生物炭对农田土壤中氮循环及氧化亚氮产生的影响与机理
Effect and Mechanism of Biochar on Nitrogen Cycle and Nitrous Oxide Production in Farmland Soil
DOI: 10.12677/OJNS.2023.112029, PDF, HTML, XML, 下载: 277  浏览: 774 
作者: 范红叶, 叶孝杰, 吴文豪:浙江树人学院生物与环境工程学院,浙江 杭州;王泽宇*:浙江树人学院交叉科学研究院,浙江 杭州
关键词: N2O氮循环硝态氮铵态氮生物炭N2O Nitrogen Cycle Nitrate Nitrogen Ammonium Nitrogen Biochar
摘要: 氧化亚氮(N2O)作为温室气体和臭氧层破坏者备受学者关注,其中农田土壤是非人为条件下N2O最主要的排放源。土壤中参与氮素循环的生物/非生物过程中复杂多变,探索不同路径的氮转化机制以及对N2O的贡献度有助于对N2O减排提供机理剖析。生物炭因其高孔隙度、强吸附性、化学稳定性和大阳离子交换量等优点,会对土壤中氮素的转化产生直接/间接的影响,并显著改善/恶化土壤N2O排放。因此,总结了生物炭对土壤生态系统中氮素的转化与N2O排放的研究现状,分别论述了生物炭对无机氮循环与N2O排放的影响,并从生物炭吸附、影响土壤理化性质、群落结构多样性以及关键功能基因等方面揭示了其作用机制。基于以上内容,对今后生物炭在N2O增汇减排领域的进一步理论研究和相关技术推广进行了展望。
Abstract: Nitrous oxide (N2O) as a greenhouse gas and ozone layer destroyer has attracted much attention from scholars, and farmland soil is the main source of N2O emissions under non-human conditions. The biotic/abiotic processes involved in the nitrogen cycle in soil are complex and changeable. Exploring the nitrogen transformation mechanism of different pathways and the contribution to N2O will help provide a mechanism analysis for N2O emission reduction. Due to its advantages of high porosity, strong adsorption, chemical stability and large cation exchange capacity, biochar can have direct/indirect effects on nitrogen transformation in soil and significantly improve/worse soil N2O emissions. Therefore, this paper summarizes the research status of biochar on nitrogen transformation and N2O emission in soil ecosystems, discusses the effects of biochar on inorganic nitrogen cycle and N2O emission, and discusses the effects of biochar adsorption, soil physical and chemical properties, and community structure. Diversity as well as key functional genes revealed its mechanism of action. Based on the above content, the further theoretical research and related technology promotion of biochar in the field of N2O sink emission reduction in the future are prospected.
文章引用:范红叶, 叶孝杰, 吴文豪, 王泽宇. 生物炭对农田土壤中氮循环及氧化亚氮产生的影响与机理[J]. 自然科学, 2023, 11(2): 243-252. https://doi.org/10.12677/OJNS.2023.112029

1. 引言

作为六类温室气体之一的氧化亚氮(N2O),其温室效应是CO2的298倍,同时还参与了臭氧层的破坏,对生态环境和人类健康都有着巨大威胁 [1]。自工业革命以来,全球大气N2O平均浓度从~270 ppb增长到了2021年的618 ppb。其中,土壤是大气中N2O的主要来源,从工业革命前的6.3 ± 1.1 Tg N·a−1上升到了2020年的17.0 ± 2.0 Tg N·a−1 [2]。学者们普遍认为,土壤中微生物对氮的转化过程是N2O的最主要来源。然而,随着对N2O排放机制的逐步深入探究,发现硝化细菌反硝化、异养反硝化以及硝化耦合反硝化等生物作用以及羟胺氧化和化学反硝化等非生物作用也可产生N2O,且多个过程往往同时发生 [3]。尽管已经开展了不少研究,但目前对不同环境条件或不同类型土壤N2O产生路径贡献及其主控因素的认识仍非常不足。

生物炭(biochar),即生物质在缺氧条件下经高温热裂解产生的富碳产物,能有效吸附铵态氮( NH 4 + -N)与硝态氮( NO 3 -N),并显著影响土壤的理化性质 [4],进而影响到参与氮循环有关微生物群的多样性与丰度,最终对土壤氮循环产生影响 [4]。生物炭的微孔结构可以为微生物繁殖提供载体,使它们免遭干燥等不利条件的影响。同时还可以吸附大量水分、养分物质,为微生物提供营养物质。另外,生物炭可以调控土壤的理化性质,进而影响微生物的新陈代谢,这使得生物炭对土壤微生物的影响呈现出复杂性,其作用机制尚未研究清楚。

因此,首先综述了农田土壤中N2O的可能产生途径,便于深入了解N2O排放的主要来源,为有效的N2O减排举措提供理论依据。其次,介绍了近年来农田土壤中生物炭对微生物的无机氮转化过程以及N2O排放影响的研究进展。最后,概括了生物炭对N2O排放机制的影响机制。基于以上研究基础,提出未来展望:i) 生物炭特征数据库的丰富;ii) 生物炭在N2O减排潜力估算的精确性;iii) 长期原位田间试验,为农田土壤生态系统的N2O减排提供理论参考。

