细胞因子在糖尿病黄斑水肿发病机制中的作用
The Role of Cytokines in the Pathogenesis of Diabetic Macular Edema
DOI: 10.12677/ACM.2023.133689, PDF, HTML, XML, 下载: 197  浏览: 350 
作者: 高春婷, 刘 锦, 邵 欢:延安大学医学院,陕西 延安;王理论*:延安大学附属医院眼科,陕西 延安
关键词: 细胞因子糖尿病黄斑水肿黄斑水肿发病机制Cytokines Diabetic Macular Edema Macular Edema Pathogenesis
摘要: 糖尿病性黄斑水肿(Diabetic Macular Edema, DME)是糖尿病患者视力丧失的最常见原因,其产生机制复杂,主要是血–视网膜屏障被破坏,导致血管通透性增高所致。近年来,人们尝试通过各种方法治疗DME,包括激光光凝、类固醇曲安奈德和玻璃体切除术等多种治疗方式。然而,治疗效果并不理想,直到研究发现血管内皮生长因子(VEGF)在DME发病过程中的重要作用,DME的治疗有了里程碑式的进展。眼内抗VEGF药物在DME中疗效良好,使许多DME患者的视力得到提升。然而临床医生在工作中逐渐发现,部分患者对抗VEGF药物低应答甚至不应答,这表明可能有其他因素参与。现有研究显示,DME发病与炎症反应有关。本文对DME的发病机制中VEGF因子、炎症因子等细胞因子的作用进行概述,并描述了与细胞因子相关的新型药物。
Abstract: Diabetes macular edema (DME) is the most common cause of vision loss in diabetes patients. Its mechanism is complex, mainly due to the destruction of the blood retinal barrier, leading to in-creased vascular permeability. For many years, people have tried to treat DME by various methods, including laser photocoagulation, steroid triamcinolone acetonide and vitrectomy. However, the treatment effect was not ideal until the study found that vascular endothelial growth factor (VEGF) played an important role in the pathogenesis of DME, and the treatment of DME made a landmark progress. Intraocular anti-VEGF drugs have been shown to be effective in DME and have improved vision in many DME patients. Nevertheless, clinicians gradually find that some patients have low or no response to anti-VEGF drugs in their work, which indicates that other factors may be involved. Current research shows that inflammatory reaction plays an important role in the occurrence of DME. This article summarizes the role of cytokines such as VEGF and inflammatory factors in the pathogenesis of DME, and describes new drugs related to cytokines.
文章引用:高春婷, 王理论, 刘锦, 邵欢. 细胞因子在糖尿病黄斑水肿发病机制中的作用[J]. 临床医学进展, 2023, 13(3): 4820-4827. https://doi.org/10.12677/ACM.2023.133689

1. 引言

糖尿病是一种能引起各种血管并发症的慢性代谢病。近年来,由于人们的生活习惯改变,这种疾病在世界各地的流行程度不断增加,根据国际糖尿病联合会(IDF)糖尿病地图集第十版的估计,2030年全球预计有6.43亿成年人患糖尿病,到2045年,这一数字将达到7.83亿。有研究表明,大约4.2%~7.9%的1型糖尿病患者和4%~12.8%的2型糖尿病患者可能发展为DME [1]。糖尿病黄斑水肿是指在糖尿病状态下,黄斑区液体的异常积聚累及或接近中央凹,导致视网膜中央/黄斑厚度增加 [2]。它的病因非常复杂,到目前为止还没有得到充分的解释。血–视网膜屏障(Blood-Retinal Barrier, BRB)功能的损害,从而引起液体渗漏、聚集,这是DME发病的重要因素 [3]。近年的研究中,已有学者对血管内皮生长因子(VEGF)在DME [4] 中的作用进行了阐述,并由此研发了抗VEGF药物的问世,成为DME治疗历史上具有里程碑意义的一步,提高了DME患者的视力。然而临床医生在工作中逐渐发现,部分患者使用抗VEGF药物后病情仍难以控制或复发。有研究表明炎症因子等细胞因子可能在DME中起作用。本文综述了DME的发病机制中VEGF因子、炎症因子等其他细胞因子的作用,并描述了与细胞因子相关的新型药物,以期为DME的治疗提供新的思路。

