1. 介绍
线性正则变换(Linear Canonical Transform, LCT)可以视为一个广义积分变换,包含傅里叶变换(Fourier Transform, FT) [1] 、分数傅里叶变换 [2] 、菲涅耳变换 [3] 作为特例。因为LCT含有三个自由参数 [4] ,所以它在非平稳信号处理方面具有足够的灵活性。特别地,LCT作为一种时频域信号表示,在滤波、去噪、分离信号 [5] [6] [7] 等方面比传统FT域 [8] 信号表示更有优势。
Wigner分布是最重要的科恩类时频分布之一。Wigner分布在傅里叶光学、几何光学、波几何光学、射线光学、矩阵光学和辐射测量中 [9] [10] [11] 有直接的应用。作为一个强大的时频分析工具,Wigner分布广泛用于线性调频(Linear Frequency-Modulated, LFM)信号检测,例如非线性光学等 [12] [13] [14] 领域。然而,由于信号检测系统固有的损失和外部的随机干扰,微弱的LFM信号被强烈的噪音淹没了。在这种情形下,Wigner分布不能提取出信号的主要特征。因此,将线性正则变换与Wigner分布相结合,是一个可以期待的有效增强非平稳信号表示灵活性的发展途径,为非平稳信号检测提供了一条基于具有一定自由度的信号表示工具的解决思路。
2001年,Pei和他的博士生Ding基于LCT与Wigner分布之间的时频面仿射变换关系,提出了仿射特征型Wigner分布(Affine Characteristic Wigner Distribution, ACWD) [15] 。2012年Bai等人用LCT的核函数代替Fourier变换的核函数,提出了核函数类型的Wigner分布(Kernel Function Wigner Distribution, KFWD) [2] 。2015年,Zhang等人通过将傅里叶变换卷积算子线性正则化,提出了卷积表示类型的Wigner分布(Convolution Representation Wigner Distribution, CRWD) [3] 。为了统一现有的Wigner分布, Zhang等人还提出了ICFWD [4] 及其更一般形式的闭式瞬时互相关函数型Wigner分布(Closed-form Instantaneous Cross-correlation Function Wigner Distribution, CICFWD) [16] ,并构建其输出信噪比不等式模型和优化模型 [16] [17] [18] [19] 。基于此研究,Wu,Shi等人分别构建ICFWD的输出信噪比不等式模型 [20] 、优化模型 [21] 、双目标优化模型 [22] 。研究结果表明,ICFWD使用更少参数实现了与CICFWD几乎一致的检测性能,且两者检测性能均显著优于ACWD、KFWD、CRWD和传统Wigner分布的检测性能。特别地,输出信噪比不等式模型克服了(双目标)优化模型无法针对双分量LFM信号进行求解的困难。
另一方面,Boggiatto等人引入参数τ [23] ,借助坐标变换,推广仅使用固定坐标(即常量值
)变换的Wigner分布,提出了τ-Wigner分布 [24] 以解决Wigner分布缺乏灵活性的问题。
在之前的研究中,Wong和Shubin从伪微分算子方面对τ-Wigner分布进行了研究,并且Boggiatto,Cordero等人研究了τ-Wigner分布在信号处理、时频分析和量子力学中的应用。2022年,基于τ-Wigner分布的海森堡不确定性原理,Zhang提出在τ-Wigner域的海森堡不确定性原理的两种可达下界。
为了进一步提升ICFWD的检测性能,本文将定义参数化瞬时互相关函数,用其替换ICFWD中的瞬时互相关函数,即,将在参数选择和表现形式上更加灵活的τ-Wigner分布与ICFWD结合,提出一种新型的微弱LFM信号的检测工具:瞬时互相关函数型τ-Wigner分布(Instantaneous Cross-correlation Function τ-Wigner Distribution, ICFτWD),通过构建ICFτWD的输出信噪比不等式模型分别对单、双分量LFM信号进行检测,给出LCT自由参数和参数τ的选取策略。
2. 预备知识
2.1. 线性正则变换(Linear Canonical Transform, LCT)
LCT具有三个自由参数,也被称为ABCD变换 [25] 、一般菲涅耳变换、柯林斯公式 [26] 。设
为参数矩阵,其中
为实数,且满足
,则信号
的LCT定义为
(1)
其中,LCT核函数
为
(2)
式(2)中,变量u表示LCT频率。当
时,LCT本质上是一个尺度和Chirp乘积算子。由不失一般性,本文只关注
时的LCT。此时,由
可得
,即
为LCT的三个自由参数。
2.2. LFM信号的定义及应用
(单分量) LFM信号,又称chirp信号,是一类频率随时间线性变化即频率变化率恒定的非平稳信号,其数学表达式为
(3)
其中,
和
分别表示LFM信号的初始频率和调频率。
(双分量) LFM信号则是由两个不同调频率的单分量LFM信号叠加而成,即
(4)
LFM信号非常适用于评估时频分析工具的时频聚集性,是衡量时频分析工具是否有效的常用信号模型之一。并且广泛应用于扩频通信系统识别和抗干扰分析、脉冲压缩雷达系统分辨率分析。因此,本文探究的仿真实例中的信号模型主要包括单分量LFM信号,双分量LFM信号,以及他们的含噪形式,即含噪单分量LFM信号和含噪双分量LFM信号。在含噪信号模型中,信噪比(Signal-to-Noise Ratio, SNR)定义为信号与噪声的能量比,噪声是加性高斯白噪声。
2.3. τ-Wigner分布
信号
的Wigner分布定义为瞬时自相关函数
关于时延
的FT,即
(5)
设
,定义参数化瞬时自相关函数
