Tim-3/Gal-9信号通路在间充质干细胞中减轻急性移植物抗宿主病治疗中的研究进展
Research Progress of Tim-3/Gal-9 Signaling Pathway in the Treatment of Acute Graft-versus-Host Disease in Mesenchymal Stem Cells
DOI: 10.12677/ACM.2023.133702, PDF, HTML, XML, 下载: 197  浏览: 332 
作者: 许 雪, 江 明:新疆医科大学第一附属医院血液病中心血液一科,新疆 乌鲁木齐
关键词: aGVHDTim-3Gal-9MSCs免疫调节aGVHD Tim-3 Gal-9 MSCs Immune Regulation
摘要: 移植物抗宿主病(Graft versus Host Disease, GvHD)是异基因造血干细胞移植(allo-HSCT)后的严重并发症。急性GvHD (aGVHD)发生于同种异体造血干细胞移植后,受体的组织抗原被表达给供体T细胞,从而导致供体T细胞激活、表达,增强对宿主的免疫反应,攻击健康的受体组织。aGVHD的发生率约为30%~50%。aGVHD的初始治疗是类固醇。对类固醇没有反应的aGVHD患者的预后很差。间充质干细胞(mesenchymal stem cells, MSCs)因其具有调节免疫特性,在aGVHD的治疗中显示相当大的前景。MSCs表达的β-半乳糖苷结合凝集素-9 (Galectin-9, Gal-9)是免疫抑制的重要调节因子,通过与T细胞免疫球蛋白及黏蛋白结构域分子(T-cell immunoglobin mucin-3, Tim-3)结合,发挥免疫调控作用,在调节T细胞亚群及免疫耐受中起着重要作用。在移植后早期增强Tim-3/Gal-9途径的信号传导以抑制免疫应答,调节T细胞增殖,改善致死率,可成为异基因造血干细胞移植后免疫调节新途径。
Abstract: Graft versus host disease (GvHD) is a serious complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Acute GvHD (aGVHD) occurs after allogeneic hematopoietic stem cell transplantation. The tissue antigen of the recipient is expressed to the donor T cells, resulting in the activation and expression of the donor T cells, enhancing the immune response to the host, and at-tacking the healthy recipient tissue. The incidence of aGVHD is about 30%~50%. The initial treat-ment of aGVHD is steroids. The prognosis of aGVHD patients who did not respond to steroids was poor. Mesenchymal stem cells (MSCs) have great prospects in the treatment of aGVHD due to their immunomodulatory properties. MSCs expressed β-Galactin-9 (Gal-9) is an important regulator of immunosuppression. It plays an important role in immune regulation by combining with T-cell immunoglobulin and mucin domain molecule (Tim-3). Enhancing the signal transduction of Tim-3/Gal-9 pathway in the early stage after transplantation can inhibit the immune response, reg-ulate the proliferation of T cells, and improve the mortality rate, which can become a new way of immune regulation after allogeneic hematopoietic stem cell transplantation.
文章引用:许雪, 江明. Tim-3/Gal-9信号通路在间充质干细胞中减轻急性移植物抗宿主病治疗中的研究进展[J]. 临床医学进展, 2023, 13(3): 4919-4925. https://doi.org/10.12677/ACM.2023.133702

1. 引言

造血干细胞移植(Hematopoietic Stem Cell Transplantation)是根治血液系统恶性疾病的有效方法,而aGVHD的发生限制了异基因造血干细胞移植的使用和有效性,注入干细胞移植物的供体T淋巴细胞通过克隆扩增、组织迁移和直接细胞–细胞细胞毒性对这种环境中的抗原差异作出反应。高水平的促炎细胞因子,尤其是TNF-α、白介素-1 (IL-1)和IL-2,以及丰富的宿主抗原会导致炎症级联反应,可能导致严重的组织损伤、器官功能障碍和死亡 [1] 。aGVHD的预防与治疗是当前研究的难点问题,有研究表明在促炎刺激下Gal-9在MSCs中被诱导,并有助于抑制MSCs介导的淋巴细胞激活 [2] 。当Gal-9与Tim-3结合,下游通路NF-κB和AKT将被激活并促进Th1细胞的凋亡 [3] 。Gal-9与合适的配体结合可以提高免疫耐受性,并可进一步用于移植排斥和自身免疫性疾病患者 [4] 。因此Tim-3/Gal-9可能是aGVHD治疗的一个新的靶点,本文就Tim-3及其配体Gal-9的生物学特性、功能及在MSCs中减轻aGVHD的研究进展作一综述。

