|
[1]
|
Cha, D.H., Gee, H.Y., Cachau, R., et al. (2019) Contribution of SLC22A12 on Hypouricemia and Its Clinical Signifi-cance for Screening Purposes. Scientific Reports, 9, Article No. 14360. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ndrepepa, G. (2018) Uric Acid and Cardiovascular Disease. Clinica Chimica Acta, 484, 150-163. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Choi, H.K., Mccormick, N., Lu, N., Rai, S.K., Yokose, C. and Zhang, Y.Q. (2020) Population Impact Attributable to Modifiable Risk Factors for Hyperuricemia. Arthritis & Rheuma-tology, 72, 157-165. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Kuwabara, M., Niwa, K., Hisatome, I., et al. (2017) Asymptomatic Hyperuricemia without Comorbidities Predicts Cardiometabolic Diseases: Five-Year Japanese Cohort Study. Hypertension, 69, 1036-1044. [Google Scholar] [CrossRef]
|
|
[5]
|
Du, X., Patel, A., Anderson, C.S., Dong, J.Z. and Ma, C.S. (2019) Epidemiology of Cardiovascular Disease in China and Opportunities for Improvement: JACC Interna-tional. Journal of the American College of Cardiology, 73, 3135- 3147. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Klauser, A.S., Halpern, E.J., Strobl, S., et al. (2019) Dual-Energy Computed Tomography Detection of Cardiovascular Monosodium Urate Deposits in Patients with Gout. JAMA Cardi-ology, 4, 1019-1028. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Maloberti, A., Bossi, I., Tassistro, E., et al. (2021) Uric Acid in Chronic Coronary Syndromes: Relationship with Coronary Artery Disease Severity and Left Ventricular Diastolic Pa-rameter. Nutrition, Metabolism and Cardiovascular Diseases, 31, 1501-1508. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Battaggia, A, Scalisi, A. and Puccetti, L. (2018) Hyperuricemia Does Not Seem to Be an Independent Risk Factor for Coronary Heart Disease. Clinical Chemistry and Laboratory Med-icine, 56, e59-e62. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Lyngdoh, T., Vuistiner, P., Marques-Vidal, P., Rousson, V., Waeber, G., Vollenweider, P. and Bochud, M. (2012) Serum Uric Acid and Adiposity: Deciphering Causality Using a Bidirec-tional Mendelian Randomization Approach. PLOS ONE, 7, e39321. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Gill, D., Cameron, A.C., Burgess, S., et al. (2021) Urate, Blood Pressure, and Cardiovascular Disease: Evidence from Mendelian Randomization and Meta-Analysis of Clinical Trials. Hypertension, 77, 383-392. [Google Scholar] [CrossRef]
|
|
[11]
|
Zuo, T., Liu, X., Jiang, L., Mao, S., Yin, X. and Guo, L.H. (2016) Hyperuricemia and Coronary Heart Disease Mortality: A Meta-Analysis of Prospective Cohort Studies. BMC Cardiovascular Disorders, 16, Article No. 207. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Mozzini, C., Girelli, D., Setti, A., et al. (2021) Serum Uric Acid Levels, but Not rs7442295 Polymorphism of SCL2A9 Gene, Predict Mortality in Clinically Stable Coronary Artery Dis-ease. Current Problems in Cardiology, 46, Article ID: 100798. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhang, S., Liu, X., Song, B., Yu, H.C., Zhang, X.D. and Shao, Y.M. (2022) Impact of Serum Uric Acid Levels on the Clinical Prognosis and Severity of Coronary Artery Dis-ease in Patients with Acute Coronary Syndrome and Hypertension after Percutaneous Coronary Intervention: A Prospec-tive Cohort Study. BMJ Open, 12, e052031. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lan, M., Liu, B. and He, Q. (2018) Evaluation of the Associa-tion between Hyperuricemia and Coronary Artery Disease: A STROBE-Compliant Article. Medicine, 97, e12926. [Google Scholar] [CrossRef]
|
|
[15]
|
Zhang, C., Jiang, L., Xu, L., et al. (2019) Implications of Hyperuricemia in Severe Coronary Artery Disease. The American Journal of Cardiology, 123, 558-564. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Casiglia, E., Tikhonoff, V., Virdis, A., et al. (2020) Serum Uric Acid and Fatal Myocardial Infarction: Detection of Prognostic Cut-off Values: The URRAH (Uric Acid Right for Heart Health) Study. Journal of Hypertension, 38, 412-419. [Google Scholar] [CrossRef]
|
|
[17]
|
Maruhashi, T., Hisatome, I., Kihara, Y. and Higashi, Y. (2018) Hyperuricemia and Endothelial Function: From Molecular Background to Clinical Perspectives. Atherosclerosis, 278, 226-231. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Saito, Y., Kitahara, H., Nakayama, T., Fujimoto, Y. and Kobayashi, Y. (2019) Relation of Elevated Serum Uric Acid Level to Endothelial Dysfunction in Patients with Acute Coronary Syndrome. Journal of Atherosclerosis and Thrombosis, 26, 362-367. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Otani, N., Toyoda, S., Sakuma, M., et al. (2018) Effects of Uric Acid on Vascular Endothelial Function from Bedside to Bench. Hypertension Research, 41, 923-931. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Prasad, M., Matteson, E.L., Herrmann, J., Gulati, R., Rihal, C.S., Lerman, L.O. and Lerman, A. (2017) Uric Acid Is Associated with Inflammation, Coronary Microvascular Dysfunction, and Adverse Outcomes in Postmenopausal Women. Hypertension, 69, 236-242. [Google Scholar] [CrossRef]