,则信号
的τ-Wigner分布定义为参数化瞬时自相关函数
关于
的FT即
(6)
时,τ-Wigner分布退化为传统的Wigner分布。因此,τ-Wigner分布是对Wigner分布的一个推广。
2.4. 瞬时互相关函数型Wigner分布(Instantaneous Cross-Correlation Function Wigner Distribution, ICFWD)
信号
的ICFWD定义为瞬时互相关函数
关于时延
的LCT,即
(7)
其中,上标*代表复共轭算子,
表示f以
为参数矩阵的线性正则变换,
表示以
为参数矩阵的LCT核函数。当参数矩阵
和
时,ICFWD退化为Wigner分布。
3. 瞬时互相关函数型τ-Wigner分布(Instantaneous Cross-Correlation Function τ-Wigner Distribution, ICFτWD)
设
,定义参数化瞬时互相关函数
,用参数化瞬时互相关函数替换ICFWD中的瞬时互相关函数,信号
的ICFτWD定义为瞬时互相关函数
关于时延
的LCT,即
(8)
上标*代表复共轭算子,
表示f以
为参数矩阵的线性正则变换,
表示以
为参数矩阵的LCT核函数,
是新引入的参数。 当
时,ICFτWD退化成ICFWD,即ICFτWD是ICFWD的一
种推广。
4. ICFτWD输出信噪比不等式模型
本节首先对一般含噪信号定义了信号
的ICFτWD的输出信噪比。然后建立ICFτWD的输出信噪比不等式模型并进行求解。
4.1. 输出信噪比
对于一般含噪信号
,其中
表示确定性信号,
表示零均值噪声(如果其均值不为零,则均值可以归一化为零),ICFτWD的数学期望为
(9)
则ICFτWD的输出信噪比可定义为
(10)
其中,当
是一个可数集,“Mean”是算术平均值,当
是一个不可
数集,则为积分平均值。
类似式(10),ICFWD、τ-Wigner分布、Wigner分布的输出信噪比可分别定义为
(11)
(12)
(13)
4.2. ICFτWD输出信噪比不等式模型建立
本研究使用在参数选择和表现形式上更加灵活的τ-Wigner分布作为工具与ICFWD有机结合,得到灵活度更大的ICFτWD。对于适当的参数矩阵
、
和参数τ,ICFτWD输出信噪比的值可以大于ICFWD输出信噪比的值。因此,ICFτWD和ICFWD之间输出信噪比不等式模型建为
(14)
类似地,建立ICFτWD和τ-Wigner分布之间输出信噪比不等式模型:
(15)
对于一般含噪信号
,Wigner分布的输出信噪比是一个常数。对于适当的参数矩阵
、
和参数τ,ICFτWD的输出信噪比的值要大于Wigner分布输出信噪比的值。因此,ICFτWD与Wigner分布之间可以建立输出信噪比不等式模型
(16)
结合式(14)~(16),得到不等式模型组为
(17)
4.3. 不等式模型组求解
将不等式模型组(17)展开,可得:
(18)
其中,不等式模型组包含四个内部优化问题,即求解
,
,
和
的最优解。
5. 不等式模型求解——针对白噪声干扰的LFM信号
5.1. LFM信号的ICFτWD
本小节分析了单、双分量LFM信号的ICFτWD,据此推导了优化问题
的解。
5.1.1. 单分量LFM信号ICFτWD
根据式(3)和LCT的定义,于是
(19)
利用高斯积分公式 [27]
(20)
当
时,则有
(21)
将式(3)和(21)代入式(8)中,可得单分量LFM信号的ICFτWD
(22)
当
时,式(22)可化简为
(23)
表示Dirac冲激算子,从而,优化问题的解为
(24)
5.1.2. 双分量LFM信号ICFτWD
根据式(4)和ICFτWD的双线性,双分量LFM信号的ICFτWD为
(25)
其中
和
是自身项,
和
是交叉项。
类似于式(23),双分量的自身项
和
分别为
(26)
和
(27)
其中
,
。
因为
,
,所以,双分量的交叉项
和
不能产生脉冲,分别表示为
(28)
和
(29)
有关证明,参阅“附录1”。
将式(26)~(29)代入式(25),可得双分量LFM信号的ICFτWD
(30)
从而,优化问题的解为
(31)
5.2. 白噪声的ICFτWD
本小节讨论了
的解。
单分量LFM信号噪声的ICFτWD为
(32)
采用公式
,其中,D是白噪声的功率谱密度,得到
(33)
再利用式(20),式(33)可化简为
(34)
其中
。于是,
(35)
5.3. 不等式模型求解
本小节分别推导了针对白噪声干扰的单、双分量LFM信号的不等式模型的解。
5.3.1. 白噪声干扰的单分量LFM信号
依据等式
,可以得到
,该等式证明过程详见附录二。据此,式(35)可以简化为
(36)
其中,
。
将式(24)和式(36)代入式(10),得到单分量情形下信号
的ICFτWD的输出信噪比
(37)
类似于式(37),在单分量情形下,信号
的ICFWD、τ-Wigner分布、Wigner分布的基于期望的输出信噪比分别为
(38)
(39)
(40)
将式(37)~(40)代入式(17),得到针对白噪声干扰的单分量LFM信号的不等式模型解
(41)
式(41)可以简化为
(42)
5.3.2. 白噪声干扰的双分量LFM信号
类似式(36),式(35)可以简化为
(43)
其中,
,
。
将式(24)和式(43)代入式(10),得到双分量情形下信号
的ICFτWD的输出信噪比
(44)
类似于式(44),在双分量情形下,信号
的ICFWD、τ-Wigner分布、Wigner分布的输出信噪比分别为
(45)
(46)
(47)
将式(44)~(47)代入式(17),得到针对白噪声干扰的双分量LFM信号的不等式模型解
(48)
式(45)可以化简为
(49)
针对白噪声干扰的单、双分量LFM信号求解结果如表1所示。