2. MSC的概述

MSC是多能祖细胞的异质群体,首先由Friedenstein于1968年描述,可以从广泛的组织中分离和培养扩增,例如骨髓(BM)、脐带血、脂肪组织、皮肤、肌腱、牙髓和几种胎儿组织 [5] 。MSC的特点是具有自我更新能力、粘附塑料、分化潜能,以及表达一种特殊的免疫表型模式(CD73、CD90和CD105阳性,CD14、CD11b、CD19、CD34、CD45、CD79a、HLA-DR阴性) [6] 。

已有体内研究证明MSC在皮肤移植后,能够延长其存活 [7] ,随后又有体内外实验表明MSCs通过抑制T细胞、B细胞NK细胞及树突细胞的增殖发挥免疫调节作用 [8] 。勒布朗等人首次报道接受MSC输注的儿童的类固醇耐药性aGVHD完全缓解 [9] ,并有多项研究以探索MSCs在aGVHD治疗中的益处。由于对MSC的了解不断加深,它们已成为治疗和预防GVHD的工具,并已被批准用于临床试验 [10] 。

3. Gal-9概述

Gal-9最初被发现是一种有效的嗜酸性粒细胞趋化剂 [11] ,最近被认为是一种影响多种细胞类型的多方面免疫调节剂。Gal-9广泛分布于肝、肾、脾、肺、小肠、骨骼肌和心肌等 [12] 。研究结果表明,Gal-9信号通过Tim-3或其他尚未确定的受体与自身免疫的调节功能有关,伴随着改变巨噬细胞的抗炎作用,下调数量效应T细胞和增加调节性T细胞(Tregs)的数量 [13] 。

Gal-9其在碳水化合物识别域中包含一个高度保守的序列基序 [14] 。半乳糖凝集素被证明可以调节主要与炎症过程相关的各种细胞功能,包括细胞生长、细胞凋亡、细胞粘附、迁移和免疫反应 [15] 。最初,发现Gal-9可通过Tim-3诱导Th1淋巴细胞死亡 [16] 。然而,研究表明,T细胞系中的拮抗性Tim-3抗体未完全消除Gal-9活性 [17] 。有趣的是,Gal-9还在较高浓度的Th1和Th2细胞中诱导Tim-3非依赖性细胞凋亡 [18] 。此外,发现Gal-9在Th1和Th2细胞中以低浓度分别诱导Tim-3独立产生IFN-γ和肿瘤坏死因子(TNF-α) [18] 。最近,另一项研究也表明,斑丘疹患者Th1细胞Tim-3水平降低,外源性重组Gal-9显着增加Treg增殖,降低Th1增殖,阻断Tim-3 [19] 。Gal-9诱导产生IFN-γ的Th1细胞丢失,从而负向调节Th1自身免疫。在当前的研究中,我们使用小鼠BM移植(BMT)模型研究了Gal-9的免疫抑制作用,我们证明了重组人Gal-9以剂量依赖性方式抑制MLR,涉及钙离子的流入和T细胞凋亡 [20] 。

4. Tim-3概述

TIM-3是一种细胞表面分子,约20年前首次在TH1细胞和CTL细胞上被发现 [21] 。后来,在其他T细胞亚型以及树突状细胞(DC)、巨噬细胞、肥大细胞、自然杀伤(NK)细胞等也有其表达表达 [21] 。

TIM-3是一种单跨膜(TM)分子,其胞外尾部包含一个N末端,该结构域随后是具有糖基化位点的粘蛋白结构域。在粘蛋白结构域之后,有一个带有N-连接糖基化位点的连接肽,然后是TM结构域,然后是C末端的细胞质尾部 [22] 。