2. 农田土壤中N2O的产生途径

2.1. 生物过程中N2O的产生

土壤中N2O的排放主要来源于微生物有关的氮转化过程,即自养/异养硝化、硝化细菌反硝化、硝化耦合反硝化以及异养反硝化等过程。

2.1.1. 自养硝化过程

自养硝化也称氨氧化,即自养硝化细菌在有氧条件下利用CO2作碳源,使NH3氧化为 NO 3 -N的过程,而N2O作为副产物被排放 [5]。自养硝化过程主要分两步完成,氨氧化细菌(AOB)/氨氧化古菌(AOA)利用氨单加氧酶(AMO)将NH3催化生成 NO 2 -N。随后亚硝酸氧化细菌(NOB)利用亚硝酸氧化酶(NXR)将 NO 2 -N氧化成 NO 3 -N。AOB产生N2O主要有两种方式,一种方式是羟胺氧化酶(HAO)将羟胺(NH2OH)和一氧化氮还原酶(NOR)的作用下为N2O [6]。第二种方式是AOB通过亚硝酸还原酶(NIR)和NOR将 NO 2 -N还原为N2O [7]。也有研究表明,AOB可以通过细胞色素P460直接将NH2OH或NO氧化为N2O [8]。与AOB不同,AOA因缺乏HAO和NOR,导致其产生N2O主要通过NH2OH与NO的非生物耦合过程。但最新结果表明,AOA可以通过细胞色素P450将 NO 2 -N还原为N2O,说明AOA也可以进行反硝化作用 [9]。研究发现,环境中存在一种能将NH3直接氧化成 NO 3 -N的微生物,被称之为“完全氨氧化细菌”(comammoxNitrospira),但由于缺少NOR,comammoxNitrospira产生N2O的主要方式为NH2OH的非生物转化 [10]。

影响自养硝化过程对N2O产生贡献的因素有pH值、碳氮比(C/N)、温度和O2等 [11]。研究表明,自养硝化过程占碱性土壤N2O排放的65%~86%,但对于酸性土壤,则仅占5%~25%。这主要是因为酸性土壤中AOA在硝化过程起到主要作用,而在中性/碱性土壤中AOB对N2O产生的贡献会更大 [12]。土壤中O2下降能够抑制自养硝化对N2O产生的贡献 [13]。目前关于温度如何影响自养硝化过程中N2O产生尚未达成一致。由于自养硝化过程是整个氮循环的初始步骤,明确其影响因素有助于我们理解N2O排放对气候变化的反馈机制。

2.1.2. 异养硝化过程

异养硝化过程是指微生物将有机氮氧化为 NO 3 -N/ NO 2 -N的过程,其与反硝化联系紧密,在土壤中普遍存在 [14]。在特定条件下异养硝化过程能产生大量的N2O。低pH时自养硝化微生物活性常常被抑制,导致异养硝化为N2O产生的主要过程 [15]。但也有研究表明,异养硝化过程对N2O的产生贡献跟土壤pH值无关,而与土壤C/N比、含水量以及全氮含量的关系更密切 [16]。Tang等 [17] 的研究表明,土壤含水量上升会导致异养硝化过程产生的N2O通量显著增加。另一项研究表明,厌氧环境会降低异养硝化过程中N2O的产生。温度对异养硝化过程N2O的产生影响研究还相对较少 [18]。Jansen-Willems等 [19] 的研究证明,适当的提高温度能够促进异养硝化过程中N2O的产生。由于气温升高可能会通过促进土壤有机质的分解为异养微生物提供碳源,因此,升温很可能也会促进其他生态系统异养硝化过程产生N2O,但这仍需要进一步的研究。

2.1.3. 硝化细菌反硝化过程

硝化细菌反硝化是 NO 2 -N通过NO还原为N2O的过程。农田土壤中低O2条件下,硝化细菌反硝化对N2O排放的贡献达72.7% [16]。也有研究表明,硝化细菌反硝化过程广泛存在于农田土壤中,并且是N2O产生的主要路径 [20]。硝化细菌反硝化在土壤中的发生主要受到土壤含水量、pH值、O2浓度、土壤有机碳(SOC)和 NO 2 -N含量等条件的影响 [21]。Wrage-Mönnig等 [22] 证明了硝化细菌反硝化过程在低O2、低碳浓度以及低pH值条件下更容易发生。但也有研究表明,对于高pH值土壤,硝化细菌反硝化在N2O产生中的作用更大 [23]。Duan等 [24] 在农田土壤的研究表明,温度对硝化细菌反硝化产生N2O的影响因土壤类型而异,如温度对酸性土壤中硝化细菌反硝化过程N2O的产生没有显著影响,但增加了碱性土壤中硝化细菌反硝化过程N2O的产生。以后的研究需要更多关注硝化细菌反硝化对土壤N2O产生的贡献及其控制因子。此外,关于硝化细菌反硝化是否为N2O的汇(还原为N2)以及AOA是否能参与此过程,也需要加强研究。

2.1.4. 硝化耦合反硝化过程

硝化耦合反硝化通常是指在硝化过程所产生的 NO 3 -N/ NO 2 -N被反硝化细菌迅速利用而最终产生N2的过程 [25] [26]。硝化耦合反硝化过程一般在有氧和缺氧共存的微环境条件下对N2O产生的贡献较高,如土壤中颗粒表面的水膜界面、龟裂土壤边缘或者土壤干湿交替条件 [27]。Verhoeven等 [28] 发现,干湿交替的土壤中硝化耦合反硝化的N2O贡献幅度高达34.8%。土壤pH和底物浓度等是影响硝化耦合反硝化对N2O产生的主要因素。有研究表明,高pH值对硝化耦合反硝化产生N2O的贡献更高。但Kool等 [29] 研究表明,硝化耦合反硝化对N2O产生的贡献随土壤pH值增加而降低。此外,Duan等 [23] 研究表明,由于土壤可溶性有机碳(DOC)能促进N2O还原为N2,硝化耦合反硝化对N2O产生的贡献随土壤DOC浓度的增加而降低。

2.1.5. 异养反硝化过程

异养反硝化是细菌将 NO 3 -N逐步还原为 NO 2 -N、NO、N2O和N2的过程 [30] [31]。研究表明,在全球尺度上,来源于异养反硝化的N2O占反硝化过程N2O产生总通量比例介于6%~11% [32]。含水量的变化对异养反硝化中N2O产生贡献较大,在高含水量条件下对异养反硝化N2O产生贡献较大 [33]。氮源、C/N比、O2以及pH值等也会影响异养反硝化过程N2O的产生速率 [34]。Qu等 [35] 的结果表明,施肥的过度施用导致了土壤酸化,反硝化产物N2O/(N2O+N2)比值也随着增加。