2. 细胞因子的生成和释放

细胞因子(Cytokine, CK)是一种小分子多肽或糖蛋白,可由多种细胞产生,能调节细胞生长、分化成熟、维持细胞功能,且在调节免疫反应、参与炎症反应、创伤愈合、肿瘤消长等方面起到重要作用。有研究发现,DME的发生是由于慢性高血糖引起生化途径的异常,这些异常的生化通路会增加VEGF等细胞因子的释放。例如:长期高血糖状态下,诱导多元醇途径激活,造成晚期糖基化终产物(Advanced Glycation End Products, AGEs)的不断堆积,AGEs的积累会增加蛋白激酶C (PKC)的活性,PKC的活性又会导致VEGF等因子的上调,进而损伤视网膜细胞,诱发DME [5]。炎症因子和炎症介质,如VEGF、胎盘生长因子(PlGF)、肿瘤坏死因子-α (TNF-α)、IL-6、IL-8等 [6],可被视网膜色素上皮(Retinal Pigment Epithelial, RPE)细胞、小胶质细胞、单核/巨噬细胞、Müller细胞等激活,进一步增加其表达,从而导致BRB的降解。细胞因子在这些异常的生化通路中发挥了重要作用。

2.1. 白细胞介素(Interleukin, IL)

2.1.1. 白介素(IL)-6

IL-6是一种重要的多效性炎症因子,参与细胞免疫和体液免疫。可由单核细胞、巨噬细胞和小胶质细胞等产生,无论是在急慢性炎症中,IL-6均起到了关键作用。目前已有体外实验表明,低氧条件下内皮细胞IL-6 mRNA的表达逐渐增加 [7],这说明IL-6极可能与低氧诱导的DR和DME相关。有动物实验发现,IL-6通过PKC介导的信使作用,重新排列肌动蛋白丝,改变内皮细胞紧密连接的超微结构分布和细胞形态,使内皮细胞通透性增加 [8],直接使视网膜毛细血管内皮细胞的屏障作用受到破坏。实验发现,在过表达IL-6的转基因小鼠中,星形胶质细胞增生和微胶质细胞增生;IL-6能改变星形胶质细胞的功能 [9],星形胶质细胞是视网膜内屏障的重要组成部分,由此,IL-6破坏了视网膜内屏障。此外,IL-6能通过上调VEGF水平增加血管通透性 [8],并且,IL-6与视网膜黄斑层的厚度增加有显著的相关性 [10]。

2.1.2. 白介素(IL)-8

IL-8是一种具有趋化效应的因子,能活化中性粒细胞和T淋巴细胞,刺激炎症反应。在体外研究中,给予缺氧和氧化应激的条件下,血管内皮细胞产生IL-8增加 [11]。另外,IL-8在细胞间的紧密联系中起着重要的作用,它可以降低细胞间的紧密联系从而提高血管的通透性 [12]。针对DME患者的研究发现,在对DME患者进行抗VEGF药物治疗后,在对治疗有反应的患者中,IL-8的平均水平低于那些没有反应的患者;多因素logistic回归分析发现,只有IL-8与治疗反应相关,因此房水中的IL-8水平可能与DME患者对抗VEGF药物的治疗反应相关。

2.1.3. 白介素(IL)-10

L-10是一种抗炎细胞因子,其在特异性免疫系统和非特异性免疫系统的大多数细胞中均有表达,包括树突状细胞、白细胞和巨噬细胞,具有强效失活特性。我国的一项临床研究发现,IL-10基因rs1800896多态性可降低汉族人群PDR的发病风险 [13]。此外,国外研究发现IL10基因中的-1082A > G多态性与2型糖尿病NPDR的发病独立相关 [14]。

2.1.4. 白介素(IL)-1β

IL-1β被称为白细胞热原、白细胞内源性介质、单核细胞因子和淋巴细胞活化因子,参与多种细胞活动,包括细胞分化和细胞凋亡。周细胞通过维持内皮细胞紧密连接的完整性,在防止内皮通透性方面发挥着关键作用,已有研究表明,在高葡萄糖条件下,IL-1β可通过核因子(NF)-κB活化诱导周细胞凋亡 [15],同时,活化的NF-κB还可促进人视网膜色素上皮细胞分泌IL-6、IL-8、细胞间黏附分子-1 (ICAM-1)、单核细胞趋化蛋白-1 (MCP-1) [16],并诱发炎症反应,调节视网膜屏障作用,提高糖尿病视网膜病变的内皮通透性。启示我们阻断IL-1β/NF-κB信号传导可能是预防糖尿病视网膜病变周细胞丢失、抑制炎症反应的有希望的治疗靶点。此外,研究表明高糖状态下,刺激巨噬细胞通过葡萄糖代谢产生IL-1β,其后生产的活性氧类(ROS)导致炎性体的激活 [17]。