Tim-3有4个已知配体,分别是高迁移率族蛋白B1、磷脂酰丝氨酸、癌胚抗原细胞粘附分子-1及Gal-9,与不同配体结合发挥不同的作用,其中Gal-9最经典,Tim-3与Gal-9结合后,能抑制Thl和Thl7细胞的增殖,促进CD8+ T细胞衰竭,并可诱导MDSC增殖产生免疫耐受 [23] ,在缓解aGVHD病程中发挥极大的可行性。在患有aGVHD的小鼠中,Tim-3表达在脾脏和肝脏CD4+和CD8+ T细胞、树突状细胞(DC)和巨噬细胞上显着上调,阻断Tim-3后,发现增强了CD4+和CD8+ T细胞的IFN-γ表达,加速了aGVHD的进展 [24] 。

5. MSCs与aGVHD

5.1. MSCs治疗aGVHD的免疫机制相关研究

aGVHD可分为三个连续过程,1) 抗原呈递细胞(APC)的激活;2) 供体T细胞活化、增殖、分化和组织迁移;3) 目标组织破坏 [25] 。MSC具有广泛的免疫调节特性,MSCs可以抑制幼稚细胞的增殖和记忆T细胞由不同刺激物以剂量依赖性和非主要组织相容性复合物限制的方式诱导。MSCs直接抑制T细胞的功能,使它们无反应或将其表型转变为Treg细胞 [26] 。在混合淋巴细胞培养物中,MSCs增加功能性Treg细胞的比例和IL-10的产生,并诱导T细胞极化向Th2分化 [27] 。MSC对T细胞施加的免疫调节活性由两种细胞间接触机制介导,其中抑制分子PD-L1 [28] 。和Gal-9发挥关键作用。此外,最近的证据表明,MSC通过细胞外囊泡释放递质如生长因子、细胞因子等由旁分泌作用调节免疫应答 [29] 。MSCs对T细胞反应的抑制也通过间接途径进行,涉及干扰树突状细胞(DC)的分化、成熟和激活,导致抗原呈递受损、细胞因子释放改变以及从促炎性转变为抗炎性炎性细胞因子概况 [30] 。现在人们普遍认为,MSC可以充当“炎症传感器”并根据炎症环境影响巨噬细胞功能。在这方面,促炎因子激活MSC释放介质,M1巨噬细胞分化为M2巨噬细胞 [31] 。

通过这些特性它们可能会干扰aGVHD级联的所有阶段。在aGVHD的第一阶段,MSC可能会阻碍APC的成熟和功能,从而导致T细胞活化受损。在第二阶段,MSCs可能直接或间接通过M2巨噬细胞诱导,介导抑制T细胞增殖和炎症因子产生,抑制单核细胞向M1巨噬细胞分化并促进Treg细胞的产生。在最后阶段,MSCs可能会抑制T细胞的效应功能,aGVHD的细胞因子环境在MSCs激活和极化向抗炎表型方面发挥关键作用,其特征是可溶性因子(包括IDO、PGE2、TGF-α)的分泌增加,以及表面抑制因子的上调分子(如Gal-9) [1] 。

5.2. MSCs表达Gal-9

当ADSCs与活化的PBMC共培养时,Gal-9及一些炎症细胞因子,如IL-1β、IL-1α、TNF-α和IFN-γ的分泌进一步增加 [32] 。这些结果表明Gal-9是一种抗炎介质,可由炎症环境诱导。通过基于逆转录病毒的方法抑制Gal-9表达或用抑制剂阻断Gal-9/TIM-3通路可有效降低MSCs的免疫调节能力 [33] ,表明MSCs可通过表面表达靶向T细胞Gal-9。此外,周等人。发现MSCs可以抑制CD4+ T、CD8+ T细胞增殖,甚至促进CD4+和CD8+ T细胞衰竭。此外,他们还发现MSCs可以促进Treg细胞的形成 [34] 。这些对T细胞的调节作用可能与MSC上表达的Gal-9的表达有关 [34] 。MSC表达的Gal-9可能在T细胞活性中起负面作用。该机制可能促进Th1、Th2、Th17、CD8+ T细胞凋亡,进而促进Treg细胞形成,最终导致耐受性微环境,细胞免疫完全功能障碍,体液免疫部分失能。

