高尿酸血症与冠心病关系研究进展
Research Progress on the Relationship between Hyperuricemia and Coronary Heart Disease
摘要: 血清尿酸(serum uric acid, SUA)是人类或类人猿嘌呤代谢的最终代谢产物,随着生活水平的提高,饮食水平逐渐改善,血清尿酸也逐渐升高。心血管疾病,尤其是冠心病是当今世界上最普遍、最严重的心脏病之一,它的发病率高、死亡率高,是目前危害全球人类健康的世界卫生难题。近年来多项研究表明,血清尿酸与冠心病有关,且还没能彻底揭示其关系。本文旨在探讨高尿酸血症、内皮功能紊乱、氧化应激、炎症等因素,并探讨降尿酸盐治疗对心血管疾病的作用,以期减少冠心病的患病率。
Abstract: Serum uric acid is the final metabolite of human or anthropoid purine metabolism. With the im-provement of living standards and diet level, serum uric acid also increases gradually. Cardiovascu-lar disease, especially coronary heart disease, is one of the most common and serious heart diseases in the world today, with high morbidity and mortality. It is a global health problem that endangers human health all over the world. In recent years, many studies have shown that serum uric acid is related to coronary heart disease, but the relationship has not been fully revealed. The objective of this study was to investigate the factors such as hyperuricemia, inflammation, endothelial dysfunc-tion, and oxidative stress, and to explore the effect of uricite-lowering therapy on cardiovascular diseases in order to reduce the prevalence of coronary heart disease.
文章引用:杨宝, 毛敏, 杨国立, 罗悦, 吴凡, 马康华. 高尿酸血症与冠心病关系研究进展[J]. 临床医学进展, 2023, 13(4): 5079-5086. https://doi.org/10.12677/ACM.2023.134720

1. 引言

血清尿酸(SUA)是人类或类人猿嘌呤代谢的最终代谢产物,来自于肝脏、肠道和肌肉的内源性(核酸和核苷酸、ATP或其衍生物)和来自外源的(膳食嘌呤) [1] 。尿酸是人体液体中占总抗氧化能力的50%的抗氧化剂 [2] ,随着人们的生活习惯和膳食中含有丰富尿酸物质,我国以及其它一些国家的血清中尿酸含量也在逐步提高 [3] 。痛风、慢性肾脏疾病、糖尿病、代谢综合征、高血压、血脂代谢紊乱、心房颤动及心脑血管疾病等都与尿酸升高有关 [4] 。血管疾病,尤其是冠心病是当今世界上最普遍、最严重的严重心脏病之一,它的发病率高、死亡率高,是目前危害全球人类健康的世界卫生难题。近年的流行病学研究表明,心血管疾病被确定为我国人群过早发病及过早死亡的首要病因,占总死因的40% [5] 。高尿酸血症与冠心病的关系非常复杂,目前还没有确定尿酸是否只是冠心病的风险标志物或致病因素,或者针对尿酸水平的治疗是否会影响预后。如果高尿酸血症是冠心病的病因因素,其机制是什么?高尿酸水平的改变是否会影响结果。我们在为尿酸和冠心病的关系提供一些背景信息之后,我们对近期有关尿酸与冠心病的研究资料进行了总结。本文就最近五年来有关高尿酸与冠心病之间关系的研究进展进行综述。