Table 1. Solution of an inequality model for a single/two-component LFM signal
表1. 单/双分量LFM信号的不等式模型的解
6. 结果和讨论
为验证ICFτWD在有噪声的LFM信号处理中可以保持计算复杂度基本不变的情形下体现出更好的检测性能,本节设计了数值仿真实验来比较ICFτWD、ICFWD、ACWD、KFWD、CRWD和Wigner分布的检测精度,以及ICFτWD、ICFWD、ACWD、KFWD和CRWD的计算速度。特别地,之前的研究 [20] ,针对双分量情形,利用卷积算法设计数值仿真实验来比较ICFτWD、ICFWD、ACWD、KFWD和Wigner分布的检测精度,以及ICFτWD、ICFWD、ACWD和KFWD的计算速度,但本研究利用科恩类算法来设计上述数值仿真实验。
分别模拟单、双分量LFM信号
加上一个加性高斯白噪声
,得到
(50)
和
(51)
假设观测时间间隔为[−5 s, 5 s],单分量情形采样频率为20 Hz,双分量采样频率为36 Hz。设含噪信
号
的输入信噪比为
。在仿真中,设置单、双分量情形下的输入信噪比均为
−10 dB。图1比较了ICFτWD、ICFWD、ACWD、KFWD、CRWD、Wigner分布的单分量情形下的检测
精度。ICFτWD的LCT自由参数满足
和
,它相关的幅
度谱、等高线图分别如图1(a)、图1(b)所示。利用 [4] 中选择的ICFWD的LCT自由参数分别在图1(c)、图1(d)中绘制其幅度谱、等高线图。使用 [15] 中选择的ACWD的LCT自由参数绘制其幅度谱、等高线图在图1(e)、图1(f)中。根据 [2] 中选择的KFWD的LCT自由参数分别绘制其幅度谱、等高线图在图1(g)、图1(h)中。利用 [3] 中选择的CRWD的LCT自由参数分别绘制其幅度谱、等高线图在图1(i)、图1(j)中。Wigner分布的幅度谱、等高线图分别绘制在图1(k)、图1(l)中。