Ainhoa Gonzalez-Pujana等人在炎症性肠病小鼠模型的研究中发现,在IFN-γ的刺激下,hMSCs能够持续分泌包括Gal-9在内的因子,从而限制疾病进展 [35] 。通过诱导出大鼠实验性内毒素血症,然后用Gal-9高表达的MSCs、未修饰的MSCs和Gal-9封闭的MSCs处理。通过监测小鼠脓毒症评分、存活率、脾细胞比例、炎症介质水平和病理变化来评价MSCs的治疗效果。实验验证了Gal-9介导的MSC治疗可减少循环促炎介质的分泌,参与巨噬细胞M1亚群向M2亚群极化,诱导Treg细胞数量增加,促进多器官损伤的减轻 [36] 。

5.3. Tim-3/Gal-9参与aGVHD的免疫调节

Gal-9和TIM-3的相互作用最初被报道可抑制CD4+ T免疫力 [17] 。但后来显示也抑制CD8+ T细胞反应 [37] 。随后的研究中发现CD4+和CD8+ T细胞对Gal-9诱导的细胞死亡敏感,但CD8+ T比CD4+ T更敏感 [38] 。正常人CD8+ T细胞活化后Tim-3的表达与其正相关,并且IFN-γ和TNF-α的表达减少 [39] 。研究显示,Th1细胞的Tim-3表达增高时IFN-γ表达下调,提示Tim-3可能改变Th1/Th2平衡,下调Th1免疫应答 [40] 。

Qiao等使用大鼠肺移植模型,从Lewis或Fisher 344只大鼠身上取回的左肺移植物原位移植到Lewis受体体内,没有任何免疫抑制;在移植后第3、7或10天收获移植物。通过组织病理学、免疫抗原和相关细胞因子的表达分别用免疫学技术和实时聚合酶链反应进行评估,结果表明,与合成移植物相比,同种异体移植物中Tim-3及其配体Gal-9在蛋白质和mRNA水平上显着上调。同时,CD4/CD8比率降低与急性排斥反应的发生有关,并且同种异体移植物中CD4+和CD8+ T细胞上的Tim-3表达增加。因此,证明了同种异体移植物中增强的Tim-3及其配体Gal-9可能在大鼠肺移植排斥反应的发病机制中发挥重要作用 [41] 。Jinyin等人通过研究证明Gal-9可能通过两种机制诱导allo-HSCT后aGVHD发展过程中的免疫耐受,其中一种就是Th1细胞中经典的Tim-3/Gal-9途径 [42] 。有研究证明在aGVHD小鼠中,重组人Gal-9以剂量依赖性方式抑制MLR,涉及Ca2+流入和T细胞凋亡。结果表明发现重组人Gal-9在小鼠BM移植模型中显着抑制aGVHD的进展 [20] 。Rachelle G等通过建立小鼠aGVHD模型研究Tim-3在T细胞亚群上的表达发现 [43] ,在aGVHD期间,供体T细胞上Tim-3表达上调,致Gal-9表达增加,当用Tim-3-Ig融合蛋白来阻断Tim-3/Gal-9通路时,可增加aGVHD致死率。相反,Gal-9转基因(Tg)受体的aGVHD发生率显着降低,表明供体T细胞上的Tim-3表达对于Gal-9Tg受体的生存优势是必要的。这些结果证明,Tim-3/Gal-9信号传导在aGVHD期间负调节T细胞,抑制Tim-3/Gal-9会增加效应T细胞和aGVHD致死率。

6. 小结与展望

类固醇难治性aGVHD的预后仍然很差,迫切需要针对这些患者的新的疗法。MSCs是一种很有前途的二线免疫抑制剂替代品,Tim-3/Gal-9是可能发挥重要作用的通路。在一些临床试验中,特别是在aGVHD的治疗中,已经报道了在疗效方面有希望的结果。未来要解决的其他重要问题将涉及MSCs与其他可用且有效的aGVHD疗法的可能协同作用、MSCs的最佳来源、建议输注的MSCs的剂量等。相信随着未来更深入的研究,MSCs可以更快地用于临床。