土壤SOC含量通常决定着真菌反硝化对N2O的贡献。Li等人研究表明,耕地转变为茶园之后,由于SOC含量增加,真菌对N2O产生贡献相应增加 [36]。土壤高 NO 3 -N浓度、较低的O2以及较高的温蒂能显著刺激真菌反硝化过程 [37]。但也有研究表明,低温也能促进真菌反硝化对N2O产生的贡献 [38]。真菌对O2、pH值、温度和底物( NO 3 -N/ NO 3 -N)等的适应范围很广 [39]。因此,真菌反硝化对土壤N2O产生贡献不可忽视,需要深入关注。

2.2. 非生物过程中N2O的产生

越来越多的证据显示,在一定条件下,非生物过程可能是土壤N2O产生的重要路径 [40]。 NO 3 -N、 NO 2 -N以及NH2OH驱动非生物过程中N2O的产生主要是通过光分解和铁离子还原作用, NO 2 -N和还原性金属离子(如Fe3+和Mn2+)反应、NH2OH和有机质以及Fe3+/MnO2的反应 [41]。

NO 2 -N通过非生物降解生成N2O的过程被称为化学反硝化 [41]。尽管参与此过程的 NO 2 -N是由生物过程产生,但是以往针对化学反硝化的研究多关注其非生物反应环节,而未将生物和非生物过程当作整体考虑。随着研究的深入,生物和非生物的耦合过程逐渐受到重视。如Onley等 [42] 通过纯培养实验发现,尽管Anaeromyxobacterdehalogenans细菌不含nirKnirS基因,但在Fe2+存在条件下可以通过生物和非生物耦联过程产生N2O。另一项纯培养研究也表明,由AOA、AOB和comammoxNitrospira所产生的NH2OH释放到细胞外后能通过非生物过程产生N2O [43]。与 NO 2 -N相比,NH2OH参与的非生物过程中N2O的生成效率更高。在低pH或Fe3+、有机质(SOM)以及 NO 2 -N浓度较高的条件下,NH2OH经由非生物过程生成N2O的效率可达40%~80% [44]。

土壤N2O的非生物产生过程与pH值、SOM、Fe/Mn含量等因素有关 [45]。有研究表明,在低SOC和高铁离子含量的土壤条件下,能够促进NH2OH向N2O的非生物转化 [46]。但最新的结果表明,NH2OH向N2O的非生物转化过程与土壤Fe3+、Mn2+、SOC和总氮含量无关,而与土壤pH值呈正相关关系 [47]。NH2OH一般在土壤中难以被检测到。这主要是因为NH2OH既通过生物和非生物过程快速生成N2O,又能通过非生物过程被SOM固定,还可以通过硝化过程被快速氧化成 NO 2 -N。因此,今后需加强对生物–非生物耦合过程N2O产生的研究,以期深入揭示土壤N2O产生与消耗过程。

3. 生物炭对农田土壤中氮循环的影响

生物炭对无机氮(即 NH 4 + -N和 NO 3 -N)的吸附程度是有差异的。Yin等人 [48] 的研究表明,生物炭与畜禽堆肥一起施用后,能让土壤中NH3的挥发损失降低至少一半。Sun等 [49] 发现,生物炭(20 t·hm−2)与氮肥(250 kg·hm−2)的共同施用抑制了水稻土壤中36.6%的NH3挥发量,促进了30.1%的氮肥利用率,提升了55.6%的小麦产量。Chu等 [50] 发现,在酸性茶园土壤中的生物炭可以显著减少28.21%的NH3挥发量。进一步的研究表明,生物炭比表面积大、富含酸性官能团以及表面负电荷多,对土壤中的 NH 4 + -N和 NO 3 -N具有较强吸附能力 [51]。

土壤淋溶是造成养分流失的罪魁祸首 [52],而众多实验表明生物炭能够显著缓解淋滤造成的氮损失 [53]。Cao等 [54] 发现:30 t·hm−2的生物炭明显降低了砂质土壤中 NH 4 + -N (14%)和 NO 3 -N (28%)的淋溶损失。Borchard等 [55] 发现,生物炭所降低的 NH 4 + -N和 NO 3 -N与炭土质量比呈现正相关关系,当炭土质量比分别为0.5%、2.5%和10.0%时, NH 4 + -N和 NO 3 -N的淋溶损失分别降低14%、50%和89%和26%、42%和96%。生物炭类型的差异也会导致对氮素固留效果的不同。与稻草生物炭相比,秸秆生物炭和毛竹生物炭分别明显降低了74.8%和31.6%的总氮淋失 [56]。由以上结果可知,生物炭通过改善土壤理化性质(增大颗粒间孔隙度、降低容重等),可以增强对氮素的固持作用,从而达到缓解土壤氮素淋失的目的 [57]。