(a) (b)

(c)(d)


(e)(f)


(g) (h)


(i) (j)

(k) (l)
(a) ICFτWD以
,
为参数矩阵,参数
的幅度谱;(b) ICFτWD以
,
为参数矩阵,参数
的等高图;(c) ICFWD以
,
为参数矩阵的幅度谱;(d) ICFWD以
,
为参数矩阵的等高图;(e) ACWD以
,
为参数矩阵的幅度谱;(f) ACWD以
,
为参数矩阵的等高图;(g) KFWD以
为参数矩阵的幅度谱;(h) KFWD以
为参数矩阵的等高图;(i) CRWD以
为参数矩阵的幅度谱;(j) CRWD以
为参数矩阵的等高图;(k) Wigner分布的幅度谱;(l) Wigner分布的等高图。
图1. ICFτWD、ICFWD、ACWD、KFWD、CRWD和Wigner分布在单分量情形下的检测精度
图2比较了ICFτWD与ICFWD、ACWD、KFWD、Wigner分布在双分量情形下的检测精度。ICFτWD
的LCT自由参数满足
,
,它
相关的幅度谱、等高线图分别如图2(a)、图2(b)所示。根据 [4] 中选择的ICFWD的LCT自由参数分别绘制其幅度谱、等高线图在图2(c)、图2(d)中。依据 [15] 中选择的ACWD的LCT自由参数分别绘制其幅度谱、等高线图在图2(e)、图2(f)中。用 [2] 中选择的KFWD的LCT自由参数分别绘制其幅度谱、等高线图在图2(g)、图2(h)中。Wigner分布的幅度谱、等高线图分别绘制在图2(i)、图2(j)中。需要注意的是,CRWD不能处理一般的双分量LFM信号,除非这两个分量具有相反的调频率 [3] 。
从图1和图2中能量直线的锐度可以观察到,ICFτWD与ICFWD检测性能大致相同,同时均优于ACWD、KFWD、CRWD和传统的Wigner分布。
Radon变换(RT) [28] 可以积累能量直线,根据信号匹配滤波的最大输出进行对检测性能进一步的比较。图3和图4分别比较了在单、双分量情形下,ICFτWD与ICFWD、ACWD、KFWD、CRWD和Wigner分布的等高图提取线。对于单分量情形,图3(a)绘制了满足
和
时,基于RT的ICFτWD的k振幅分布,图3(b)绘制了利用 [4] 中选择的LCT
自由参数时,基于RT的ICFWD的k振幅分布,图3(c)绘制了利用 [15] 中选择的LCT自由参数时,基于RT的ACWD的k振幅分布,图3(d)绘制了利用 [2] 中选择的LCT自由参数时,基于RT的KFWD的k振幅分布,图3(e)绘制了利用 [3] 中选择的LCT自由参数时,基于RT的CRWD的k振幅分布,图3(f)绘制了基于RT的Wigner分布 [25] 的k振幅分布。