参考文献

参考文献

[1] Locatelli, F., Algeri, M., Trevisan, V. and Bertaina, A. (2017) Remestemcel-L for the Treatment of Graft versus Host Disease. Expert Review of Clinical Immunology, 13, 43-56.
https://doi.org/10.1080/1744666X.2016.1208086
[2] Kim, S.N., et al. (2015) Galectin-9 Is Involved in Immuno-suppression Mediated by Human Bone Marrow-Derived Clonal Mesenchymal Stem Cells. Immune Network, 15, 241-251.
https://doi.org/10.4110/in.2015.15.5.241
[3] Zhuo, Y., Zhang, Y.-F., Wu, H.-J., et al. (2017) Interaction between Galectin-9/TIM-3 Pathway and Follicular Helper CD4(+) T Cells Contributes to Viral Persistence in Chronic Hepatitis C. Biomedicine & Pharmacotherapy, 94, 386-393.
https://doi.org/10.1016/j.biopha.2017.07.134
[4] Li, Y.M., Shi, Y.Y., Li, Y., et al. (2018) Soluble Tim-3 and Gal-9 Are Associated with Renal Allograft Dysfunction in Kid-ney Transplant Recipients: A Cross-Sectional Study. International Immunopharmacology, 55, 330-335.
https://doi.org/10.1016/j.intimp.2018.01.008
[5] Jones, E.A., Kinsey, S.E., English, A., et al. (2002) Isolation and Characterization of Bone Marrow Multipotential Mesenchymal Progenitor Cells. Arthritis & Rheumatology, 46, 3349-3360.
https://doi.org/10.1002/art.10696
[6] Dominici, M., Le Blanc, K., Mueller, I., et al. (2006) Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy, 8, 315-317.
https://doi.org/10.1080/14653240600855905
[7] Bartholomew, A., Sturgeon, C., Siatskas, M., et al. (2002) Mesenchymal Stem Cells Suppress Lymphocyte Proliferation in Vitro and Prolong Skin Graft Survival in Vivo. Experi-mental Hematology, 30, 42-48.
https://doi.org/10.1016/S0301-472X(01)00769-X
[8] Ramasamy, R., Fazekasova, H., Lam, E.W., et al. (2007) Mesenchymal Stem Cells Inhibit Dendritic Cell Differentiation and Function by Preventing Entry into the Cell Cycle. Transplantation, 83, 71-76.
https://doi.org/10.1097/01.tp.0000244572.24780.54
[9] Le Blanc, K., Rasmusson, I., Sundberg, B., et al. (2004) Treatment of Severe Acute Graft-versus-Host Disease with Third Party Haploidentical Mesenchymal Stem Cells. The Lancet, 363, 1439-1441.
https://doi.org/10.1016/S0140-6736(04)16104-7
[10] Wang, S., Qu, X. and Zhao, R.C. (2012) Clinical Applica-tions of Mesenchymal Stem Cells. Journal of Hematology & Oncology, 5, 19.
https://doi.org/10.1186/1756-8722-5-19
[11] Wada, J. and Kanwar, Y.S. (1997) Identification and Characterization of Galectin-9, a Novel Beta-Galactoside-Binding Mammalian Lectin. Journal of Biological Chemistry 272, 6078-6086.
https://doi.org/10.1074/jbc.272.9.6078
[12] Hirashima, M., Kashio, Y., Nishi, N., et al. (2002) Galectin-9 in Phys-iological and Pathological Conditions. Glycoconjugate Journal, 19, 593-600.
https://doi.org/10.1023/B:GLYC.0000014090.63206.2f
[13] Dardalhon, V., Anderson, A.C., Karman, J., Apetoh, L., et al. (2010) Tim-3/Galectin-9 Pathway: Regulation of Th1 Immunity through Promotion of CD11b+Ly-6G+ Mye-loid Cells. The Journal of Immunology (Baltimore Md 1950), 185, 1383-1392.
https://doi.org/10.4049/jimmunol.0903275
[14] Sziksz, E., Vannay, A. and Haczku, A. (2012) Galectin-9: A Sup-pressor of Food Allergy. Allergy, 67, 293-295.
https://doi.org/10.1111/j.1398-9995.2011.02774.x
[15] Liu, F.-T. and Rabinovich, G.A. (2010) Galectins: Regula-tors of Acute and Chronic Inflammation. Annals of the New York Academy of Sciences, 1183, 158-182.