3.1. 生物炭对农田土壤中硝化作用的影响

土壤中的微生物将 NH 4 + -N转化为 NO 2 -N/ NO 3 -N的过程称为硝化作用,依据碳源种类可分为自养硝化和异养硝化 [58]。通常认为,自养硝化是土壤中N2O排放的主要贡献者 [59]。自养硝化过程中会产生不稳定的NH2OH作为中间产物,之后通过化学分解/酶促反应生成N2O [60]。自养硝化由氨氧化和亚硝化两部分组成。其中,氨氧化作用在AOA/AOB中的AMO和HAO的依次催化下实现NH3的氧化过程,N2O作为副产物被排放 [61]。生物炭添加会明显影响AOA/AOB的丰度和多样性。而AOA/AOB在土壤、湿地和海洋等生态系统的氮循环中均发挥着举足轻重的作用 [62]。当土壤中的氧分压、温度、pH值、含水量、养分等任一因素变化时,AOA/AOB的丰度和活性都会产生较大波动 [63]。Zhang等 [64] 发现富含生物炭的土壤中AOA的基因拷贝数比对照高出约50%。Wang等 [65] 的研究表明5%、10%和20%的生物炭在沿海碱性土壤中被施用后,AOB的丰度分别增加了15.9%、121.0%和28.6%,但AOA无显著变化。然而,也有研究发现生物炭对土壤氨氧化作用具有一定的抑制效果 [66]。Ahmed等 [67] 将20 t·hm−2的生物炭和760 kg·hm−2的氮肥一起施用后,结果发现土壤硝化率明显受到了抑制,机理研究表明生物炭能够释放一种“α松萜”的硝化抑制剂到土壤中,从而影响了N2O和NH3的产生。DELUCA等 [53] 研究表明,生物炭通过吸附固定 NH 4 + -N从而抑制了森林土壤中的氨氧化作用 [68]。由以上可知,土壤中的生物炭对氨氧化作用的影响机制主要有以下三点:i) 生物炭改变土壤的pH值、氧分压、团聚体和孔隙度等特性,进而影响氨氧化功能微生物的多样性和丰度 [69] ;ii) 生物炭固持土壤中的 NH 4 + -N,导致氨氧化作用的减弱 [70] ;iii) 生物炭产生硝化抑制剂,减弱了氨氧化作用 [71]。

3.2. 生物炭对农田土壤中反硝化作用的影响

在土壤反硝化过程中建立排放比(N2O/N2)这个参数,其往往受到众多环境因子的影响 [72]。NosZnirKnirS是反硝化细菌中研究中最多的3类功能基因,它们的丰度和多样性的改变可以作为生物炭对反硝化影响的指示因子。Aamer等 [73] 的研究表明,生物炭显著增强了nosZ/nirK,降低了N2O/N2。Liu等 [74] 结果证实质量分数分别为1%、2%和10%的生物炭均能提升反硝化功能基因的丰度。基于已报道的文章,生物炭对土壤反硝化作用的影响机制主要包括,生物炭具有多孔的特性可以改善土壤通气状况,提升好氧转化酶的活性 [75]。生物炭自身丰富的官能团改变了土壤pH值,影响反硝化的不同酶活性 [76]。生物炭中的有机物质对反硝化微生物的群落结构及功能基因的多样性与丰度造成影响 [77]。

3.3. 生物炭对农田土壤中N2O排放的影响

由于制备原料、土壤质地、施用时间、气候类型和田间管理方法等条件的不同,生物炭对N2O排放的影响也不同 [62]。一般来说,木质炭可以减少N2O的排放,但畜禽粪便炭却没有这种效果 [63]。在强酸土壤中生物炭对减少N2O排放的作用比中性土壤要小很多 [64]。Wang等人 [65] 发现,应用生物炭可显著减少土壤28.8%~31.3%的N2O排放,其关键机制是生物炭降低了土壤活性氮的浓度和氮循环相关酶的活性。Zhang等 [71] 还发现,添加1%的生物炭可以显著提高nirSnosZ基因的丰度,增加N2/(N2O + N2),促进N2O完全还原为N2。基于以上结构,生物炭抑制土壤N2O排放的机制被提出,即生物炭明显改善土壤通气性,抑制土壤反硝化过程 [65] ;生物炭通过吸附 NH 4 + -N,降低硝化作用从而抑制N2O的排放 [75] [76] ;生物炭通过改善pH,提升N2O还原酶的活性 [77]。

4. 总结与展望

总而言之,氮素转化与N2O排放是土壤生态系统中氮循环的主要组成部分。农田土壤有多条N2O产生路径,包括自养硝化、异养硝化、硝化细菌反硝化、硝化耦合反硝化、异养反硝化以及化学反硝化等生物/非生物过程。这些路径之间相互关联,受多种环境因素的共同制约。但现有的研究成果主要基于实验室规模,不能完全还原原位土壤中实际发生的过程。同样,生物炭对土壤中N2O排放的作用与机制也十分复杂,均会受到生物炭类型、土壤类型、炭土施用比以及N2O测定精度等环境因素的限制,基于此,对不同类型生物炭应用于不同类型土壤的长期原位户外实验的研究迫在眉睫。

当前关于生物炭对土壤氮素转化的影响机制分析大多聚焦于生物炭自身或导致土壤理化性质的改变,而对土壤氮循环中的功能微生物多样性和丰度的研究鲜被报道。一部分学者认为生物炭通过吸附碳源导致了土壤中能产生N2O的微生物碳源利用减少,另一部分学者则认为生物炭通过改变功能微生物的种类来实现抑制N2O的排放。因此,对氮素转化和N2O排放的微生物生态机制的研究可能是未来土壤生态学的重点。