2. 尿酸与冠心病

自19世纪中期以来,Gertler等人首先证实了尿酸和心血管疾病之间的关系后,人们对其进行了大量的探讨,高尿酸血症是心脏死亡和冠心病的其他已知心血管危险因素的协变量。直至现在,仍不断在探索中。近年来,多项临床研究表明,血清尿酸与心血管疾病的发生有密切关系(表1)。这些研究显示,高尿酸和心血管疾病有很大的关系,这就引起了人们的疑问:高尿酸血症和糖尿病或高血压一样,都是心血管疾病的危险因素吗?然而,血清尿酸作为冠心病的独立危险因素的影响仍有争议 [6] 。一项研究显示,在心血管病人中,尿酸含量的增加很有可能仅仅是常见原因导致的,比如:使用利尿剂,饮酒,肾功能下降,高胰岛素血症以及氧化应激等。Framingham的研究 [7] ,包含6763例病人,调整相关风险因素后,尿酸与冠心病事件和心血管死亡率无关。另外一项研究 [8] 表明冠心病与高尿酸血症的危险比率都会降低13.5%,该研究结果对高尿酸血症是否是一个独立的冠心病危险因素提出了疑问。而高尿酸和心血管疾病之间因果关系的不确定性让最近一些学者使用孟德尔随机化来研究尿酸的遗传变异对各种心血管结果的影响 [9] 。有孟德尔随机化分析 [10] 表明,随着基因预测,尿酸每提高一个标准差,患冠心病的风险就会升高(危险比:1.19;95%CI:1.10~1.30;P = 0.0004)。

Table 1. Studies on uric acid and coronary heart disease

表1. 尿酸与冠心病相关研究

3. 血清尿酸与冠心病相关机制临床研究

已经提出了几种可能的机制来解释尿酸升高如何导致心血管疾病。目前已有的研究表明,高水平的尿酸可能会增加内皮功能障碍、氧化应激、血管平滑肌细胞增殖、炎症反应、胰岛素抵抗、血小板聚集,并共同导致冠心病的发生及发展。

3.1. 内皮损伤(CED)与氧化应激

内皮功能障碍是指血管稳态因内皮源性血管扩张因子和血管收缩因子之间的不平衡而紊乱。内皮损伤受多种因素的影响,含多种血管活性因子,如NO、内皮素、内皮细胞因子、白介素等。目前已有研究 [17] 认为,NO是内皮细胞衍生的扩张因子,具有多种生理及病理机制,尿酸可以引起一氧化氮(NO)与超氧化物的反应,从而使一氧化氮生物利用率降低,同时也会使过氧硝酸盐的产量升高,从而加速动脉粥样硬化的发生及进展。而YuichiSaito等人 [18] 过测量尿酸和反应性高血压指数(Reactive hypertension index, RHI)来评价血管内皮功能,发现尿酸水平的增加与ACS病人的血管内皮功能有显著关系。另外一项研究尿酸对血管内皮功能的影响 [19] ,结果显示,尿酸在缺氧条件下,可能会直接损害内皮功能。鉴别早期冠状动脉粥样硬化和CED的风险因素对于识别和治疗冠心病非常重要 [20] 。

氧化应激是冠心病发展过程中的关键因素之一。研究 [2] 显示,在细胞的酸/疏水性环境中,尿酸就会转变成一种促氧化剂,从而促进氧化应激反应,进而由氧自由基介导,血管氧化应激将通过减少NO的生物活性来调节血管舒张功能。LiZ等人 [21] 观察了尿酸对大鼠心肌细胞的作用,发现尿酸那个诱导大鼠心肌细胞的氧化损伤,并通过活化ERK/p38信号而抑制其存活,使ERK/p38的磷酸化明显增强,同时增加了H9C2心肌细胞中活性氧(ROS)的产生,因此高尿酸血症的氧化应激可通过ROS-ERK/p38的通路阻断心肌细胞活性,从而可能成为高尿酸血症相关心血管疾病的一个重要机制。Y. Yang等人 [22] 研究了尿酸对肝细胞线粒体的影响,采用不同浓度的尿酸处理体外培养的肝细胞,研究发现,高浓度的尿酸可能会诱导肝细胞线粒体的氧化应激,从而提高活性氧(ROS)的生成,最终导致线粒体的损伤,从而引起内皮细胞损伤,加重冠状动脉粥样硬化。