2.2. 肿瘤坏死因子(Tumor Necrosis Factor, TNF)

肿瘤坏死因子-α (Tumor Necrosis Factor-α, TNF-α)是一种抗炎因子,主要由巨噬细胞和单核细胞分泌,参与正常的炎症和免疫反应。有研究观察DME患者的眼内液,发现TNF-α的含量增加,进一步研究发现TNF-α和IL-1β共同诱导细胞间黏附分子(ICAM)-1的产生 [18],增加白细胞的黏附性,促进内皮细胞和周细胞凋亡。TNFα还参与了BRB分解 [19] 和神经元凋亡 [20],其主要机制是增加caspase-3的表达。CD40为TNF受体的一种,已有动物试验表明,CD40在糖尿病小鼠视网膜Müller细胞、内皮细胞和小胶细胞均有较高的表达,若阻断CD40,可阻断ICAM-1上调 [21],因此,破坏CD40-TRAF2,3通路可能成为一种新的方法来抑制参与糖尿病视网膜病变发病机制的炎症反应 [22]。

2.3. 生长因子(Growth Factor, GF)

2.3.1. 血管内皮生长因子(Vascular Endothelial Growth Factor, VEGF)

VEGF家族是一个巨大的家族,它的成员主要有VEGF-A,B,C,D,以及胎盘生长因子(PlGF),其中VEGF-A是目前最广泛的研究对象,它与眼部血管性病变的发展关系密切,是炎症和血管形成的媒介,对神经元的生长、分化和存活都有重要作用 [23]。VEGF在多种视网膜细胞中均有表达,例如Müller细胞、胶质细胞、视网膜色素细胞、内皮细胞、周细胞等。在低氧状态下,缺氧诱导因子-1α (HIF-1α)水平升高 [24],从而促进VEGF的释放。VEGF能使细胞质肌动蛋白的排列发生变化,使支架蛋白、粘附蛋白、RPE细胞紧密连接蛋白、闭锁蛋白等蛋白的磷酸化作用增强 [25],从而改变细胞紧密连接,增加视网膜血管通透性。因此,VEGF在BRB损伤及黄斑区水肿中扮演重要角色。VEGF须与VEGF受体结合从而激活信号通路。视网膜中表达两种VEGF受体,VEGF受体-1 (VEGFR-1)和VEGF受体-2 (VEGFR-2) [26]。VEGFR-1主要表达于单核细胞和巨噬细胞,其参与了白细胞的趋化和聚集 [27]。如前所述,胎盘生长因子(PlGF)是VEGF家族的成员,它与VEGFR-1特异结合后,激活钙调磷酸酶依赖性途径 [28],该途径刺激单核细胞和巨噬细胞产生促炎因子和组织因子等,促使炎症细胞与炎症因子在炎症部位聚集。VEGFR-1活化可以刺激炎症反应 [29]。VEGFR-2仅由内皮细胞表达。VEGF与VEGFR-2结合后,不但使血管通透性增加,而且能促进B细胞的核因子kappalt-chain-enhancer (NF-κB)的激活,增加炎症细胞因子(如单核细胞趋化蛋白(MCP)-1和细胞间粘附分子1 (ICAM-1))的表达 [30],引起白细胞趋化,使炎症细胞附着于血管内皮,从而使血管更加通透,引起黄斑水肿。

2.3.2. 胎盘生长因子(Placental Growth Factor, PlGF)

PLGF属于VEGF家族中的一员 [28],是一种分子结构为糖蛋白同型二聚体的蛋白质,能够与VEGFR-1结合,且其对该受体的亲和力高于VEGF [31]。PlGF是VEGFR-1的特异性配体,能促进血管新生,且能诱导内皮细胞增殖及迁移 [32]。如前所述,PlGF也可以通过促进单核和巨噬细胞中的组织因子生成和趋化,从而调控炎症进程 [33]。研究发现,房水中PlGF水平与DME严重程度之间显著相关 [34]。目前已有药物如阿柏西普,作为一种可与VEGF-A和PlGF紧密结合的融合蛋白 [35] 减轻黄斑水肿。

2.3.3. 血小板衍生生长因子(Platelet Derived Growth Factor, PDGF)