NOTES

*通讯作者。

参考文献

[1] Liu, C.-R., Zhu, J.-Y., Li, Y.-Y., et al. (2022) Emission of Nitrous Oxide (N2O) from Lake Taihu and the Corre-sponding Potential Driving Factors. Environmental Science, 43, 4118-4126.
[2] Huo, P., Liu, Y., Xu, C., et al. (2023) Characteristics of Dissolved N2O and Indirect N2O Emission Factor in the Groundwater of High Nitrate Leaching Areas in Northwest China. Science of the Total Environment, 868, Article ID: 161646.
https://doi.org/10.1016/j.scitotenv.2023.161641
[3] Peng, X., Ji, Q., Angell, J.H., et al. (2021) Long-Term Fertilization Alters Nitrous Oxide Cycling Dynamics in Salt Marsh Sediments. Environmental Science & Technology, 55, 10832-10842.
https://doi.org/10.1021/acs.est.1c01542
[4] Asadyar, L., Xu, C.-Y., Wallace, H.M., et al. (2021) Soil-Plant Nitrogen Isotope Composition and Nitrogen Cycling after Biochar Applications. Environmental Science and Pollution Research, 28, 6684-6690.
https://doi.org/10.1007/s11356-020-11016-3
[5] Xu, H., Wang, C., Liang, Z., et al. (2015) The Structure and Component Characteristics of Partial Nitrification Biofilms under Autotrophic and Heterotrophic Conditions. Ap-plied Microbiology and Biotechnology, 99, 3673-3683.
https://doi.org/10.1007/s00253-014-6300-8
[6] Zhang, N., He, Y., Yi, X., et al. (2022) Rapid Start-Up of Autotrophic Shortcut Nitrification System in SBR and Microbial Community Analysis. Environmental Technology, 43, 4363-4375.
https://doi.org/10.1080/09593330.2021.1950213
[7] Kozlowski, J.A., Kits, K.D. and Stein, L.Y. (2016) Comparison of Nitrogen Oxide Metabolism among Diverse Ammonia-Oxidizing Bacteria. Frontiers in Microbiol-ogy, 7, 1090.
https://doi.org/10.3389/fmicb.2016.01090
[8] Young, M.N., Boltz, J., Rittmann, B.E., et al. (2022) Thermodynamic Analysis of Intermediary Metabolic Steps and Nitrous Oxide Production by Ammoni-um-Oxidizing Bacteria. Environmental Science & Technology, 56, 12532-12541.
https://doi.org/10.1021/acs.est.1c08498
[9] Jung, M.-Y., Gwak, J.-H., Rohe, L., et al. (2019) Indications for Enzymatic Denitrification to N2O at Low pH in an Ammonia-Oxidizing Archaeon. ISME Journal, 13, 2633-2638.
https://doi.org/10.1038/s41396-019-0460-6
[10] Liu, S., Han, P., Hink, L., et al. (2017) Abiotic Conversion of Extracellular NH2OH Contributes to N2O Emission during Ammonia Oxidation. Environmental Science & Tech-nology, 51, 13122-13132.
https://doi.org/10.1021/acs.est.7b02360
[11] Xia, Z., Wang, Q., She, Z., et al. (2019) Nitrogen Removal Pathway and Dynamics of Microbial Community with the Increase of Salinity in Simultaneous Nitrification and Denitrification Process. Science of the Total Environment, 697, Article ID: 134047.
https://doi.org/10.1016/j.scitotenv.2019.134047
[12] Liu, H., Liu, D., Huang, Z., et al. (2023) Bioaugmentation Reconstructed Nitrogen Metabolism in Full-Scale Simultaneous Partial Nitrification-Denitrification, Anammox and Sulfur-Dependent Nitrite/Nitrate Reduction (SPAS). Bioresource Technology, 367, Article ID: 128233.
https://doi.org/10.1016/j.biortech.2022.128233
[13] Li, J., Peng, Y., Yang, S., et al. (2022) Successful Ap-plication of Anammox Using the Hybrid Autotrophic-Heterotrophic Denitrification Process for Low-Strength Wastewater Treatment. Environmental Science & Technology, 56, 13964-13974.
https://doi.org/10.1021/acs.est.2c02920
[14] Qiu, Y., Ji, Y., Tian, Y., et al. (2023) Engineering Demonstration of the Remediation of Urban Water Using a Novel MES Enhanced Ecological Floating Bed: From Construction to Long-Term Performance. Chemical Engineering Journal, 454, Article ID: 140024.
https://doi.org/10.1016/j.cej.2022.140024
[15] Lu, J., Wang, M., Wei, J., et al. (2023) Electrolysis-Integrated Constructed Wetland with Pyrite Filler for Simultaneous Enhanced Phosphorus and Nitrogen Removal. Chemical Engineering Journal, 451, Article ID: 138542.
https://doi.org/10.1016/j.cej.2022.138542
[16] Cao, Q., Chen, Y., Li, X., et al. (2023) Low C/N Promotes Stable Partial Nitrification by Enhancing the Cooperation of Functional Microorganisms in Treating High-Strength Ammonium Landfill Leachate. Journal of Environmental Management, 329, Article ID: 116972.
https://doi.org/10.1016/j.jenvman.2022.116972
[17] Tang, W., Chen, D., Phillips, O.L., et al. (2018) Effects of Long-Term Increased N Deposition on Tropical Montane Forest Soil N-2 and N2O Emissions. Soil Biology & Bio-chemistry, 126, 194-203.
https://doi.org/10.1016/j.soilbio.2018.08.027
[18] Stange, C.F., Spott, O., Arriaga, H., et al. (2013) Use of the Inverse Abundance Approach to Identify the Sources of NO and N2O Release from Spanish Forest Soils under Oxic and Hypoxic Conditions. Soil Biology & Biochemistry, 57, 451-458.
https://doi.org/10.1016/j.soilbio.2012.10.006
[19] Jansen-Willems, A.B., Lanigan, G.J., Clough, T.J., et al. (2016) Long-Term Elevation of Temperature Affects Organic N Turnover and Associated N2O Emissions in a Permanent Grassland Soil. Soil, 2, 601-614.
https://doi.org/10.5194/soil-2-601-2016