3.2. 血管平滑肌细胞增殖

尿酸能促进血管平滑肌细胞的增殖,据研究 [23] 报道,尿酸可激活Nod样受体蛋白3 (NodReactivator 3, NLRP3)-炎症小体,从而使血管平滑肌(VSMVC)发生变化。该研究进行了细胞计数Kit-8 (CCK-8)增殖试验和集落形成试验测定,以确定VSMC在尿酸作用下的增殖能力,采用免疫荧光显微镜观察α平滑肌肌动蛋白(α-SMA)的表达。同时采用实时PCR技术和Western印迹技术检测NLRP3-炎症小体的表达,并进行了ELISA法测量IL-18和IL-1的水平。结果表明,尿酸能促进血管平滑肌细胞的增殖,促进VSMC的积累,尿酸还能促进NLRP3的表达及活化。MCC950抑制剂可降低由尿酸引起的炎性指标IL-1和IL-18的表达,另一方面,尿酸通过NLRP3炎症小体促进VSMC的增殖。另外研究报道,线粒体功能障碍可通过影响内皮细胞增殖或凋亡以及巨噬细胞的活化促进冠状动脉粥样硬化的启动和发展,血清尿酸(SUA)通过活化烟酰胺腺嘌呤二核苷酸(NADOPH)氧化酶导致线粒体功能障碍 [24] ,并产生超氧化物,加重冠状动脉粥样硬化。

3.3. 炎症反应与胰岛素抵抗

炎症反应与胰岛素抵抗在冠心病的发生发展中起着重要作用。已有研究 [25] 显示,尿酸盐可以活化Nod样蛋白受体-3 (NLERP3),其在538,167名受试者中探讨了NLRP3基因与常见心血管疾病及心血管死亡率之间的相关性,表明NLRP3与冠状动脉疾病和其死亡率增加有关。另外一项研究 [26] 报告了可溶性尿酸通过AMPK-mTOR线粒体ROS通路促进NLRP3炎症小体的活化。表明,在冠状动脉内壁上,尿酸盐晶体可以直接沉积,使血液中内皮素浓度升高,活化单核细胞,使其通过细胞间黏附分子和单核细胞的趋化蛋白,从而产生TNF-a、IL-6等炎性介质,参与了冠状动脉血管内皮的炎症反应,破坏了内皮细胞的功能,降低了冠状动脉血管的弹性,从而加速了LDL的氧化修饰,从而影响了纤维帽状基质的合成,提高了斑块的不稳定性,导致斑块破裂而引发了血栓的形成。另外,有文献 [27] 报道血清尿酸水平的下降是通过胰岛素抵抗的降低来介导的,被认为是胰岛素抵抗综合征的一部分。尿酸可以促进胰岛素抵抗的发展,而尿酸的升高则会加重冠心病的早期发展,使冠状动脉粥样硬化负担加重,并导致CAD患者发生冠状动脉事件的风险增加。另外一项研究 [28] 提示,URAT1和GLUT9表达增加及糖酵解障碍可能与胰岛素抵抗介导下的高尿酸血症的发展有关。

3.4. 血小板黏附、聚集,并影响组成

Zhang T.等人 [29] 对痛风患者进行了元分析,以确定ULT是否可以减少心血管事件结果。使用ULT与安慰剂进行比较(八项研究,n = 2221名患者),未发现非抗血小板试验组的心血管事件(ULT与安慰剂:RR 1.47;95%CI 0.49~4.40;P = 0.49)或全因死亡率(ULT与安慰剂:RR 1.45;95%CI 0.35~5.77;P = 0.60)有统计学意义。

3.5. 其它

有研究 [20] 表明,高水平尿酸与绝经后的状况存在联系,并且与绝经后女性的心血管风险增加有一定因果关系。内源性雌二醇对维持血管内皮功能和降低尿酸水平等方面发挥着重要作用,并独立于心血管风险因素,随着更年期妇女体内雌激素水平的降低及尿酸水平的升高可能会促进冠状动脉内皮功能障碍和心血管疾病的发生发展。

