肥胖与糖尿病血管并发症的研究进展
Advances in the Study of Obesity and Diabetic Vascular Complications
DOI: 10.12677/ACM.2023.133672, PDF, HTML, XML, 下载: 190  浏览: 370 
作者: 南汶杉:山东大学齐鲁医学院,山东 济南;济南市中心医院代谢性疾病中心,山东 济南
关键词: 肥胖2型糖尿病糖尿病视网膜病变糖尿病肾病动脉粥样硬化性心血管疾病Obesity Type 2 Diabetes Mellitus Diabetic Retinopathy Diabetic Nephropathy Atherosclerotic Cardiovascular Disease
摘要: 随着生活方式的改变及人口老龄化的加速,2型糖尿病和肥胖的患病率呈快速上升趋势,已成为全球重大公共卫生问题。肥胖是2型糖尿病的重要致病因素,并加速糖尿病慢性并发症的产生。本文就肥胖与糖尿病血管并发症的相关性作一综述,主要包括糖尿病视网膜病变、糖尿病肾病与动脉粥样硬化性心血管疾病,重点关注临床数据、分子机制和治疗前景等方面,以期为糖尿病的早期干预及规范化诊疗提供依据。
Abstract: With the accelerated lifestyle changes and population aging, the prevalence of type 2 diabetes and obesity is rapidly increasing and has become a global public health problem. Obesity is an im-portant causative factor of type 2 diabetes and accelerates the development of chronic complica-tions of diabetes. In this paper, we review the correlation between obesity and diabetic vascular complications, including diabetic retinopathy, diabetic nephropathy and arteriosclerotic cardio-vascular disease, focusing on clinical data, molecular mechanisms and therapeutic prospects, with the aim of providing a basis for early intervention and standardized diagnosis and treatment of di-abetes.
文章引用:南汶杉. 肥胖与糖尿病血管并发症的研究进展[J]. 临床医学进展, 2023, 13(3): 4686-4693. https://doi.org/10.12677/ACM.2023.133672

1. 引言

近年来,糖尿病的全球患病率、发病率逐年增长,造成了巨大的社会及经济负担 [1]。肥胖与糖耐量降低相关,并且是2型糖尿病(type 2 diabetes mellitus, T2DM)的独立危险因素 [2]。肥胖导致脂质积累,并能够通过激活炎症和氧化应激造成脂毒性及代谢紊乱 [3]。糖脂毒性的累加效应会引发糖尿病长期并发症,包括糖尿病视网膜病变(diabetic retinopathy, DR)、糖尿病肾病(diabetic nephropathy, DN)和动脉粥样硬化性心血管疾病(arteriosclerotic cardiovascular disease, ASCVD) [4],此类血管并发症是糖尿病患者致残致死的主要原因。一项针对4658名中国糖尿病患者的研究显示,男性和女性的中国内脏肥胖指数(Chinese visceral obesity index, CVAI)与心血管疾病(cardiovascular disease, CVD)和DN的患病率呈显著正相关关系 [5]。已有多项研究证实,减重代谢手术能够预防糖尿病微血管和大血管并发症 [6] [7] [8] [9] [10]。本文探究肥胖在糖尿病血管并发症中的作用,将有助于理解疾病发生发展机制并指导临床实践。

2. 肥胖与DR

微血管病变是糖尿病的特异性并发症,其典型改变是微循环障碍和微血管基底膜增厚。微血管病变可累及全身各组织器官,主要表现在视网膜、肾、神经和心肌组织,其中以DR和DN尤为重要。DR是糖尿病最常见的微血管并发症,分为非增殖期视网膜病变(non-proliferative diabetic retinopathy, NPDR)和增殖期视网膜病变(proliferative diabetic retinopathy, PDR)。在中国,约1/5的糖尿病患者并发DR [11]。DR是造成糖尿病患者失明的主要原因 [12]。尽管高血糖是主要诱因,全身和局部脂质代谢失调也在DR的发展中发挥关键作用 [13] [14] [15],多项前瞻性研究显示,肥胖与DR发病率正相关,且肥胖是NPDR的危险因素 [16]。一项2017~2020年的前瞻性队列研究发现,中心型肥胖增加了DR发病的风险,表明中心型肥胖作为DR风险标志物具有临床代表性 [17]。脂质蓄积产物(lipid accumulation product, LAP)和CVAI是新的肥胖评估指标 [18]。一项研究证实,高LAP与T2DM患者的DR风险增加相关,与体质指数(body mass index, BMI)、腰围(waist circumference, WC)和CVAI相比,LAP指数是T2DM患者DR患病风险和严重程度的良好预测指标 [19]。