[20] Su, P., Gao, C., Zhang, X., et al. (2023) Microplastics Stimulated Nitrous Oxide Emissions Primarily through Denitrification: A Meta-Analysis. Journal of Hazardous Materials, 445, Article ID: 130500.
https://doi.org/10.1016/j.jhazmat.2022.130500
[21] Antileo, C., Jaramillo, F., Candia, O., et al. (2022) Long-Term Nitrite-Oxidizing Bacteria Suppression in a Continuous Activated Sludge System Exposed to Frequent Changes in pH and Oxygen Set-Points. Journal of Environmental Management, 318, Article ID: 115545.
https://doi.org/10.1016/j.jenvman.2022.115545
[22] Wrage-Moennig, N., Horn, M.A., Well, R., et al. (2018) The Role of Nitrifier Denitrification in the Production of Nitrous Oxide Revisited. Soil Biology & Biochemistry, 123, 3-16.
https://doi.org/10.1016/j.soilbio.2018.03.020
[23] Duan, P., Song, Y., Li, S., et al. (2019) Responses of N2O Production Pathways and Related Functional Microbes to Temperature across Greenhouse Vegetable Field Soils. Geoderma, 355, Article ID: 113904.
https://doi.org/10.1016/j.geoderma.2019.113904
[24] Lin, H., Yuan, Q., Yu, Q., et al. (2022) Plants Mitigate Nitrous Oxide Emissions from Antibiotic-Contaminated Agricultural Soils. Environmental Science & Technology, 56, 4950-4960.
https://doi.org/10.1021/acs.est.1c06508
[25] Li, Q., Hou, Z., Huang, X., et al. (2023) Methanation and Chemolitrophic Nitrogen Removal by an Anaerobic Membrane Bioreactor Coupled Partial Nitri-fication and Anammox. Frontiers of Environmental Science & Engineering, 17, 68.
https://doi.org/10.1007/s11783-023-1668-2
[26] Zhao, L., Fu, G., Pang, W., et al. (2023) A Novel Autotrophic Denitrification and Nitrification Integrated Constructed Wetland Process for Marine Aquaculture Wastewater Treatment. Chemosphere, 321, Article ID: 138157.
https://doi.org/10.1016/j.chemosphere.2023.138157
[27] Wang, Z., Gao, J., Zhao, Y., et al. (2023) Deci-phering the Coupling of Partial Nitrification/Anammox and Sulfur Autotrophic Denitrification: Microbial Metabo-lism and Antibiotic Resistance Genes Propagation. Chemical Engineering Journal, 452, Article ID: 139176.
https://doi.org/10.1016/j.cej.2022.139176
[28] Parn, J., Verhoeven, J.T.A., Butterbach-Bahl, K., et al. (2018) Nitrogen-Rich Organic Soils under Warm Well-Drained Conditions Are Global Nitrous Oxide Emission Hotspots. Nature Communications, 9, 1135.
https://doi.org/10.1038/s41467-018-03540-1
[29] Kool, D.M., Wrage, N., Zechmeister-Boltenstern, S., et al. (2010) Nitrifier Denitrification Can Be a Source of N2O from Soil: A Revised Approach to the Dual-Isotope La-belling Method. European Journal of Soil Science, 61, 759-772.
https://doi.org/10.1111/j.1365-2389.2010.01270.x
[30] Zuo, J., Xu, L., Guo, J., et al. (2023) Microbial Community Structure Analyses and Cultivable Denitrifier Isolation of Myriophyllum aquaticum Constructed Wet-land under Low C/N Ratio. Journal of Environmental Sciences, 127, 30-41.
https://doi.org/10.1016/j.jes.2022.04.010
[31] Zhang, Q., Zheng, J., Zhao, L., et al. (2023) Succession of Mi-crobial Communities Reveals the Inevitability of Anammox Core in the Development of Anammox Processes. Bi-oresource Technology, 371, Article ID: 128645.
https://doi.org/10.1016/j.biortech.2023.128645
[32] Friedl, J., Scheer, C., De Rosa, D., et al. (2021) Sources of Nitrous Oxide from Intensively Managed Pasture Soils: The Hole in the Pipe. Environmental Research Letters, 16, Article ID: 065004.
https://doi.org/10.1088/1748-9326/abfde7
[33] Lv, Y.-T., Chen, X., Zhang, X., et al. (2023) Intermolecular Adhesion Forces Explain the Formation of Denitrifying Granular Sludge Driven by Acidic pH under Ambient Temperature. Chemical Engineering Journal, 454, Article ID: 140314.
https://doi.org/10.1016/j.cej.2022.140314
[34] Wang, H., Yan, Z., Ju, X., et al. (2023) Quantifying Nitrous Oxide Production Rates from Nitrification and Denitrification under Various Moisture Conditions in Agricultural Soils: Laboratory Study and Literature Synthesis. Frontiers in Microbiology, 13, Article ID: 1110151.
https://doi.org/10.3389/fmicb.2022.1110151
[35] Qu, Z., Wang, J., Almoy, T., et al. (2014) Excessive Use of Nitrogen in Chinese Agriculture Results in High N2O/(N2O + N-2) Product Ratio of Denitrification, Primarily Due to Acidification of the Soils. Global Change Biology, 20, 1685-1698.
https://doi.org/10.1111/gcb.12461
[36] Li, L., Yang, M., Li, J., et al. (2022) Potential Denitrification Activity Response to Long-Term Nitrogen Fertilization—A Global Meta-Analysis. Journal of Cleaner Production, 336, Ar-ticle ID: 130451.
https://doi.org/10.1016/j.jclepro.2022.130451
[37] Chen, Z., White, J.F., Malik, K., et al. (2022) Soil Nutrient Dynamics Relate to Epichloe? Endophyte Mutualism and Nitrogen Turnover in a Low Nitrogen Environment. Soil Biology & Biochemistry, 174, Article ID: 108832.
https://doi.org/10.1016/j.soilbio.2022.108832
[38] Aldossari, N. and Ishii, S. (2021) Isolation of Cold-Adapted Nitrate-Reducing Fungi That Have Potential to Increase Nitrate Removal in Woodchip Bioreactors. Journal of Ap-plied Microbiology, 131, 197-207.
https://doi.org/10.1111/jam.14939