PDGF是一种有效的促有丝分裂因子,能调节结缔组织和发育中神经系统的细胞生长和分裂。由血小板,平滑肌细胞,巨噬细胞和内皮细胞在活化后合成,能调节细胞生长和分裂。PDGF家族有A、B、C和d四种配体。除了配体“AB”作为异二聚体外,其余均作为同型二聚体发挥作用 [36]。在2型糖尿病患者体内,血小板过度激活和聚集,PDGF可以通过PKC,核因子-kappa B (NF-κB),Src/Smad1/Col4,JAK/STAT等通路 [37],促进炎症和血管生成,从而损害内皮迁移和增殖。有趣的是,PDGF在正常葡萄糖浓度下增加能视网膜中的DNA合成,通过激活PDGF-BB/PDGFR-β诱导的Akt或ERK磷酸化 [38] 来预防周细胞凋亡。在高糖情况下,通过激活PKCδ-p38MAPK-SHP-1途径抑制PDGF-BB/PDGFR-β [38] 下游信号传导,引起的DR中的周细胞凋亡 [39]。另外,PDGF-AB还能激活PI3k/Akt信号途径,从而对视网膜神经节细胞起到保护作用。然而,高血糖状态下神经保护剂不足,导致视网膜缺血和缺氧引起的新血管生成。

2.3.4. 胰岛素样生长因子-I (Insulin-Like Growth Factor 1, IGF-1)

IGF-1是生长激素作用最重要的介质,IGF-I和IGF结合蛋白(IGFBP)在整个视网膜的血管、神经元和神经胶质细胞中表达,并且在高血糖和缺氧的反应中发生改变 [40]。有研究发现,玻璃体中IGF-1水平的升高与糖尿病视网膜新生血管的严重程度相关 [41]。然而,有研究团队利用鸡绒毛膜尿囊膜(CAM)模型,证实了左旋多巴(L-Dopa)与IGF-1联合在增殖性糖尿病视网膜病变(PDR)进展过程中起到了减缓或延迟新生血管形成的可能性 [42]。此外,也有实验表明胰岛素类似物可能导致神经胶质细胞增殖,并通过刺激IGF-1受体在RPE和Müller细胞中产生牵引力,在血视网膜内部屏障受损后加速糖尿病视网膜病变的进展 [41]。

2.4. 趋化因子家族(Chemokine Family)

2.4.1. 单核细胞趋化蛋白-1 (MCP-1)

MCP-1的主要来源是神经元,其上调始于DR的初始阶段,并随着疾病进展进一步升高 [43]。在缺血诱导因子中,存在着MCP-1等趋化因子,促进单核细胞聚集,活化为巨噬细胞,吸引巨噬细胞进入低灌注区 [44],激活p38和ERK等途径 [45],从而使巨噬细胞、胶质细胞和小胶质细胞等产生TNF-α、IL-6和其他炎症细胞因子、生长因子,从而促使内皮细胞进一步释放MCP-1、IL-6和VEGF,促进血管生成和纤维化。与Il-8类似,MCP-1也可通过促进连接蛋白的磷酸化打开紧密连接 [46],导致血管通透性增加。

2.4.2. 炎症蛋白10 (IP-10)

IP-10是由巨噬细胞、内皮细胞、成纤维细胞释放的,它能引起细胞的免疫反应,并能吸引大量细胞,如巨噬细胞和T细胞。对DME患者眼内液进行观察,发现IP-10水平与MCP-1、IL-6和IL-8含量有关 [34],可通过抑制内皮细胞的增殖,促进血管内皮细胞的凋亡,从而抵消VEGF相关的内皮细胞活力增加 [47]。

2.5. 干扰素(IFN)和集落刺激因子(CSF)

内皮细胞极易受IL-1、TNF-α、IFN-γ等的作用,从而诱发内皮细胞生成IL-8、MCP-1,从而促进DME的产生。促红细胞生成素(EPO)通过Src/Akt/cofilin信号传导抑制实验性糖尿病视网膜病变中的小胶质细胞吞噬作用,从而保护血–视网膜内屏障 [48]。

3. 其他因子及产物

3.1. 细胞间黏附分子-1 (Intercellular Cell Adhesion Molecule-1, ICAM-1)

又称CD54,属于细胞因子受体,是一种细胞表面糖蛋白和粘附受体,作为黏附分子中免疫球蛋白超家族(IGSF)中的成员,参与调节白细胞从循环到炎症部位的募集。此外,它还与VEGF的表达以及椭圆体带和外界膜的破坏 [49] 密切相关。

3.2. 血管细胞间黏附分子(Vascular Cell Adhesion Molecule-1, VCAM-1)

VEGF能刺激ICAM-1和VCAM-1的分泌,促进白细胞与视网膜毛细管内皮的黏附,启动炎症反应。

3.3. 糖基化终末产物(Advanced Glycation End-Products, AGEs)