DR的病因机制复杂,机体结构损伤和分子功能异常促进其发生发展 [20]。实验表明,高糖高脂环境会增加毛细血管内皮细胞凋亡,促进DR进展 [21]。据了解,表观遗传修饰,即可以在不影响DNA序列的情况下改变基因表达的修饰(如甲基化),在糖尿病疾病进程中会发生改变 [22] [23]。Rac1是一种小分子量G蛋白,Rac1-Nox2-ROS通路激活能够引起线粒体损伤 [24]。研究显示,T2DM肥胖大鼠有明显的视网膜病变,其线粒体拷贝数较低,mtDNA和Rac1启动子DNA甲基化加剧,而肥胖/高脂血症进一步增强了mtDNA的表观遗传修饰,加速了线粒体损伤和DR的发展,证明了肥胖/高血脂在DR疾病表观遗传修饰中的重要作用 [25]。

调查研究显示,降脂治疗可减少PDR患者的激光治疗次数 [26]。长期服用降脂药非诺贝特可减少DR病变进展 [27]。综上所述,肥胖在DR疾病进程中发挥重要作用,降脂或减重治疗将是防止DR发生发展的有效措施。

3. 肥胖与DN

DN常见于糖尿病病史超10年的患者,是T1DM的主要死因,在T2DM其严重性仅次于心、脑血管疾病。DN是全球慢性肾脏病变(chronic kidney disease, CKD)的主要原因,也是终末期肾衰竭的主要原因 [28]。在T2DM人群中,肥胖将增加女性的DN风险 [29],同时,肥胖加速T2DM患者白蛋白尿和肾功能恶化的进程 [30]。

肥胖所致的脂质和脂蛋白代谢异常导致肾损害,在DN的进展中起关键作用 [31]。在高糖高脂环境中,DN患者血浆中胆固醇(total cholesterol, TC)、甘油三酯(triglyceride, TG)和载脂蛋白B (apolipoprotein B, Apo B)相关脂蛋白,如极低密度脂蛋白(very low density lipoprotein, VLDL)、低密度脂蛋白(low density lipoprotein, LDL)和脂蛋白a (lipoprotein a, Lpa)水平升高,同时高密度脂蛋白(high density lipoprotein, HDL)水平下降,HDL主要结构和功能蛋白载脂蛋白A-I (apolipoprotein A-I, Apo A-I)水平也降低 [32],并且Apo B100 (参与脂蛋白摄取)、Apo B48 (乳糜微粒主要成分)和Apo CIII (脂蛋白脂酶抑制剂)等其他载脂蛋白亚型随之增加 [33]。脂蛋白脂酶的减少破坏了胆固醇的逆向转运,并减少介导脂质摄取的受体数量 [33]。随着这些不利血脂的定量升高,脂蛋白组成也逐渐发生定性变化,如HDL颗粒逐渐显示甘油三酯的富集和抗氧化剂的损失 [33] [34],血浆和肾实质中检测到氧化的HDL和LDL水平升高 [35] [36] [37]。这些氧化脂蛋白具有肾细胞毒性并加速肾损害 [38] [39]。例如,氧化脂蛋白增加NADPH氧化酶介导的活性氧(reactiveoxygenspecies, ROS)产生、募集循环单核细胞并分泌促炎细胞因子(IL-6、CCL2、CCL5和TNF-α),进一步导致肾脏细胞凋亡和氧化应激 [40] [41] [42]。总之,脂质代谢异常导致肾脏损伤并促进DN的进展。

脂肪组织的信号传递功能失调和脂质异位积聚与脂毒性密切相关 [43]。在DN患者中,血脂异常同时促进了棕榈酸盐、神经酰胺和非酯化脂肪酸(nonestesterified fatty acid, NEFA)等脂质中间产物在肾脏及肾外组织(如肝脏、胰腺和心脏)积聚 [44] [45]。肾实质中的这种脂质积聚导致局部炎症和氧化应激 [46] [47],对各种细胞(包括足细胞、近端小管上皮细胞和小管间质组织)造成损害,长期将对肾功能造成损害 [48] [49] [50] [51] [52]。