4. 尿酸与冠心病治疗前景

4.1. 心血管疾病合并痛风患者药物治疗相关临床研究

降尿酸治疗可以降低冠心病发病率及其效果死亡率 [26] (表2),通过积极适当使用ULT可以控制尿酸。在特定人群的观察研究中 [30] ,别嘌呤醇治疗高尿酸血症的心脏保护益处包括潜在降低冠心病的风险。观察研究表明,可能需要更长的ULT使用时间来降低CVD特定的发病率。然而,需要进行随机对照试验,以验证观察研究的结果,并确定哪些高尿酸血症亚组人群最有可能通过ULT长期适当降低尿酸盐而获益。此外,降尿酸除服用药物外,心血管疾病患者的护理与其护理质量也极其重要,有研究 [31] 表明,美国心血管疾病病人饮食护理品质的提高无疑是近来来急性心肌梗死死亡率大幅下降的重要驱动力。另外一项研究 [27] 表明,以嘌呤为重点的非减肥饮食可能会同时改善血清尿酸水平和心血管疾病风险因素,提供一些个体化食物类别的选择可以适应患者的合并症和依从偏好。

Table 2. Studies on the effect of lowering serum urate on cardiovascular disease

表2. 降低血清尿酸盐对心血管疾病影响的相关研究

4.2. 无症状高尿酸血症的管理

无症状高尿酸的定义是指血清尿酸水平男>7 ms/d1,女>6 mg/d1,未发作痛风的HUA称为无症状HUA。对于无症状性HUA伴有多种心血管危险因子或心血管疾病的患者,尚不能达成共识。目前研究仍然有限,日本的研究报道 [4] ,日本人群中没有症状的高尿酸血症患者心脏代谢性疾病的发生率有所上升,同时,支持无症状高尿酸血症治疗的证据不足。英国一项大型、多中心、前瞻性、随机、双盲试验(ALL-HEART研究):缺血性心脏病(ALL-HEART)患者的异嘌呤醇与常规护理 [36] ,比较了60岁或以上无痛风史缺血性心脏病患者的心血管预后,接受嘌呤醇治疗与常规护理,平均随访4.8年。结果表明在这项大型随机临床试验中,随机接受异嘌呤醇治疗的参与者与随机接受常规护理的参与者之间,非致死性心肌梗死、中分或心血管死亡的主要结果并没有明显差异。不论其血清尿酸的基线浓度如何,这项研究的结果不支持试用异嘌呤醇来预防没有症状的高尿酸血症(痛风)的缺血性心脏病患者的心血管不良后果。