AGEs与周细胞表面的AGEs受体结合,诱导周细胞凋亡。AGEs降低胶质细胞表达胶质细胞源性神经营养因子,改变胶质的细胞结构和功能,刺激VEGF分泌,增加毛细血管通透性 [50]。

4. 潜在的与介质相关的新型药物靶点

在DME的治疗研究中,针对靶点精准治疗使目前研究趋势所在,目前,全球范围内针对各种靶点的新型药物在不断探索中,例如VEGF设计锚蛋白重复蛋白,白介素抑制剂如IL-6人源化单克隆抗体(EBI-031),黏附分子抑制剂如血管粘附蛋白(VAP)-1抑制剂(ASP8232),生长因子抑制剂酪氨酸激酶Tie2激活剂(AKB-9778) [51] 等,其临床效能也在不断实验中加强。

5. 展望

本文就细胞因子在DME发病机制中的作用以及与其靶点相关新药物的研究进行综述。越来越多的证据表明炎症是糖尿病相关视网膜紊乱的一个关键因素,是糖尿病黄斑水肿发生机制中的重要一环,然而,确切的潜在分子机制尚未完全了解。高血糖状态下,相关细胞因子例如白介素、生长因子等引起异常的生化通路,促进炎症和视网膜缺氧的发展。炎症细胞因子的表达增加,炎症恶化。DME患者对抗VEGF治疗产生耐药性,因此,提高对细胞因子在DME发病中的作用机制的认证,开发新的治疗策略已刻不容缓。