透射电子显微镜或磁共振成像发现,肥胖和糖尿病患者肾细胞中存在脂滴 [53],这种脂滴的积累导致了炎症激活、ROS产生、线粒体功能紊乱、自噬功能失调和细胞凋亡 [3] [45] [54],而脂滴形成的机制涉及到脂质有毒代谢物的积累,如二酰基甘油、脂肪酰基-CoA、神经酰胺和鞘脂,它们参与了蛋白激酶C (protein kinase C, PKC)的激活、甘油酯的合成和线粒体功能障碍 [55] [56]。因此,利用血脂代谢产物寻找肥胖与DN之间新的关联是研究疾病的新思路。最近,一项综合脂质组学分析已确定脂质介质(不饱和NEFA、磷脂酰乙醇胺和长链酰基肉碱等)是肾功能保留(GFR ≥ 90 mL/min)的美国印第安人DN进展的预测因素 [57]。Tofte等人发现,鞘磷脂和磷脂酰胆碱种类与T1DM患者肾损害进展及死亡率相关 [58]。基于血脂代谢异常与DN的相关性,一系列观察性研究陆续展开,已证实某些抗脂毒性药物能降低DN的肾毒性,如非诺贝特 [59] 、利拉鲁肽 [60] 、异槲皮素 [61] 以及白藜芦醇 [62] 等。

总之,在糖尿病进程中,肥胖所致的脂毒性靶向肾脏,这主要与脂质和脂蛋白代谢异常、异位脂质聚集和有害脂质代谢产物增加有关。在某种程度上讲,脂质标记物可以作为DN的预测因子。新型药物靶向肾脏脂肪毒性,可能是对抗DN的一种选择。减轻体重、改善肥胖将有利于延缓肾功能衰退进程。

4. 肥胖与ASCVD

肥胖增加糖尿病大血管并发症风险,尤其是ASCVD。一项关于日本T2DM人群调查显示,BMI升高与颈动脉内膜中层增厚显著相关,这提示肥胖可能是日本T2DM患者发生大血管病变的重要危险因素 [63]。ASCVD的病理事件主要包括血栓形成、内皮细胞功能障碍、脂质浸润、氧化应激和血管炎症,炎症促进斑块的形成和发展,最终导致斑块破裂引发急性心脑血管事件 [64] [65] [66]。肥胖人群一氧化氮(NO)生物利用度降低,会导致内皮依赖性血管舒张功能受损 [67],从而导致内皮一氧化氮合酶(eNOS)的改变,造成内皮细胞功能障碍。同时,高脂环境促进血管炎症,增加动脉粥样硬化负担 [68]。因此,高脂血症、胰岛素抵抗和慢性炎症与ASCVD之间相互作用,增加疾病相关死亡风险 [69]。

脂肪细胞分泌的脂肪因子在糖脂代谢方面发挥重要作用。脂肪组织可依据机体自身的生理环境分泌多种不同的脂肪因子。常见的脂肪因子包括脂联素(adiponectin, APN)、瘦素(leptin, LEP)、血管生成素样蛋白4 (angiopoietin-like protein 4, ANGPTL4)、趋化素等 [70]。新型脂肪因子包括chemerin、apelin、vaspin等 [71]。脂肪因子可通过血液循环直接作用于血管内皮细胞,或通过影响交感神经系统活性、胰岛素敏感性等方式间接影响血管内皮细胞功能,同时作为炎性介质直接影响动脉粥样硬化的发生,是糖尿病血管病变的高危要素之一。例如,脂肪因子chemerin能增加人微血管内皮细胞(human microvascular endothelial cells, HMECs) ROS的产生,并且抑制PI3K/Akt信号通路,进而抑制胰岛素诱导的eNOS磷酸化以及NO生成,而CMKLR1 (chemerin受体)拮抗剂能减少ROS生成并且改善血管舒张功能和胰岛素信号通路的活性 [72]。另有研究指出,2型糖尿病患者肾脏中脂肪因子apelin的水平增加,进一步的研究发现,apelin可以通过上调VEGFR2以及Tie2诱导糖尿病肾小球中异常的血管生成,并且增加肾小球内皮细胞的通透性,进而加速DN的进展 [73]。脂肪组织过度增生,加之糖尿病相关的代谢紊乱导致脂肪因子谱发生变动,加速糖尿病血管病变发生。总之,作为糖脂代谢及动脉粥样硬化过程中的关键环节,许多脂肪因子直接参与到糖尿病血管病变进程中,未来仍需进一步深入研究,为防治糖尿病及其并发症开辟出新的领域。