5. 总结和展望

目前尚有许多关于冠心病的危险因素,如性别、年龄、血脂代谢紊乱、种族等,而高水平尿酸浓度能否为冠心病的危险因素以及高水平尿酸浓度对冠心病的作用影响等方面仍然存在诸多争议,但血清尿酸(SUA)的增高和冠心病(CHD)的发生是存在着相关性的,并且可能作为一项指标用来反映心血管危险因素、心血管事件或者判断疾病预后。尽管有大量的临床研究试图阐明这些关系,但尿酸在冠状动脉疾病发展中的作用在很大程度上仍然未知。尿酸可通过多种机制促进CAD的发展:内皮功能障碍、氧化应激、炎症、血小板聚集等。在诊断冠心病、危险分层、评价治疗冠状动脉粥样硬化的效果等方面,血尿酸能发作为一个指标指导临床实践,仍然还需要大规模的研究。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Cha, D.H., Gee, H.Y., Cachau, R., et al. (2019) Contribution of SLC22A12 on Hypouricemia and Its Clinical Signifi-cance for Screening Purposes. Scientific Reports, 9, Article No. 14360.
https://doi.org/10.1038/s41598-019-50798-6
[2] Ndrepepa, G. (2018) Uric Acid and Cardiovascular Disease. Clinica Chimica Acta, 484, 150-163.
https://doi.org/10.1016/j.cca.2018.05.046
[3] Choi, H.K., Mccormick, N., Lu, N., Rai, S.K., Yokose, C. and Zhang, Y.Q. (2020) Population Impact Attributable to Modifiable Risk Factors for Hyperuricemia. Arthritis & Rheuma-tology, 72, 157-165.
https://doi.org/10.1002/art.41067
[4] Kuwabara, M., Niwa, K., Hisatome, I., et al. (2017) Asymptomatic Hyperuricemia without Comorbidities Predicts Cardiometabolic Diseases: Five-Year Japanese Cohort Study. Hypertension, 69, 1036-1044.
https://doi.org/10.1161/HYPERTENSIONAHA.116.08998
[5] Du, X., Patel, A., Anderson, C.S., Dong, J.Z. and Ma, C.S. (2019) Epidemiology of Cardiovascular Disease in China and Opportunities for Improvement: JACC Interna-tional. Journal of the American College of Cardiology, 73, 3135- 3147.
https://doi.org/10.1016/j.jacc.2019.04.036
[6] Klauser, A.S., Halpern, E.J., Strobl, S., et al. (2019) Dual-Energy Computed Tomography Detection of Cardiovascular Monosodium Urate Deposits in Patients with Gout. JAMA Cardi-ology, 4, 1019-1028.
https://doi.org/10.1001/jamacardio.2019.3201
[7] Maloberti, A., Bossi, I., Tassistro, E., et al. (2021) Uric Acid in Chronic Coronary Syndromes: Relationship with Coronary Artery Disease Severity and Left Ventricular Diastolic Pa-rameter. Nutrition, Metabolism and Cardiovascular Diseases, 31, 1501-1508.
https://doi.org/10.1016/j.numecd.2021.01.023
[8] Battaggia, A, Scalisi, A. and Puccetti, L. (2018) Hyperuricemia Does Not Seem to Be an Independent Risk Factor for Coronary Heart Disease. Clinical Chemistry and Laboratory Med-icine, 56, e59-e62.
https://doi.org/10.1515/cclm-2017-0487
[9] Lyngdoh, T., Vuistiner, P., Marques-Vidal, P., Rousson, V., Waeber, G., Vollenweider, P. and Bochud, M. (2012) Serum Uric Acid and Adiposity: Deciphering Causality Using a Bidirec-tional Mendelian Randomization Approach. PLOS ONE, 7, e39321.
https://doi.org/10.1371/journal.pone.0039321
[10] Gill, D., Cameron, A.C., Burgess, S., et al. (2021) Urate, Blood Pressure, and Cardiovascular Disease: Evidence from Mendelian Randomization and Meta-Analysis of Clinical Trials. Hypertension, 77, 383-392.
https://doi.org/10.1161/HYPERTENSIONAHA.120.16547
[11] Zuo, T., Liu, X., Jiang, L., Mao, S., Yin, X. and Guo, L.H. (2016) Hyperuricemia and Coronary Heart Disease Mortality: A Meta-Analysis of Prospective Cohort Studies. BMC Cardiovascular Disorders, 16, Article No. 207.
https://doi.org/10.1186/s12872-016-0379-z
[12] Mozzini, C., Girelli, D., Setti, A., et al. (2021) Serum Uric Acid Levels, but Not rs7442295 Polymorphism of SCL2A9 Gene, Predict Mortality in Clinically Stable Coronary Artery Dis-ease. Current Problems in Cardiology, 46, Article ID: 100798.