[39] Zou, Y., Hirono, Y., Yanai, Y., et al. (2014) Isotopomer Analysis of Nitrous Oxide Accumulated in Soil Cultivated with Tea (Camellia sinensis) in Shizuoka, Central Japan. Soil Biology & Biochemistry, 77, 276-291.
https://doi.org/10.1016/j.soilbio.2014.06.016
[40] Liu, C., Guo, Z., Zhang, H., et al. (2023) Single-Cell Raman Spectra Reveals the Cytochrome c-Mediated Electron Transfer in Nanoscale Zero-Valent Iron Coupled Denitrifica-tion Process. Chemical Engineering Journal, 454, Article ID: 140241.
https://doi.org/10.1016/j.cej.2022.140241
[41] Su, Q., Domingo-Felez, C., Jensen, M.M., et al. (2019) Abiotic Nitrous Oxide (N2O) Production Is Strongly pH Dependent, but Contributes Little to Overall N2O Emissions in Bi-ological Nitrogen Removal Systems. Environmental Science & Technology, 53, 3508-3516.
https://doi.org/10.1021/acs.est.8b06193
[42] Onley, J.R., Ahsan, S., Sanford, R.A., et al. (2018) Denitrifica-tion by Anaeromyxobacter dehalogenans, a Common Soil Bacterium Lacking the Nitrite Reductase Genes nirS and nirK. Applied and Environmental Microbiology, 84, 1985.
https://doi.org/10.1128/AEM.01985-17
[43] Liu, S., Berns, A.E., Vereecken, H., et al. (2017) Interactive Ef-fects of MnO2, Organic Matter and pH on Abiotic Formation of N2O from Hydroxylamine in Artificial Soil Mixtures. Scientific Reports, 7, Article No. 39590.
https://doi.org/10.1038/srep39590
[44] Heil, J., Vereecken, H. and Brueggemann, N. (2016) A Review of Chemical Reactions of Nitrification Intermediates and Their Role in Nitrogen Cycling and Nitrogen Trace Gas Formation in Soil. European Journal of Soil Science, 67, 23-39.
https://doi.org/10.1111/ejss.12306
[45] Buessecker, S., Tylor, K., Nye, J., et al. (2019) Effects of Sterilization Techniques on Chemodenitrification and N2O Production in Tropical Peat Soil Microcosms. Biogeosciences, 16, 4601-4612.
https://doi.org/10.5194/bg-16-4601-2019
[46] Duan, P., Shen, H., Jiang, X., et al. (2020) The Contributions of Hydroxylamine and Nitrite to NO and N2O Production in Alkaline and Acidic Vegetable Soils. Journal of Soils and Sediments, 20, 2903-2911.
https://doi.org/10.1007/s11368-020-02645-9
[47] Wei, J., Zhang, X., Xia, L., et al. (2022) Role of Chemical Reactions in the Nitrogenous Trace Gas Emissions and Nitrogen Retention: A Meta-Analysis. Science of the Total Environment, 808, Article ID: 152141.
https://doi.org/10.1016/j.scitotenv.2021.152141
[48] Yin, Y., Yang, C., Li, M., et al. (2021) Research Progress and Prospects for Using Biochar to Mitigate Greenhouse Gas Emissions during Composting: A Review. Science of the Total Environment, 798, Article ID: 149294.
https://doi.org/10.1016/j.scitotenv.2021.149294
[49] Sun, H., Yi, Z., Jeyakumar, P., et al. (2022) Citric Acid Modified Biochar Application at a Low Dosage Can Synchronically Mitigate the Nitrogenous Gas Pollutants Emis-sion from Rice Paddy Soils. Environmental Pollution, 312, Article ID: 120068.
https://doi.org/10.1016/j.envpol.2022.120068
[50] Chu, L., Hennayake, H.M.K.D. and Sun, H. (2019) Biochar Effectively Reduces Ammonia Volatilization from Nitrogen-Applied Soils in Tea and Bamboo Plantations. Phy-ton-International Journal of Experimental Botany, 88, 261-267.
https://doi.org/10.32604/phyton.2019.07791
[51] Yang, F., Cao, X., Gao, B., et al. (2015) Short-Term Effects of Rice Straw Biochar on Sorption, Emission, and Transformation of Soil NH4+-N. Environmental Science and Pollution Research, 22, 9184-9192.
https://doi.org/10.1007/s11356-014-4067-1
[52] Kuo, Y.-L., Lee, C.-H. and Jien, S.-H. (2020) Reduction of Nutrient Leaching Potential in Coarse-Textured Soil by Using Biochar. Water, 12, 2012.
https://doi.org/10.3390/w12072012
[53] Chen, X., Yang, S.-H., Jiang, Z.-W., et al. (2021) Biochar as a Tool to Reduce Environmental Impacts of Nitrogen Loss in Water-Saving Irrigation Paddy Field. Journal of Cleaner Pro-duction, 290, Article ID: 125811.
https://doi.org/10.1016/j.jclepro.2021.125811
[54] Cao, T., Meng, J., Liang, H., et al. (2017) Can Biochar Provide Ammonium and Nitrate to Poor Soils? Soil Column Incubation. Journal of Soil Science and Plant Nutrition, 17, 253-265.
https://doi.org/10.4067/S0718-95162017005000020
[55] Borchard, N., Schirrmann, M., Luz Cayuela, M., et al. (2019) Biochar, Soil and Land-Use Interactions That Reduce Nitrate Leaching and N2O Emissions: A Me-ta-Analysis. Science of the Total Environment, 651, 2354-2364.
https://doi.org/10.1016/j.scitotenv.2018.10.060
[56] Xie, Y., Dong, C., Chen, Z., et al. (2021) Successive Biochar Amendment Affected Crop Yield by Regulating Soil Nitrogen Functional Microbes in Wheat-Maize Rotation Farmland. Environmental Research, 194, Article ID: 110671.
https://doi.org/10.1016/j.envres.2020.110671
[57] Fallah, N., Yang, Z., Tayyab, M., et al. (2021) Depth-Dependent Influence of Biochar Application on the Abundance and Community Structure of Diazotrophic under Sugarcane Growth. PLOS ONE, 16, e0253970.
https://doi.org/10.1371/journal.pone.0253970
