinal AAV2.COMP-Ang1 Suppresses Choroidal Neovascularization and Vascular Endothelial Growth Factor in a Murine Model of Age-Related Macular Degeneration. Experimental Eye Research, 145, 248-257.
https://doi.org/10.1016/j.exer.2016.01.009
[41] Kim, J., Park, J.R., Choi, J., et al. (2019) Tie2 Activation Promotes Choriocapillary Regeneration for Alleviating Neovascular Age-Related Macular Degeneration. Science Advances, 5, Arti-cle No. u6732.
https://doi.org/10.1126/sciadv.aau6732
[42] Foxton, R.H., Uhles, S., Grüner, S., Revelant, F. and Ullmer, C. (2019) Efficacy of Simultaneous VEGF-A/ANG-2 Neutralization in Suppressing Spontaneous Choroidal Neovascularization. EMBO Molecular Medicine, 11, e10204.
https://doi.org/10.15252/emmm.201810204
[43] Klaassen, I., de Vries, E.W., Vogels, I., et al. (2017) Identification of Proteins Associated With Clinical and Pathological Features of Proliferative Diabetic Retinopathy in Vitreous and Fi-brovascular Membranes. PLOS ONE, 12, e187304.
https://doi.org/10.1371/journal.pone.0187304