https://doi.org/10.1016/j.cpcardiol.2021.100798
[13] Zhang, S., Liu, X., Song, B., Yu, H.C., Zhang, X.D. and Shao, Y.M. (2022) Impact of Serum Uric Acid Levels on the Clinical Prognosis and Severity of Coronary Artery Dis-ease in Patients with Acute Coronary Syndrome and Hypertension after Percutaneous Coronary Intervention: A Prospec-tive Cohort Study. BMJ Open, 12, e052031.
https://doi.org/10.1136/bmjopen-2021-052031
[14] Lan, M., Liu, B. and He, Q. (2018) Evaluation of the Associa-tion between Hyperuricemia and Coronary Artery Disease: A STROBE-Compliant Article. Medicine, 97, e12926.
https://doi.org/10.1097/MD.0000000000012926
[15] Zhang, C., Jiang, L., Xu, L., et al. (2019) Implications of Hyperuricemia in Severe Coronary Artery Disease. The American Journal of Cardiology, 123, 558-564.
https://doi.org/10.1016/j.amjcard.2018.11.027
[16] Casiglia, E., Tikhonoff, V., Virdis, A., et al. (2020) Serum Uric Acid and Fatal Myocardial Infarction: Detection of Prognostic Cut-off Values: The URRAH (Uric Acid Right for Heart Health) Study. Journal of Hypertension, 38, 412-419.
https://doi.org/10.1097/HJH.0000000000002287
[17] Maruhashi, T., Hisatome, I., Kihara, Y. and Higashi, Y. (2018) Hyperuricemia and Endothelial Function: From Molecular Background to Clinical Perspectives. Atherosclerosis, 278, 226-231.
https://doi.org/10.1016/j.atherosclerosis.2018.10.007
[18] Saito, Y., Kitahara, H., Nakayama, T., Fujimoto, Y. and Kobayashi, Y. (2019) Relation of Elevated Serum Uric Acid Level to Endothelial Dysfunction in Patients with Acute Coronary Syndrome. Journal of Atherosclerosis and Thrombosis, 26, 362-367.
https://doi.org/10.5551/jat.45179
[19] Otani, N., Toyoda, S., Sakuma, M., et al. (2018) Effects of Uric Acid on Vascular Endothelial Function from Bedside to Bench. Hypertension Research, 41, 923-931.
https://doi.org/10.1038/s41440-018-0095-4
[20] Prasad, M., Matteson, E.L., Herrmann, J., Gulati, R., Rihal, C.S., Lerman, L.O. and Lerman, A. (2017) Uric Acid Is Associated with Inflammation, Coronary Microvascular Dysfunction, and Adverse Outcomes in Postmenopausal Women. Hypertension, 69, 236-242.
https://doi.org/10.1161/HYPERTENSIONAHA.116.08436
[21] Li, Z., Shen, Y., Chen, Y., Zhang, G., Cheng, J. and Wang, W. (2018) High Uric Acid Inhibits Cardiomyocyte Viability through the ERK/P38 Pathway via Oxidative Stress. Cellular Physiology and Biochemistry, 45, 1156-1164.
https://doi.org/10.1159/000487356
[22] Yang, Y., Zhou, Y., Cheng, S., Sun, J.L., Yao, H. and Ma, L. (2016) Ef-fect of Uric Acid on Mitochondrial Function and Oxidative Stress in Hepatocytes. Genetics and Molecular Research, 15, gmr.15028644.
https://doi.org/10.4238/gmr.15028644
[23] Li, H., Qian, F., Liu, H. and Zhang, Z.Y. (2019) Elevated Uric Acid Levels Promote Vascular Smooth Muscle Cells (VSMC) Proliferation via an Nod-Like Receptor Protein 3 (NLRP3)-Inflammasome-Dependent Mechanism. Medical Science Monitor, 25, 8457-8464.
https://doi.org/10.12659/MSM.916667
[24] Peng, W., Cai, G., Xia, Y., Chen, J., Wu, P., Wang, Z., Li, G.H. and Wei, D.H. (2019) Mitochondrial Dysfunction in Atherosclerosis. DNA and Cell Biology, 38, 597-606.
https://doi.org/10.1089/dna.2018.4552