5. 总结与展望

糖尿病病因及发病机制复杂,肥胖加剧T2DM患者血管并发症的发生。T2DM合并肥胖的疾病管理形势非常严峻,新的肥胖指标的建立可帮助及时调整治疗方案。针对T2DM合并肥胖患者,在降糖的同时加强体重管理,是糖尿病综合管理的重要内容,对于预防糖尿病血管并发症、提高患者生活质量具有重要意义。

参考文献

[1] Li, Y., et al. (2020) Prevalence of Diabetes Recorded in Mainland China Using 2018 Diagnostic Criteria from the Amer-ican Diabetes Association: National Cross Sectional Study. BMJ, 369, Article No. m997.
https://doi.org/10.1136/bmj.m997
[2] Schnurr, T.M., et al. (2020) Obesity, Unfavourable Lifestyle and Genetic Risk of Type 2 Diabetes: A Case-Cohort Study. Diabetologia, 63, 1324-1332.
https://doi.org/10.1007/s00125-020-05140-5
[3] Thongnak, L., Pongchaidecha, A. and Lungkaphin, A. (2020) Renal Lipid Metabolism and Lipotoxicity in Diabetes. The American Journal of the Medical Sciences, 359, 84-99.
https://doi.org/10.1016/j.amjms.2019.11.004
[4] Rohm, T.V., Meier, D.T., Olefsky, J.M. and Donath, M.Y. (2022) Inflammation in Obesity, Diabetes, and Related Disorders. Immunity, 55, 31-55.
https://doi.org/10.1016/j.immuni.2021.12.013
[5] Wan, H., et al. (2020) Associations between Abdominal Obesi-ty Indices and Diabetic Complications: Chinese Visceral Adiposity Index and Neck Circumference. Cardiovascular Dia-betology, 19, Article No. 118.
https://doi.org/10.1186/s12933-020-01095-4
[6] Sjöström, L., et al. (2012) Bariatric Surgery and Long-Term Cardiovascular Events. JAMA, 307, 56-65.
https://doi.org/10.1001/jama.2011.1914
[7] Carlsson, L.M.S., et al. (2017) Long-Term Incidence of Microvascu-lar Disease after Bariatric Surgery or Usual Care in Patients with Obesity, Stratified by Baseline Glycaemic Status: A Post-Hoc Analysis of Participants from the Swedish Obese Subjects Study. The Lancet Diabetes and Endocrinology, 5, 271-279.
https://doi.org/10.1016/S2213-8587(17)30061-X
[8] Pontiroli, A.E., et al. (2016) Long-Term Mortality and Inci-dence of Cardiovascular Diseases and Type 2 Diabetes in Diabetic and Nondiabetic Obese Patients Undergoing Gastric Banding: A Controlled Study. Cardiovascular Diabetology, 15, Article No. 39.
https://doi.org/10.1186/s12933-016-0347-z
[9] Pontiroli, A.E., et al. (2019) Incidence of Diabetes Mellitus, Car-diovascular Diseases, and Cancer in Patients Undergoing Malabsorptive Surgery (Biliopancreatic Diversion and Bilioin-testinal Bypass) vs Medical Treatment. Obesity Surgery, 29, 935-942.
https://doi.org/10.1007/s11695-018-3601-5
[10] Pontiroli, A.E., et al. (2020) Bariatric Surgery, Compared to Medical Treatment, Reduces Morbidity at All Ages but Does Not Reduce Mortality in Patients Aged < 43 Years, Espe-cially if Diabetes Mellitus Is Present: A Post Hoc Analysis of Two Retrospective Cohort Studies. Acta Diabetologica, 57, 323-333.
https://doi.org/10.1007/s00592-019-01433-3
[11] Song, P., Yu, J., Chan, K.Y., Theodoratou, E. and Rudan, I. (2018) Prevalence, Risk Factors and Burden of Diabetic Retinopathy in China: A Systematic Review and Meta-Analysis. Journal of Global Health, 8, Article ID: 010803.
https://doi.org/10.7189/jogh.08.010803
[12] Lin, S., Gupta, B., James, N. and Ling, R.H. (2017) Visual Impair-ment Certification due to Diabetic Retinopathy in North and Eastern Devon. Acta Ophthalmologica, 95, e756-e762.
https://doi.org/10.1111/aos.13400