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
(a) ICFτWD以
,
为参数矩阵,
为参数的幅度谱;(b) ICFτWD以
,
为参数矩阵,
为参数的等高图;(c) ICFWD以
,
为参数矩阵的幅度谱;(d) ICFWD以
,
为参数矩阵的等高图;(e) ACWD以
,
为参数矩阵的幅度谱;(f) ACWD以
,
为参数矩阵的等高图;(g) KFWD以
为参数矩阵的幅度谱;(h) KFWD以
为参数矩阵的等高图;(i) Wigner分布的幅度谱;(j) Wigner分布的等高图。
图2. ICFτWD、ICFWD、ACWD、KFWD、Wigner分布在双分量情形下的检测精度
从图3中噪声的振幅中可以直观看出,单分量情形下,ICFτWD比ICFWD、ACWD、KFWD、CRWD和传统的Wigner分布获得了更高的输出信噪比。
图3(a)、图3(b)、图3(c)、图3(d)、图3(e)、图3(f)分别绘制了ICFτWD、ICFWD、ACWD、KFWD、CRWD和Wigner分布的k振幅分布。因为进行Randon变换后对幅度进行了标准化处理,所有LCT域Wigner分布的信号幅度都为1,为了尽量排除、信号只计算噪声的幅度,选取图像中k = 0.01和k = 0.99时的点计算噪声幅度的平均数,再根据信噪比的定义计算输出信噪比。

(a) (b)

(c) (d)

(e) (f)
(a) ICFτWD以
,
为参数矩阵,参数
时的基于RT的k振幅分布;(b) ICFWD以
,
为参数矩阵的基于RT的k振幅分布;(c) ACWD以
,
为参数矩阵的基于RT的k振幅分布;(d) KFWD以
为参数矩阵的基于RT的k振幅分布;(e) CRWD以
为参数矩阵的基于RT的k振幅分布;(f) Wigner分布基于RT的k振幅分布。
图3. ICFτWD、ICFWD、ACWD、KFWD、CRWD、Wigner分布在单分量情形下的等高提取线

Table 2. Comparison of output signal-to-noise ratios for ICFτWD, ICFWD, ACWD, KFWD, CRWD, and Wigner distributions in the single-component case
表2. 单分量情形下ICFτWD、ICFWD、ACWD、KFWD、CRWD和Wigner分布的输出信噪比对比
由表2可以发现,单分量情形下ICFτWD获得的输出信噪比高于ICFWD,明显优于ACWD、KFWD、CRWD和传统的Wigner分布,即进一步验证了理论分析的正确性,以及ICFτWD在检测性能方面的优势。
针对双分量的情形,图4(a)绘制了满足
,
,
时基于RT的ICFτWD的k振幅分布,图4(b)绘制
了利用 [4] 中选择的LCT自由参数时,基于RT的ICFWD的k振幅分布,图4(c)绘制了利用 [15] 中选择的LCT自由参数时,基于RT的ACWD的k振幅分布,图4(d)绘制了利用 [2] 中选择的LCT自由参数时,基于RT的KFWD的k振幅分布,图4(e)绘制了基于RT的Wigner分布的k振幅分布。

(a) (b)

(c) (d)

(e)
(a) ICFτWD以
,
为参数矩阵,
为参数时基于RT的k振幅分布;(b) ICFWD以
,
为参数矩阵的基于RT的k振幅分布;(c) ACWD以
,
为参数矩阵的基于RT的k振幅分布;(d) KFWD以
为参数矩阵的基于RT的k振幅分布;(e) Wigner分布基于RT的k振幅分布。
图4. ICFτWD、ICFWD、ACWD、KFWD、WD在双分量情形下的等高提取线
从图4中噪声的振幅中可以直观看出,双分量情形下,ICFτWD比ICFWD、ACWD、KFWD和传统的Wigner分布获得了更高的输出信噪比。
图4(a)、图4(b)、图4(c)、图4(d)、图4(e)分别绘制了ICFτWD、ICFWD、ACWD、KFWD和Wigner分布的k振幅分布。为了尽量排除信号只计算噪声的幅度,选取图像中k = 0.01,k = 0.5和k = 0.99时的点计算噪声幅度的平均数,再根据信噪比的定义计算输出信噪比。