NOTES

*通讯作者。

参考文献

[1] Kodjikian, L., Bellocq, D., Bandello, F., Loewenstein, A., et al. (2019) First-Line Treatment Algorithm and Guidelines in Center-Involving Diabetic Macular Edema. European Journal of Ophthalmology, 29, 573-584.
https://doi.org/10.1177/1120672119857511
[2] Kusuhara, S., Shimura, M., Kitano, S., et al. (2022) Treatment of Diabetic Macular Edema in Real-World Clinical Practice: The Effect of Aging. Journal of Diabetes Investigation, 13, 1339-1346.
https://doi.org/10.1111/jdi.13801
[3] Daruich, A., Matet, A., Moulin, A., et al. (2018) Mechanisms of Macular Edema: Beyond the Surface. Progress in Retinal and Eye Research, 63, 20-68.
https://doi.org/10.1016/j.preteyeres.2017.10.006
[4] Romero-Aroca, P., Baget-Bernaldiz, M., Pareja-Rios, A., et al. (2016) Diabetic Macular Edema Pathophysiology: Vasogenic versus Inflammatory. Journal of Diabetes Research, 2016, Article ID: 2156273.
https://doi.org/10.1155/2016/2156273
[5] Chakrabarti, S., Cukiernik, M., Hileeto, D., Evans, T. and Chen, S. (2000) Role of Vasoactive Factors in the Pathogenesis of Early Changes in Diabetic Retinopathy. Diabetes/Metabolism Research and Reviews, 16, 393-407.
https://doi.org/10.1002/1520-7560(0000)9999:9999<::AID-DMRR157>3.0.CO;2-G
[6] Alizadeh, E., Mammadzada, P. and Andre, H. (2018) The Different Facades of Retinal and Choroidal Endothelial Cells in Response to Hypoxia. International Journal of Molecular Sciences, 19, Article No. 3846.
https://doi.org/10.3390/ijms19123846
[7] Pearlstein, D.P., Ali, M.H., Mungai, P.T., et al. (2002) Role of Mito-chondrial Oxidant Generation in Endothelial Cell Responses to Hypoxia. Arteriosclerosis, Thrombosis, and Vascular Bi-ology, 22, 566-573.
https://doi.org/10.1161/01.ATV.0000012262.76205.6A
[8] Desai, T.R., Leeper, N.J., Hynes, K.L. and Gewertz, B.L. (2002) Interleukin-6 Causes Endothelial Barrier Dysfunction via the Protein Kinase C Pathway. Journal of Surgical Research, 104, 118-123.
https://doi.org/10.1006/jsre.2002.6415
[9] Zhang, J., Zhang, J., Zhang, C., et al. (2022) Diabetic Macular Edema: Current Understanding, Molecular Mechanisms and Therapeutic Implications. Cells, 11, Article No. 3362.
https://doi.org/10.3390/cells11213362
[10] Chalam, K.V., Grover, S., Sambhav, K., Balaiya, S. and Murthy, R.K. (2014) Aqueous Interleukin-6 Levels Are Superior to Vascular Endothelial Growth Factor in Predicting Therapeutic Response to Bevacizumab in Age-Related Macular Degeneration. Journal of Ophthalmology, 2014, Article ID: 502174.
https://doi.org/10.1155/2014/502174
[11] Dong, F., Qin, X., Wang, B., et al. (2021) ALKBH5 Facili-tates Hypoxia-Induced Paraspeckle Assembly and IL8 Secretion to Generate an Immunosuppressive Tumor Microenvi-ronment. Cancer Research, 81, 5876-5888.
https://doi.org/10.1158/0008-5472.CAN-21-1456
[12] Yu, H., Huang, X., Ma, Y., et al. (2013) Interleukin-8 Reg-ulates Endothelial Permeability by Down-Regulation of Tight Junction but Not Dependent on Integrins Induced Focal Adhesions. International Journal of Biological Sciences, 9, 966-979.
https://doi.org/10.7150/ijbs.6996
[13] Liu, L., Zheng, J., Xu, Y., et al. (2019) Association between Interleukin-10 Gene Rs1800896 Polymorphism and Diabetic Reti-nopathy in a Chinese Han Population. Bioscience Reports, 39, Article ID: BSR20181382.
https://doi.org/10.1042/BSR20181382
[14] da Silva Pereira, B.L., Polina, E.R., Crispim, D., et al. (2018) Interleu-kin-10 -1082A  >  G (rs1800896) Polymorphism Is Associated with Diabetic Retinopathy in Type 2 Diabetes. Diabetes Research and Clinical Practice, 138, 187-192.
https://doi.org/10.1016/j.diabres.2018.01.023
[15] Yun, J.-H. (2021) Interleukin-1β Induces Pericyte Apoptosis via the NF-κB Pathway in Diabetic Retinopathy. Biochemical and Biophysical Research Communications, 546, 46-53.
https://doi.org/10.1016/j.bbrc.2021.01.108
[16] Cheng, S.C., Huang, W.C., Pang, J.-H.S., Wu, Y.-H. and Cheng, C.-Y. (2019) Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways. International Journal of Molecular Sciences, 20, Article No. 2957.
https://doi.org/10.3390/ijms20122957
[17] Dror, E., Dalmas, E., Meier, D., et al. (2017) Postprandial Macro-phage-Derived IL-1β Stimulates Insulin, and Both Synergistically Promote Glucose Disposal and Inflammation. Nature Immunology, 18, 283-292.