[13] Eid, S., et al. (2019) New Insights into the Mechanisms of Diabetic Com-plications: Role of Lipids and Lipid Metabolism. Diabetologia, 62, 1539-1549.
https://doi.org/10.1007/s00125-019-4959-1
[14] Chew, E.Y., et al. (1996) Association of Elevated Serum Lipid Levels with Retinal Hard Exudate in Diabetic Retinopathy: Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22. Archives of Ophthalmology, 114, 1079-1084.
https://doi.org/10.1001/archopht.1996.01100140281004
[15] Mooradian, A.D. (2009) Dyslipidemia in Type 2 Di-abetes Mellitus. Nature Reviews Endocrinology, 5, 150-159.
https://doi.org/10.1038/ncpendmet1066
[16] Zhu, W., et al. (2018) Association of Obesity and Risk of Diabetic Retinopathy in Diabetes Patients: A Meta-Analysis of Prospective Cohort Studies. Medicine, 97, e11807.
https://doi.org/10.1097/MD.0000000000011807
[17] Han, X., et al. (2022) Differential Effect of Generalized and Abdominal Obesity on the Development and Progression of Diabetic Retinopathy in Chinese Adults with Type 2 Diabe-tes. Frontiers in Medicine, 9, Article 774216.
https://doi.org/10.3389/fmed.2022.774216
[18] Kahn, H.S. (2005) The “Lipid Accumulation Product” Performs Better than the Body Mass Index for Recognizing Cardiovascular Risk: A Population-Based Comparison. BMC Cardio-vascular Disorders, 5, Article No. 26.
https://doi.org/10.1186/1471-2261-5-26
[19] Li, X., et al. (2021) Association among Lipid Accumulation Product, Chinese Visceral Obesity Index and Diabetic Retinopathy in Patients with Type 2 Diabetes: A Cross-Sectional Study. Diabetes, Metabolic Syndrome and Obesity, 14, 4971-4979.
https://doi.org/10.2147/DMSO.S348195
[20] Cheung, N., Mitchell, P. and Wong, T.Y. (2010) Diabetic Retinopathy. Lancet, 376, 124-136.
https://doi.org/10.1016/S0140-6736(09)62124-3
[21] Kowluru, R.A., Mishra, M., Kowluru, A. and Kumar, B. (2016) Hyperlipidemia and the Development of Diabetic Retinopathy: Comparison between Type 1 and Type 2 Animal Models. Metabolism: Clinical and Experimental, 65, 1570-1581.
https://doi.org/10.1016/j.metabol.2016.07.012
[22] Kowluru, R.A. (2019) Mitochondrial Stability in Diabetic Reti-nopathy: Lessons Learned from Epigenetics. Diabetes, 68, 241-247.
https://doi.org/10.2337/dbi18-0016
[23] Kowluru, R.A., Kowluru, A., Mishra, M. and Kumar, B. (2015) Oxidative Stress and Epigenetic Modifications in the Pathogenesis of Diabetic Retinopathy. Progress in Retinal and Eye Research, 48, 40-61.
https://doi.org/10.1016/j.preteyeres.2015.05.001
[24] Kowluru, R.A., et al. (2014) TIAM1-RAC1 Signalling Ax-is-Mediated Activation of NADPH Oxidase-2 Initiates Mitochondrial Damage in the Development of Diabetic Retinopa-thy. Diabetologia, 57, 1047-1056.
https://doi.org/10.1007/s00125-014-3194-z
[25] Kowluru, R.A. (2020) Retinopathy in a Diet-Induced Type 2 Dia-betic Rat Model and Role of Epigenetic Modifications. Diabetes, 69, 689-698.
https://doi.org/10.2337/db19-1009
[26] Chew, E.Y., et al. (2014) The Effects of Medical Management on the Pro-gression of Diabetic Retinopathy in Persons with Type 2 Diabetes: The Action to Control Cardiovascular Risk in Diabe-tes (ACCORD) Eye Study. Ophthalmology, 121, 2443-2451.
https://doi.org/10.1016/j.ophtha.2014.07.019
[27] Keech, A.C., et al. (2007) Effect of Fenofibrate on the Need for Laser Treatment for Diabetic Retinopathy (FIELD Study): A Randomised Controlled Trial. Lancet, 370, 1687-1697.