https://doi.org/10.1111/j.1749-6632.2009.05131.x
[16] Zhu, C. anderson, A.C., Schubart, A., et al. (2005) The Tim-3 Ligand Galectin-9 Negatively Regulates T Helper Type 1 Immunity. Nature Immunology, 6, 1245-1252.
https://doi.org/10.1038/ni1271
[17] Bi, S., Earl, L.A., Jacobs, L. and Baum, L.G. (2008) Structural Features of Ga-lectin-9 and Galectin-1 That Determine Distinct T Cell Death Pathways. Journal of Biological Chemistry, 283, 12248-12258.
https://doi.org/10.1074/jbc.M800523200
[18] Su, E.W., Bi, S. and Kane, L.P. (2011) Galectin-9 Regulates T Help-er Cell Function Independently of Tim-3. Glycobiology, 21, 1258-1265.
https://doi.org/10.1093/glycob/cwq214
[19] Fernandez-Santamaría, R., Palomares, F., Salas, M., et al. (2019) Ex-pression of the Tim3-Galectin-9 Axis Is Altered in Drug-Induced Maculopapular Exanthema. Allergy, 74, 1769-1779.
https://doi.org/10.1111/all.13847
[20] Sakai, K., Kawata, E., Ashihara, E., et al. (2011) Galectin-9 Ameliorates Acute GVH Disease through the Induction of T-Cell Apoptosis. European Journal of Immunology, 41, 67-75.
https://doi.org/10.1002/eji.200939931
[21] Monney, L., Sabatos, C.A., Gaglia, J.L., et al. (2002) Th1-Specific Cell Surface Protein Tim-3 Regulates Macrophage Activation and Severity of an Autoimmune Disease. Nature, 415, 536-541.
https://doi.org/10.1038/415536a
[22] Ferris, R.L., Lu, B. and Kane, L.P. (2014) Too Much of a Good Thing? Tim-3 and TCR Signaling in T Cell Exhaustion. The Journal of Immunology, 193, 1525-1530.
https://doi.org/10.4049/jimmunol.1400557
[23] Curley, J., et al. (2020) Looking Past PD-L1: Expression of Im-mune Checkpoint TIM-3 and Its Ligand Galectin-9 in Cervical and Vulvar Squamous Neoplasia. Modern Pathology, 33, 1182-1192.
https://doi.org/10.1038/s41379-019-0433-3
[24] Oikawa, T., Kamimura, Y., Akiba, H., et al. (2006) Preferential Involvement of Tim-3 in the Regulation of Hepatic CD8+ T Cells in Murine Acute Graft-versus-Host Disease. The Journal of Immunology, 177, 4281-42817.
https://doi.org/10.4049/jimmunol.177.7.4281
[25] Reddy, P. and Ferrara, J.L. (2003) Immunobiology of Acute Graft-versus-Host Disease. Blood Reviews, 17, 187-194.
https://doi.org/10.1016/S0268-960X(03)00009-2
[26] Benvenuto, F., Ferrari, S., Gerdoni, E., et al. (2007) Human Mesenchymal Stem Cells Promote Survival of T Cells in a Quiescent State. Stem Cells, 25, 1753-1760.
https://doi.org/10.1634/stemcells.2007-0068
[27] Maccario, R., Podestà, M., Moretta, A., et al. (2005) Interaction of Human Mesenchymal Stem Cells with Cells Involved in Alloantigen-Specific Immune Response Favors the Differen-tiation of CD4+ T-Cell Subsets Expressing a Regulatory/Suppressive Phenotype. Haematologica, 90, 516-525.
[28] Chinnadurai, R., Copland, I.B., Patel, S.R., et al. (2014) IDO-Independent Suppression of T Cell Effec-tor Function by IFN-γ-Licensed Human Mesenchymal Stromal Cells. The Journal of Immunology, 192, 1491-1501.
https://doi.org/10.4049/jimmunol.1301828
[29] Bruno, S., Deregibus, M.C. and Camussi, G. (2015) The Secre-tome of Mesenchymal Stromal Cells: Role of Extracellular Vesicles in Immunomodulation. Immunology Letters, 168, 154-158.
https://doi.org/10.1016/j.imlet.2015.06.007
[30] Nauta, A.J., Kruisselbrink, A.B., Lurvink, E., et al. (2006) Mesenchymal Stem Cells Inhibit Generation and Function of both CD34+-Derived and Monocyte-Derived Den-dritic Cells. The Journal of Immunology, 177, 2080-2087.