https://doi.org/10.1038/ni.3659
[18] Lee, I.-T., Liu, S.-W., Chi, P.-L., et al. (2015) TNF-α Mediates PKCδ/JNK1/2/c-Jun-Dependent Monocyte Adhesion via ICAM-1 Induction in Human Retinal Pigment Epithelial Cells. PLOS ONE, 10, e117911.
https://doi.org/10.1371/journal.pone.0117911
[19] Aveleira, C.A., Lin, C.-M., Abcouwer, S.F., Ambrósio, A.F. and Antonetti, D.A. (2010) TNF-α Signals through PKCζ/NF-κB to Alter the Tight Junction Complex and Increase Ret-inal Endothelial Cell Permeability. Diabetes, 59, 2872-2882.
https://doi.org/10.2337/db09-1606
[20] Costa, G.N., Vindeirinho, J., Cavadas, C., Ambrósio, A.F. and Santos, P.F. (2012) Contribution of TNF Receptor 1 to Retinal Neural Cell Death Induced by Elevated Glucose. Molecular and Cellular Neuroscience, 50, 113-123.
https://doi.org/10.1016/j.mcn.2012.04.003
[21] Portillo, J.-A.C., Greene, J.A., Okenka, G., et al. (2014) CD40 Promotes the Development of Early Diabetic Retinopathy in Mice. Diabetologia, 57, 2222-2231.
https://doi.org/10.1007/s00125-014-3321-x
[22] Portillo, J.-A.C., Yu, J.-S., Vos, S., et al. (2022) Disruption of Retinal Inflammation and the Development of Diabetic Retinopathy in Mice by a CD40-Derived Peptide or Mutation of CD40 in Müller Cells. Diabetologia, 65, 2157-2171.
https://doi.org/10.1007/s00125-022-05775-6
[23] Lange, C., Storkebaum, E., de Almodóvar, C., Dewerchin, M. and Carmeliet, P. (2016) Vascular Endothelial Growth Factor: A Neurovascular Target in Neurological Diseases. Nature Reviews Neurology, 12, 439-454.
https://doi.org/10.1038/nrneurol.2016.88
[24] Kurihara, T., Westenskow, P. and Friedlander, M. (2014) Hypox-ia-Inducible Factor (HIF)/Vascular Endothelial Growth Factor (VEGF) Signaling in the Retina. In: Ash, J., Grimm, C., Hollyfield, J., Anderson, R., LaVail, M. and Bowes Rickman, C., Eds., Retinal Degenerative Diseases. Advances in Ex-perimental Medicine and Biology, Vol. 801, Springer, New York, 275-281.
https://doi.org/10.1007/978-1-4614-3209-8_35
[25] Murata, T., Ishibashi, T., Khalil, A., et al. (1995) Vascular Endothelial Growth Factor Plays a Role in Hyperpermeability of Diabetic Retinal Vessels. Ophthalmic Research, 27, 48-52.
https://doi.org/10.1159/000267567
[26] Apte, R.S., Chen, D.S. and Ferrara, N. (2019) VEGF in Signaling and Disease: Beyond Discovery and Development. Cell, 176, 1248-1264.
https://doi.org/10.1016/j.cell.2019.01.021
[27] Noma, H., Yasuda, K. and Shimura, M. (2021) Involvement of Cy-tokines in the Pathogenesis of Diabetic Macular Edema. International Journal of Molecular Sciences, 22, Article No. 3427.
https://doi.org/10.3390/ijms22073427
[28] Van Bergen, T., Etienne, I., Cunningham, F., et al. (2019) The Role of Placental Growth Factor (PlGF) and Its Receptor System in Retinal Vascular Diseases. Progress in Retinal and Eye Research, 69, 116-136.
https://doi.org/10.1016/j.preteyeres.2018.10.006
[29] Tan, G.S., Cheung, N., Simó, R., Cheung, G.C. and Wong, T.Y. (2017) Diabetic Macular Oedema. The Lancet Diabetes and Endocrinology, 5, 143-155.
https://doi.org/10.1016/S2213-8587(16)30052-3
[30] Liang, W.-J., Yang, H.-W., Liu, H.-N., Qian, W. and Chen, X.-L. (2020) HMGB1 Upregulates NF-kB by Inhibiting IKB-α and Associates with Diabetic Retinopathy. Life Sciences, 241, Article ID: 117146.
https://doi.org/10.1016/j.lfs.2019.117146
[31] Nguyen, Q.D., De Falco, S., Behar-Cohen, F., et al. (2018) Placen-tal Growth Factor and Its Potential Role in Diabetic Retinopathy and Other Ocular Neovascular Diseases. Acta Ophthal-mologica, 96, e1-e9.
https://doi.org/10.1111/aos.13325
[32] Balser, C., Wolf, A., Herb, M. and Langmann, T. (2019) Co-Inhibition of PGF and VEGF Blocks Their Expression in Mononuclear Phagocytes and Limits Neovascularization and Leakage in the Murine Retina. Journal of Neuroinflammation, 16, Article No. 26.
https://doi.org/10.1186/s12974-019-1419-2
[33] Van Bergen, T., Hu, T.-T., Etienne, I., et al. (2017) NNeutraliza-tion of Placental Growth Factor as a Novel Treatment Option in Diabetic Retinopathy. Experimental Eye Research, 165, 136-150.
https://doi.org/10.1016/j.exer.2017.09.012
[34] Noma, H., Mimura, T., Yasuda, K., et al. (2017) Aque-ous Humor Levels of Soluble Vascular Endothelial Growth Factor Receptor and Inflammatory Factors in Diabetic Macu-lar Edema. Ophthalmologica, 238, 81-88.