https://doi.org/10.1016/S0140-6736(07)61607-9
[28] Alicic, R.Z., Rooney, M.T. and Tuttle, K.R. (2017) Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clinical Journal of the American Society of Nephrology, 12, 2032-2045.
https://doi.org/10.2215/CJN.11491116
[29] Hukportie, D.N., et al. (2021) Anthropometric Measures and Incident Diabetic Nephropathy in Participants with Type 2 Diabetes Mellitus. Frontiers in Endocrinology, 12, Article 706845.
https://doi.org/10.3389/fendo.2021.706845
[30] Gao, S., Zhang, H., Long, C. and Xing, Z. (2021) Asso-ciation between Obesity and Microvascular Diseases in Patients with Type 2 Diabetes Mellitus. Frontiers in Endocrinol-ogy, 12, Article 719515.
https://doi.org/10.3389/fendo.2021.719515
[31] Adiels, M., Olofsson, S.O., Taskinen, M.R. and Borén, J. (2008) Overproduction of Very Low-Density Lipoproteins Is the Hallmark of the Dyslipidemia in the Metabolic Syndrome. Ar-teriosclerosis, Thrombosis, and Vascular Biology, 28, 1225-1236.
https://doi.org/10.1161/ATVBAHA.107.160192
[32] Okubo, K., et al. (2004) Abnormal HDL Apolipoprotein A-I and A-II Kinetics in Hemodialysis Patients: A Stable Isotope Study. Journal of the American Society of Nephrology, 15, 1008-1015.
https://doi.org/10.1097/01.ASN.0000117286.85443.7D
[33] Vaziri, N.D. (2016) Disorders of Lipid Metabolism in Nephrotic Syndrome: Mechanisms and Consequences. Kidney International, 90, 41-52.
https://doi.org/10.1016/j.kint.2016.02.026
[34] Kaysen, G.A. (2011) New Insights into Lipid Metabolism in Chronic Kidney Disease. Journal of Renal Nutrition, 21, 120-123.
https://doi.org/10.1053/j.jrn.2010.10.017
[35] Bosmans, J.L., et al. (2001) Oxidative Modification of Low-Density Lipoproteins and the Outcome of Renal Allografts at Years. Kidney International, 59, 2346-2356.
https://doi.org/10.1046/j.1523-1755.2001.00752.x
[36] Malle, E., et al. (1997) Immunological Evidence for Hypo-chlorite-Modified Proteins in Human Kidney. The American Journal of Pathology, 150, 603-615.
[37] Scheuer, H., et al. (2000) Oxidant Stress in Hyperlipidemia-Induced Renal Damage. American Journal of Physiology-Renal Physiology, 278, F63-F74.
https://doi.org/10.1152/ajprenal.2000.278.1.F63
[38] Bermúdez-López, M., et al. (2017) New Per-spectives on CKD-Induced Dyslipidemia. Expert Opinion on Therapeutic Targets, 21, 967-976.
https://doi.org/10.1080/14728222.2017.1369961
[39] Drüeke, T.B., et al. (2001) Role of Oxidized Low-Density Lipoprotein in the Atherosclerosis of Uremia. Kidney International, 78, S114-S119.
https://doi.org/10.1046/j.1523-1755.2001.59780114.x
[40] Lee, H.S. (1999) Oxidized LDL, Glomerular Mesangial Cells and Collagen. Diabetes Research and Clinical Practice, 45, 117-122.
https://doi.org/10.1016/S0168-8227(99)00040-6
[41] Sastre, C., et al. (2013) Hyperlipidemia-Associated Renal Damage Decreases Klotho Expression in Kidneys from ApoE Knockout Mice. PLOS ONE, 8, e83713.
https://doi.org/10.1371/journal.pone.0083713
[42] Muñoz-García, B., et al. (2009) Tumor Necrosis Factor-Like Weak Inducer of Apoptosis (TWEAK) Enhances Vascular and Renal Damage Induced by Hyperlipidemic Diet in Ap-oE-Knockout Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 2061-2068.
https://doi.org/10.1161/ATVBAHA.109.194852