https://doi.org/10.4049/jimmunol.177.4.2080
[31] Bernardo, M.E. and Fibbe, W.E. (2013) Mesenchymal Stromal Cells: Sensors and Switchers of Inflammation. Cell Stem Cell, 13, 392-402.
https://doi.org/10.1016/j.stem.2013.09.006
[32] Zhou, K.J., Guo, S., Tong, S., et al. (2018) Immunosuppression of Human Adipose-Derived Stem Cells on T Cell Subsets via the Reduction of NF-kappaB Activation Mediated by PD-L1/PD-1 and Gal-9/TIM-3 Pathways. Stem Cells and Development, 27, 1191-1202.
https://doi.org/10.1089/scd.2018.0033
[33] Gieseke, F., Kruchen, A., Tzaribachev, N., Bentzien, F., Dominici, M. and Muller, I. (2013) Proinflammatory Stimuli Induce Galectin-9 in Human Mesenchymal Stromal Cells to Suppress T-Cell Proliferation. European Journal of Immunology, 43, 2741-2749.
https://doi.org/10.1002/eji.201343335
[34] Cheng, Z., Wang, L.P., Qu, M.J., et al. (2018) Mesenchymal Stem Cells Attenuate Blood-Brain Barrier Leakage after Cerebral Ischemia in Mice. Journal of Neuroinflammation, 15, 135.
https://doi.org/10.1186/s12974-018-1153-1
[35] Gonzalez-Pujana, A., Beloqui, A., Javier, A.J., et al. (2022) Mesenchymal Stromal Cells Encapsulated in Licensing Hydrogels Exert Delocalized Systemic Protection against Ulcera-tive Colitis via Subcutaneous Xenotransplantation. European Journal of Pharmaceutics and Biopharmaceutics, 172, 31-40.
https://doi.org/10.1016/j.ejpb.2022.01.007
[36] Zhao, Y., et al. (2022) Galectin-9 Mediates the Therapeutic Effect of Mesenchymal Stem Cells on Experimental Endotoxemia. Frontiers in Cell and Developmental Biology, 10, Ar-ticle ID: 700702.
https://doi.org/10.3389/fcell.2022.700702
[37] Sehrawat, S., et al. (2010) Galectin-9/TIM-3 Interaction Regulates Virus-Specific Primary and Memory CD8+ T Cell Response. PLOS Pathogens, 6, e1000882.
https://doi.org/10.1371/journal.ppat.1000882
[38] Yang, R., Sun, L., Li, C.F., et al. (2021) Galectin-9 Interacts with PD-1 and TIM-3 to Regulate T Cell Death and Is a Target for Cancer Immunotherapy. Nature Communications, 12, 832.
https://doi.org/10.1038/s41467-021-21099-2
[39] Yang, M., et al. (2020) Checkpoint Molecules Coordinately Restrain Hyperactivated Effector T Cells in the Tumor Microenvironment. Oncoimmunology, 9, Article ID: 1708064.
https://doi.org/10.1080/2162402X.2019.1708064
[40] Mahanonda, R., et al. (2018) Memory T Cell Subsets in Healthy Gingiva and Periodontitis Tissues. Journal of Periodontology, 89, 1121-1130.
https://doi.org/10.1002/JPER.17-0674
[41] Qiao, X., et al. (2014) Increased Expression of Tim-3 and Its Ligand Galectin-9 in Rat Allografts during Acute Rejection Episodes. Biochemical and Biophysical Research Communications, 445, 542-548.
https://doi.org/10.1016/j.bbrc.2014.01.167
[42] Yin, J., et al. (2020) Increased Galectin-9 Expression, a Prognostic Biomarker of aGVHD, Regulates the Immune Response through the Galectin-9 Induced MDSC Pathway after Alloge-neic Hematopoietic Stem Cell Transplantation. International Immunopharmacology, 88, Article ID: 106929.
https://doi.org/10.1016/j.intimp.2020.106929
[43] Veenstra, R.G., et al. (2012) Contrasting Acute Graft-versus-Host Disease Effects of Tim-3/Galectin-9 Pathway Blockade Dependent upon the Presence of Donor Reg-ulatory T Cells. Blood, 120, 682-690.
https://doi.org/10.1182/blood-2011-10-387977