|
|
[21]
|
Li, Z., Shen, Y., Chen, Y., Zhang, G., Cheng, J. and Wang, W. (2018) High Uric Acid Inhibits Cardiomyocyte Viability through the ERK/P38 Pathway via Oxidative Stress. Cellular Physiology and Biochemistry, 45, 1156-1164. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Yang, Y., Zhou, Y., Cheng, S., Sun, J.L., Yao, H. and Ma, L. (2016) Ef-fect of Uric Acid on Mitochondrial Function and Oxidative Stress in Hepatocytes. Genetics and Molecular Research, 15, gmr.15028644. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Li, H., Qian, F., Liu, H. and Zhang, Z.Y. (2019) Elevated Uric Acid Levels Promote Vascular Smooth Muscle Cells (VSMC) Proliferation via an Nod-Like Receptor Protein 3 (NLRP3)-Inflammasome-Dependent Mechanism. Medical Science Monitor, 25, 8457-8464. [Google Scholar] [CrossRef]
|
|
[24]
|
Peng, W., Cai, G., Xia, Y., Chen, J., Wu, P., Wang, Z., Li, G.H. and Wei, D.H. (2019) Mitochondrial Dysfunction in Atherosclerosis. DNA and Cell Biology, 38, 597-606. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Schunk, S.J., Kleber, M.E., März, W., et al. (2021) Genetically Deter-mined NLRP3 Inflammasome Activation Associates with Systemic Inflammation and Cardiovascular Mortality. Europe-an Heart Journal, 42, 1742-1756. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Kimura, Y., Yanagida, T., Onda, A., Tsukui, D., Hosoyamada, M. and Kono, H. (2020) Soluble Uric Acid Promotes Atherosclerosis via AMPK (AMP-Activated Protein Kinase)-Mediated Inflammation. Arteriosclerosis, Thrombosis and Vascular Biology, 40, 570-582. [Google Scholar] [CrossRef]
|
|
[27]
|
Yokose, C., Mccormick, N., Rai, S.K., et al. (2020) Effects of Low-Fat, Mediterranean, or Low-Carbohydrate Weight Loss Diets on Serum Urate and Cardiometabolic Risk Factors: A Secondary Analysis of the Dietary Intervention Randomized Controlled Trial (DIRECT). Diabetes Care, 43, 2812-2820. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Yanai, H., Adachi, H., Hakoshima, M. and Katsuyama, H. (2021) Molecular Biological and Clinical Understanding of the Pathophysiology and Treatments of Hyperuricemia and Its Association with Metabolic Syndrome, Cardiovascular Diseases and Chronic Kidney Disease. International Journal of Molecular Sciences, 22, Article 9221. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhang, T. and Pope, J.E. (2017) Cardiovascular Effects of Urate-Lowering Therapies in Patients with Chronic Gout: A Systematic Review and Meta-Analysis. Rheumatology, 56, 1144-1153. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Gupta, M.K. and Singh, J.A. (2019) Cardiovascular Disease in Gout and the Protective Effect of Treatments Including Urate-Lowering Therapy. Drugs, 79, 531-541. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Jiang, L., Krumholz, H.M., Li, X., Li, J. and Hu, S.S. (2015) Achieving Best Outcomes for Patients with Cardiovascular Disease in China by Enhancing the Quality of Medical Care and Establishing a Learning Health-Care System. The Lancet, 386, 1493-1505. [Google Scholar] [CrossRef]
|
|
[32]
|
Fitzgerald, J.D., Dalbeth, N., Mikuls, T., et al. (2020) 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis & Rheumatology, 72, 879-895. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Lin, H.C., Daimon, M., Wang, C.H., et al. (2017) Allopurinol, Benzbro-marone and Risk of Coronary Heart Disease in Gout Patients: A Population-Based Study. International Journal of Car-diology, 233, 85-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Van Der Pol, K.H., Wever, K.E., Verbakel, M., Visseren, F.L.J., Cornel, J.H. and Rongen, G.A. (2021) Allopurinol to Reduce Cardiovascular Morbidity and Mortality: A Systematic Re-view and Meta-Analysis. PLOS ONE, 16, e0260844. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zhao, L., Cao, L., Zhao, T.Y., et al. (2020) Cardiovascular Events in Hyperuricemia Population and a Cardiovascular Benefit-Risk Assessment of Urate-Lowering Therapies: A Systematic Review and Meta-Analysis. Chinese Medical Journal, 133, 982-993. [Google Scholar] [CrossRef]
|
|
[36]
|
Mackenzie, I.S., Hawkey, C.J., Ford, I., et al. (2022) Allo-purinol versus Usual Care in UK Patients with Ischaemic Heart Disease (ALL-HEART): A Multicentre, Prospective, Randomised, Open-Label, Blinded-Endpoint Trial. The Lancet, 400, 1195-1205. [Google Scholar] [CrossRef]
|