[58] Li, P., Peng, Y., Wang, S., et al. (2022) N2O Emission from Partial Nitrification and Full Nitrification in Domestic Wastewater Treatment Process. Water, 14, 3195.
https://doi.org/10.3390/w14203195
[59] Li, F., Liang, X., He, S., et al. (2020) Biochar Slows Gross Nitrifica-tion and Gasses N Emission via Lower Autotrophic Nitrification in Paddy Soils. Journal of Soils and Sediments, 20, 629-640.
https://doi.org/10.1007/s11368-019-02445-w
[60] Zhao, J., Zhao, J., Yang, W., et al. (2022) Mechanisms of NO and N2O Production by Enriched Nitrifying Sludge in a Sequencing Batch Reactor: Effects of Hydroxylamine. Journal of Environmental Management, 316, Article ID: 115237.
https://doi.org/10.1016/j.jenvman.2022.115237
[61] Chen, X., Ni, B.-J. and Sin, G. (2019) Nitrous Oxide Production in Autotrophic Nitrogen Removal Granular Sludge: A Modeling Study. Biotechnology and Bioengi-neering, 116, 1280-1291.
https://doi.org/10.1002/bit.26937
[62] Han, P., Wu, D., Sun, D., et al. (2021) N2O and NOy Production by the Comammox Bacterium Nitrospira inopinata in Comparison with Canonical Ammonia Oxidizers. Water Research, 190, Article ID: 116728.
https://doi.org/10.1016/j.watres.2020.116728
[63] Xie, J., Yan, J., He, H., et al. (2021) Evaluation of the Key Factors to Dominate Aerobic Ammonia-Oxidizing Archaea in Wastewater Treatment Plant. International Biodete-rioration & Biodegradation, 164, Article ID: 105289.
https://doi.org/10.1016/j.ibiod.2021.105289
[64] Zhang, X., Duan, P., Wu, Z., et al. (2019) Aged Biochar Stimulated Ammonia-Oxidizing Archaea and Bacteria-Derived N2O and NO Production in an Acidic Vegetable Soil. Science of the Total Environment, 687, 433-440.
https://doi.org/10.1016/j.scitotenv.2019.06.128
[65] Wang, M., Yang, M., Fan, T., et al. (2023) Activating Soil Nitrification by Co-Application of Peanut Straw Biochar and Organic Fertilizer in a Rare Earth Mining Soil. Science of the Total Environment, 866, Article ID: 161506.
https://doi.org/10.1016/j.scitotenv.2023.161506
[66] Fan, H., Shen, Z., Wang, X., et al. (2022) NO Reduction Reaction by Kiwi Biochar-Modified MnO2 Denitrification Catalyst: Redox Cycle and Reaction Process. Catalysts, 12, 870.
https://doi.org/10.3390/catal12080870
[67] Ahmed, M., Ahmad, S., Fayyazul, H., et al. (2019) In-novative Processes and Technologies for Nutrient Recovery from Wastes: A Comprehensive Review. Sustainability, 11, 4938.
https://doi.org/10.3390/su11184938
[68] Viaene, J., Peiren, N., Vandamme, D., et al. (2023) Screening tests for N Sorption Allow to Select and Engineer Biochars for N Mitigation during Biomass Processing. Waste Management, 155, 230-239.
https://doi.org/10.1016/j.wasman.2022.10.037
[69] Wang, B., Gan, F., Dai, Z., et al. (2021) Air Oxidation Coupling NH3 Treatment of Biomass Derived Hierarchical Porous Biochar for Enhanced Toluene Removal. Journal of Hazardous Materials, 403, Article ID: 123995.
https://doi.org/10.1016/j.jhazmat.2020.123995
[70] Cao, X., Reichel, R. and Bruggemann, N. (2022) Fenton Oxidation of Biochar Improves Retention of Cattle Slurry Nitrogen. Journal of Environmental Quality, 51, 1319-1326.
https://doi.org/10.1002/jeq2.20419
[71] Zhang, X., Jiao, Y., Wang, B., et al. (2023) Biochar Amendments and Climate Warming Affected Nitrification Associated N2O and NO Production in a Vegetable Field. Journal of Environmental Management, 330, Article ID: 117178.
https://doi.org/10.1016/j.jenvman.2022.117178
[72] Saggar, S., Jha, N., Deslippe, J., et al. (2013) Denitrifi-cation and N2O:N-2 Production in Temperate Grasslands: Processes, Measurements, Modelling and Mitigating Negative Impacts. Science of the Total Environment, 465, 173-195.
https://doi.org/10.1016/j.scitotenv.2012.11.050
[73] Aamer, M., Shaaban, M., Hassan, M.U., et al. (2020) Biochar Mitigates the N2O Emissions from Acidic Soil by Increasing the nosZ and nirK Gene Abundance and Soil pH. Journal of Environmental Management, 255, Article ID: 109891.
https://doi.org/10.1016/j.jenvman.2019.109891
[74] Liu, N., Liao, P., Zhang, J., et al. (2020) Characteristics of Denitrification Genes and Relevant Enzyme Activities in Heavy-Metal Polluted Soils Remediated by Biochar and Compost. Science of the Total Environment, 739, Article ID: 139987.
https://doi.org/10.1016/j.scitotenv.2020.139987
[75] Wang, X., Dan, Y., Diao, Y., et al. (2022) Transport Characteristics of Polystyrene Microplastics in Saturated Porous Media with Biochar/Fe3O4-Biochar under Various Chemical Conditions. Science of the Total Environment, 847, Article ID: 157576.
https://doi.org/10.1016/j.scitotenv.2022.157576
[76] Pan, Y., She, D., Chen, X., et al. (2021) Elevation of Biochar Application as Regulator on Denitrification/NH3 Volatilization in Saline Soils. Environmental Science and Pollution Research, 28, 41712-41725.
https://doi.org/10.1007/s11356-021-13562-w
[77] Zhang, X., Zhang, J., Song, M., et al. (2022) N2O and NO Production and Functional Microbes Responding to Biochar Aging Process in an Intensified Vegetable Soil. Envi-ronmental Pollution, 307, Article ID: 119491.
https://doi.org/10.1016/j.envpol.2022.119491