[43] Opazo-Ríos, L., et al. (2020) Lipotoxicity and Diabetic Nephropathy: Novel Mechanistic Insights and Therapeutic Opportunities. International Journal of Molecular Sciences, 21, Article No. 2632.
https://doi.org/10.3390/ijms21072632
[44] Hager, M.R., Narla, A.D. and Tannock, L.R. (2017) Dyslipidemia in Patients with Chronic Kidney Disease. Reviews in Endocrine & Metabolic Disorders, 18, 29-40.
https://doi.org/10.1007/s11154-016-9402-z
[45] Ferrara, D., Montecucco, F., Dallegri, F. and Carbone, F. (2019) Impact of Different Ectopic Fat Depots on Cardiovascular and Metabolic Diseases. Journal of Cellular Physiology, 234, 21630-21641.
https://doi.org/10.1002/jcp.28821
[46] Edgerton, D.S., et al. (2017) Insulin’s Direct Hepatic Effect Explains the In-hibition of Glucose Production Caused by Insulin Secretion. JCI Insight, 2, e91863.
https://doi.org/10.1172/jci.insight.91863
[47] Fineberg, D., Jandeleit-Dahm, K.A. and Cooper, M.E. (2013) Dia-betic Nephropathy: Diagnosis and Treatment. Nature Reviews Endocrinology, 9, 713-723.
https://doi.org/10.1038/nrendo.2013.184
[48] de Vries, A.P., et al. (2014) Fatty Kidney: Emerging Role of Ectopic Lipid in Obesity-Related Renal Disease. The Lancet Diabetes and Endocrinology, 2, 417-426.
https://doi.org/10.1016/S2213-8587(14)70065-8
[49] DeZwaan-McCabe, D., et al. (2017) ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steato-sis. Cell Reports, 19, 1794-1806.
https://doi.org/10.1016/j.celrep.2017.05.020
[50] Jonker, J.T., et al. (2018) Metabolic Imaging of Fatty Kidney in Diabesity: Validation and Dietary Intervention. Nephrology Dialysis Transplantation, 33, 224-230.
https://doi.org/10.1093/ndt/gfx243
[51] Praga, M. and Morales, E. (2017) The Fatty Kidney: Obesity and Renal Disease. Nephron, 136, 273-276.
https://doi.org/10.1159/000447674
[52] Foster, M.C., et al. (2011) Fatty Kidney, Hypertension, and Chronic Kid-ney Disease: The Framingham Heart Study. Hypertension, 58, 784-790.
https://doi.org/10.1161/HYPERTENSIONAHA.111.175315
[53] Xu, S., Zhang, X. and Liu, P. (2018) Lipid Droplet Proteins and Metabolic Diseases. Elsevier Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1864, 1968-1983.
https://doi.org/10.1016/j.bbadis.2017.07.019
[54] Ashcroft, F.M., Rohm, M., Clark, A. and Brereton, M.F. (2017) Is Type 2 Diabetes a Glycogen Storage Disease of Pancreatic β Cells? Cell Metabolism, 26, 17-23.
https://doi.org/10.1016/j.cmet.2017.05.014
[55] Bandet, C.L., Tan-Chen, S., Bourron, O., Le Stunff, H. and Haj-duch, E. (2019) Sphingolipid Metabolism: New Insight into Ceramide-Induced Lipotoxicity in Muscle Cells. Internation-al Journal of Molecular Sciences, 20, Article No. 479.
https://doi.org/10.3390/ijms20030479
[56] Petersen, M.C. and Shulman, G.I. (2017) Roles of Diacylglycerols and Ceramides in Hepatic Insulin Resistance. Trends in Pharmacological Sciences, 38, 649-665.
https://doi.org/10.1016/j.tips.2017.04.004
[57] Afshinnia, F., et al. (2019) Increased Lipogenesis and Impaired β-Oxidation Predict Type 2 Diabetic Kidney Disease Progression in American Indians. JCI Insight, 4, e130317.
https://doi.org/10.1172/jci.insight.130317
[58] Tofte, N., et al. (2019) Lipidomic Analysis Reveals Sphingomyelin and Phosphatidylcholine Species Associated with Renal Impairment and All-Cause Mortality in Type 1 Diabetes. Scien-tific Reports, 9, Article No. 16398.