Table 3. Comparison of ICFτWD, ICFWD, ACWD, KFWD and Wigner distribution output signal-to-noise ratios in the two-component case
表3. 双分量情形下ICFτWD、ICFWD、ACWD、KFWD和Wigner分布输出信噪比对比
根据表3可以发现,双分量情形下ICFτWD获得的输出信噪比高于ICFWD,明显优于ACWD、KFWD、CRWD和传统的Wigner分布,即进一步验证了理论分析的正确性,以及ICFτWD在检测性能方面的优势。

Table 4. In the single-component case, the calculation time of ICFτWD, ICFWD, ACWD, KFWD, and CRWD at sampling frequencies of 5 Hz, 15 Hz, 25 Hz, and 40 Hz
表4. 在单分量情形下,采样频率为5 Hz,15 Hz,25 Hz,40 Hz时,ICFτWD、ICFWD、ACWD、KFWD和CRWD的计算时间

Figure 5. Calculation time for ICFτWD, ICFWD, ACWD, KFWD, and CRWD in the single-component case
图5. 单分量情形下ICFτWD、ICFWD、ACWD、KFWD和CRWD的计算时间

Table 5. In the two-component case, the calculation time of ICFτWD, ICFWD, ACWD, and KFWD at sampling frequencies of 5 Hz, 15 Hz, 25 Hz, and 40 Hz
表5. 在双分量情形下,采样频率为5 Hz,15 Hz,25 Hz,40 Hz时,ICFτWD、ICFWD、ACWD和KFWD的计算时间

Figure 6. Calculation time for ICFτWD, ICFWD, ACWD, and KFWD in the two-component case
图6. 双分量情形下ICFτWD、ICFWD、ACWD和KFWD的计算时间
表4和表5分别记录了使用MATLAB语言(版本R2020b)和配置为Intel(R) Core(TM)i5-10300H CPU@2.50GHz笔记本电脑在5 Hz,15 Hz,25 Hz,40 Hz时的计算时间,计算时间是通过统计200次运算过程的平均值得到的。图5直观反应了使用科恩类算法时,单分量情形下ICFτWD、ICFWD、CICFWD、ACWD、KFWD和CRWD的计算速度的比较。图6直观反应了使用科恩类算法时,双分量情形下ICFτWD、ICFWD、ACWD和KFWD的计算速度的比较。均可以看出,ICFτWD保持了与ICFWD和KFWD相同的计算效率水平,且它们的计算效率均低于ACWD的计算效率。特别地,单分量情形下,ICFτWD计算效率高于CRWD计算效率。
7. 结论与展望
本课题使用在参数选择和表现形式上更加灵活的τ-Wigner分布作为工具与ICFWD有机结合,即提出ICFτWD并进行研究。通过将ICFτWD分别和ICFWD、τ-Wigner分布、Wigner分布之间的输出信噪比进行不等式建模和求解,分别推导出了单分量和双分量情形下ICFτWD的LCT自由参数的选择方法。大量的数值实验证明了理论结果的正确性,验证了ICFτWD在不牺牲计算效率的条件下,进一步提升了ICFWD的检测性能。
在此基础上可以对未来的研究方向做出一些展望:虽然本文提出的 ICFτWD线性正则参数的选取策略是正确有效的,但它并不具有唯一性,最理想的状态应当是对于特定信号,参数的选取唯一确定而不再是一个范围。因此,未来的工作将会关注ICFτWD最优线性正则变换自由参数选择策略的唯一。
附录
附录1:交叉项
和
的推导
交叉项
可以被展开表示为
(52)
其中
(53)
把式(2)和式(3)代入式(38),得到
(54)
利用高斯积分公式,当
时,有
(55)
其中
。
类似式(55),于是
(56)
其中,
和
。
附录2:方程
的推导
根据等式
(57)
有
(58)
将式(58)代入
,得到
(59)
利用
,于是
(60)