https://doi.org/10.1159/000475603
[35] Wells, J.A., Glassman, A.R., Ayala, A.R., et al. (2016) Aflibercept, Bevacizumab, or Ranibizumab for Diabetic Macular Edema: Two-Year Results from a Comparative Effectiveness Ran-domized Clinical Trial. Ophthalmology, 123, 1351-1359.
https://doi.org/10.1016/j.ophtha.2016.02.022
[36] Hu, W. and Huang, Y. (2015) Targeting the Platelet-Derived Growth Factor Signalling in Cardiovascular Disease. Clinical and Experimental Pharmacology and Physiology, 42, 1221-1224.
https://doi.org/10.1111/1440-1681.12478
[37] Hu, W., Zhang, Y., Wang, L., et al. (2016) Bone Morphogenic Protein 4-Smad-Induced Upregulation of Platelet-Derived Growth Factor AA Impairs Endothelial Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 553-560.
https://doi.org/10.1161/ATVBAHA.115.306302
[38] Sadiq, M.A., Hanout, M., Sarwar, S., et al. (2016) Plate-let-Derived Growth Factor Inhibitors: A Potential Therapeutic Approach for Ocular Neovascularization. Developments in Ophthalmology, 55, 310-316.
https://doi.org/10.1159/000438953
[39] Zhou, L., Sun, X., Huang, Z., et al. (2018) Imatinib Ameliorated Retinal Neovascularization by Suppressing PDGFR-α and PDGFR-β. Cellular Physiology and Biochemistry, 48, 263-273.
https://doi.org/10.1159/000491726
[40] Wilkinson-Berka, J.L., Wraight, C. and Werther, G. (2006) The Role of Growth Hormone, Insulin-Like Growth Factor and Somatostatin in Diabetic Retinopathy. Current Medicinal Chemistry, 13, 3307-3317.
https://doi.org/10.2174/092986706778773086
[41] Kaya, A., Kar, T., Aksoy, Y., Özalper, V. and Başbuğ, B. (2013) Insulin Analogues May Accelerate Progression of Diabetic Retinopathy after Impairment of Inner Blood-Retinal Barrier. Medical Hypotheses, 81, 1012-1014.
https://doi.org/10.1016/j.mehy.2013.09.018
[42] Upreti, S., Sen, S., Nag, T.C. and Ghosh, M.P. (2022) Insulin Like Growth Factor-1 Works Synergistically With Dopamine to Attenuate Diabetic Retinopathy by Downregulating Vascular Endothelial Growth Factor. Biomedicine & Pharmacotherapy, 149, Article ID: 112868.
https://doi.org/10.1016/j.biopha.2022.112868
[43] Dong, N., Li, X., Xiao, L., et al. (2012) Upregulation of Retinal Neuronal MCP-1 in the Rodent Model of Diabetic Retinopathy and Its Function in Vitro. Investigative Ophthalmology & Visual Science, 53, 7567-7575.
https://doi.org/10.1167/iovs.12-9446
[44] Raina, P., Sikka, R., Gupta, H., et al. (2021) Association of eNOS and MCP-1 Genetic Variants with Type 2 Diabetes and Diabetic Nephropathy Susceptibility: A Case-Control and Me-ta-Analysis Study. Biochemical Genetics, 59, 966-996.
https://doi.org/10.1007/s10528-021-10041-2
[45] Dong, N., Chang, L., Wang, B. and Chu, L. (2014) Retinal Neuronal MCP-1 Induced by AGEs Stimulates TNF-α Expression in Rat Microglia via p38, ERK, and NF-κB Pathways. Molecular Vision, 20, 616-628.
[46] Stamatovic, S.M., Keep, R.F., Kunkel, S.L. and Andjelkovic, A.V. (2003) Potential Role of Mcp-1 in Endothelial Cell Tight Junction ‘Opening’: Signaling via Rho and Rho Kinase. Journal of Cell Science, 116, 4615-4628.
https://doi.org/10.1242/jcs.00755
[47] Feldman, E.D., Weinreich, D.M., Carroll, N.M., et al. (2006) Interferon γ-Inducible Protein 10 Selectively Inhibits Proliferation and Induces Apoptosis in Endothelial Cells. Annals of Surgical Oncology, 13, 125-133.
https://doi.org/10.1245/ASO.2006.03.038
[48] Xie, H., Zhang, C., Liu, D., et al. (2021) Erythropoietin Protects the Inner Blood-Retinal Barrier by Inhibiting Microglia Phagocytosis via Src/Akt/cofilin Signalling in Experimental Diabetic Retinopathy. Diabetologia, 64, 211-225.
https://doi.org/10.1007/s00125-020-05299-x
[49] Jain, A., Saxena, S., Khanna, V.K., Shukla, R.K. and Meyer, C.H. (2013) Status of Serum VEGF and ICAM-1 and Its Association with External Limiting Membrane and Inner Seg-ment-Outer Segment Junction Disruption in Type 2 Diabetes Mellitus. Molecular Vision, 19, 1760-1768.
[50] Nishikiori, N., Osanai, M., Chiba, H., et al. (2007) Glial Cell-Derived Cytokines Attenuate the Breakdown of Vascular Integrity in Diabetic Retinopathy. Diabetes, 56, 1333-1340.
https://doi.org/10.2337/db06-1431
[51] Rubsam, A., Parikh, S. and Fort, P.E. (2018) Role of Inflammation in Diabetic Retinopathy. International Journal of Molecular Sciences, 19, Article No. 942.
https://doi.org/10.3390/ijms19040942