https://doi.org/10.1038/s41598-019-52916-w
[59] Tanaka, Y., et al. (2011) Fenofibrate, a PPARα Agonist, Has Renoprotective Effects in Mice by Enhancing Renal Lipolysis. Kidney International, 79, 871-882.
https://doi.org/10.1038/ki.2010.530
[60] Wang, C., et al. (2018) GLP-1 Receptor Agonist Ameliorates Obesi-ty-Induced Chronic Kidney Injury via Restoring Renal Metabolism Homeostasis. PLOS ONE, 13, e0193473.
https://doi.org/10.1371/journal.pone.0193473
[61] Jayachandran, M., et al. (2019) Isoquercetin Upregulates Anti-oxidant Genes, Suppresses Inflammatory Cytokines and Regulates AMPK Pathway in Streptozotocin-Induced Diabetic Rats. Chemico-Biological Interactions, 303, 62-69.
https://doi.org/10.1016/j.cbi.2019.02.017
[62] Kim, M.Y., et al. (2013) Resveratrol Prevents Renal Lipotoxicity and Inhibits Mesangial Cell Glucotoxicity in a Manner Dependent on the AMPK-SIRT1-PGC1α Axis in db/db Mice. Dia-betologia, 56, 204-217.
https://doi.org/10.1007/s00125-012-2747-2
[63] Ogawa, K., et al. (2004) History of Obesity as a Risk Factor for Both Carotid Atherosclerosis and Microangiopathy. Diabetes Research and Clinical Practice, 66, S165-168.
https://doi.org/10.1016/j.diabres.2003.09.020
[64] Wolf, D. and Ley, K. (2019) Immunity and Inflammation in Atherosclerosis. Circulation Research, 124, 315-327.
https://doi.org/10.1161/CIRCRESAHA.118.313591
[65] Weber, C., Badimon, L., Mach, F. and van der Vorst, E.P.C. (2017) Therapeutic Strategies for Atherosclerosis and Atherothrombosis: Past, Present and Future. Thrombosis and Haemostasis, 117, 1258-1264.
https://doi.org/10.1160/TH16-10-0814
[66] Fredman, G.and Tabas, I. (2017) Boosting Inflammation Resolution in Atherosclerosis: The Next Frontier for Therapy. The American Journal of Pathology, 187, 1211-1221.
https://doi.org/10.1016/j.ajpath.2017.01.018
[67] Avogaro, A. and de Kreutzenberg, S.V. (2005) Mechanisms of Endothelial Dysfunction in Obesity. Clinica Chimica Acta, 360, 9-26.
https://doi.org/10.1016/j.cccn.2005.04.020
[68] La Sala, L., Prattichizzo, F. and Ceriello, A. (2019) The Link be-tween Diabetes and Atherosclerosis. European Journal of Preventive Cardiology, 26, 15-24.
https://doi.org/10.1177/2047487319878373
[69] Wiebe, N., Stenvinkel, P. and Tonelli, M. (2019) Associations of Chronic Inflammation, Insulin Resistance, and Severe Obesity with Mortality, Myocardial Infarction, Cancer, and Chronic Pulmonary Disease. JAMA Network Open, 2, e1910456.
https://doi.org/10.1001/jamanetworkopen.2019.10456
[70] 王晓霞, 等. 脂肪细胞因子在糖尿病发生发展过程中作用机制的研究进展[J]. 中国现代医生, 2020, 58(3): 183-186.
[71] 袁颜玉, 郭青玉, 邵加庆. 脂肪因子与糖尿病内皮功能障碍的研究进展[J]. 医学研究生学报, 2021, 34(3): 293-298.
https://doi.org/10.16571/j.cnki.1008-8199.2021.03.015
[72] Neves, K.B., et al. (2018) Chemerin Receptor Block-ade Improves Vascular Function in Diabetic Obese Mice via Redox-Sensitive and Akt-Dependent Pathways. American Journal of Physiology-Heart and Circulatory Physiology, 315, H1851-H1860.
https://doi.org/10.1152/ajpheart.00285.2018
[73] Zhang, B.-H., Wang, W., Wang, H., Yin, J. and Zeng, X.-J. (2013) Promoting Effects of the Adipokine, Apelin, on Diabetic Nephropathy. PLOS ONE, 8, e60457.
https://doi.org/10.1371/journal.pone.0060457