[25] Schunk, S.J., Kleber, M.E., März, W., et al. (2021) Genetically Deter-mined NLRP3 Inflammasome Activation Associates with Systemic Inflammation and Cardiovascular Mortality. Europe-an Heart Journal, 42, 1742-1756.
https://doi.org/10.1093/eurheartj/ehab107
[26] Kimura, Y., Yanagida, T., Onda, A., Tsukui, D., Hosoyamada, M. and Kono, H. (2020) Soluble Uric Acid Promotes Atherosclerosis via AMPK (AMP-Activated Protein Kinase)-Mediated Inflammation. Arteriosclerosis, Thrombosis and Vascular Biology, 40, 570-582.
https://doi.org/10.1161/ATVBAHA.119.313224
[27] Yokose, C., Mccormick, N., Rai, S.K., et al. (2020) Effects of Low-Fat, Mediterranean, or Low-Carbohydrate Weight Loss Diets on Serum Urate and Cardiometabolic Risk Factors: A Secondary Analysis of the Dietary Intervention Randomized Controlled Trial (DIRECT). Diabetes Care, 43, 2812-2820.
https://doi.org/10.2337/dc20-1002
[28] Yanai, H., Adachi, H., Hakoshima, M. and Katsuyama, H. (2021) Molecular Biological and Clinical Understanding of the Pathophysiology and Treatments of Hyperuricemia and Its Association with Metabolic Syndrome, Cardiovascular Diseases and Chronic Kidney Disease. International Journal of Molecular Sciences, 22, Article 9221.
https://doi.org/10.3390/ijms22179221
[29] Zhang, T. and Pope, J.E. (2017) Cardiovascular Effects of Urate-Lowering Therapies in Patients with Chronic Gout: A Systematic Review and Meta-Analysis. Rheumatology, 56, 1144-1153.
https://doi.org/10.1093/rheumatology/kex065
[30] Gupta, M.K. and Singh, J.A. (2019) Cardiovascular Disease in Gout and the Protective Effect of Treatments Including Urate-Lowering Therapy. Drugs, 79, 531-541.
https://doi.org/10.1007/s40265-019-01081-5
[31] Jiang, L., Krumholz, H.M., Li, X., Li, J. and Hu, S.S. (2015) Achieving Best Outcomes for Patients with Cardiovascular Disease in China by Enhancing the Quality of Medical Care and Establishing a Learning Health-Care System. The Lancet, 386, 1493-1505.
https://doi.org/10.1016/S0140-6736(15)00343-8
[32] Fitzgerald, J.D., Dalbeth, N., Mikuls, T., et al. (2020) 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis & Rheumatology, 72, 879-895.
https://doi.org/10.1002/art.41247
[33] Lin, H.C., Daimon, M., Wang, C.H., et al. (2017) Allopurinol, Benzbro-marone and Risk of Coronary Heart Disease in Gout Patients: A Population-Based Study. International Journal of Car-diology, 233, 85-90.
https://doi.org/10.1016/j.ijcard.2017.02.013
[34] Van Der Pol, K.H., Wever, K.E., Verbakel, M., Visseren, F.L.J., Cornel, J.H. and Rongen, G.A. (2021) Allopurinol to Reduce Cardiovascular Morbidity and Mortality: A Systematic Re-view and Meta-Analysis. PLOS ONE, 16, e0260844.
https://doi.org/10.1371/journal.pone.0260844
[35] Zhao, L., Cao, L., Zhao, T.Y., et al. (2020) Cardiovascular Events in Hyperuricemia Population and a Cardiovascular Benefit-Risk Assessment of Urate-Lowering Therapies: A Systematic Review and Meta-Analysis. Chinese Medical Journal, 133, 982-993.
https://doi.org/10.1097/CM9.0000000000000682
[36] Mackenzie, I.S., Hawkey, C.J., Ford, I., et al. (2022) Allo-purinol versus Usual Care in UK Patients with Ischaemic Heart Disease (ALL-HEART): A Multicentre, Prospective, Randomised, Open-Label, Blinded-Endpoint Trial. The Lancet, 400, 1195-1205.
https://doi.org/10.1016/S0140-6736(22)01657-9