右美托咪定在分娩镇痛中的研究进展
Research Progress of Dexmedetomidine in Analgesia during Labor
DOI: 10.12677/ACM.2023.134728, PDF, HTML, XML, 下载: 198  浏览: 286 
作者: 杨小波, 罗志锴*:延安大学附属医院麻醉科,陕西 延安 ;雷升霞:榆林市第二医院麻醉科,陕西 榆林
关键词: 右美托咪定分娩镇痛产后抑郁临床研究Dexmedetomidine Labor Analgesia Postpartum Depression Clinical Study
摘要: 近年来,随着国家生育政策的放开,越来越多产妇会面临分娩方式抉择。自然分娩的疼痛,确实会让不少女性继续选择剖宫产,因此,为了减少剖宫产率,确切可靠的优质分娩镇痛效果显得尤为重要。右美托咪定(Dexmedetomidine, DEX)具有镇静镇痛、抗寒颤、抗谵妄、抗焦虑、抗抑郁、减少麻醉药用量、轻度呼吸抑制等诸多优势,其安全性和有效性,以及能够给患者提供一定程度的舒适度,使其成为一种重要的硬膜外分娩镇痛麻醉佐剂,广泛应用于临床。本文就其药理学特性、对机体的影响以及在分娩镇痛领域的应用进展进行综述,旨在为分娩镇痛用药提供参考和依据。
Abstract: In recent years, with the opening of the national fertility policy, more and more women will face the choice of childbirth mode. The pain of natural childbirth will indeed make many women continue to choose cesarean section; therefore, in order to reduce the rate of cesarean section, the exact and re-liable high-quality analgesic effect of childbirth is particularly important. Dexmedetomidine (DEX) has the advantages of sedation and analgesia, anti-shivering, anti-delirium, anti-anxiety, an-ti-depression, reduced narcotic dosage, mild respiratory depression, etc. Its safety and efficacy, as well as its ability to provide patients with a certain degree of comfort, make it as an important an-esthetic adjuvant widely used for epidural labor pain relief. This article reviews its pharmacological properties, effects on the body and its application in the field of labor analgesia, in order to provide reference and basis for labor analgesia.
文章引用:杨小波, 雷升霞, 罗志锴. 右美托咪定在分娩镇痛中的研究进展[J]. 临床医学进展, 2023, 13(4): 5138-5145. https://doi.org/10.12677/ACM.2023.134728

1. 引言

强烈而持久的分娩疼痛,给产妇身心健康带来极大伤害,造成过度通气,耗氧量增加,宫缩乏力,产程延长,甚至胎儿宫内缺氧,严重威胁到母婴分娩安全,并在一定程度上增加了剖宫产率 [1] 。此外,已有研究表明,疼痛在心理上会对产妇造成创伤,分娩期疼痛往往与产后抑郁有关 [2] 。分娩镇痛是指使用各种方法减轻或消除产妇分娩疼痛,可靠而安全的效果,已经得到了越来越多产妇的青睐。理想的分娩镇痛不仅可以提高产妇分娩舒适度和满意度,降低剖宫产率,改善新生儿结局,还可以缓解产妇恐惧、焦虑等情绪,提高产妇围产期心境,减少产后抑郁发生率 [3] 。目前,局部麻醉药硬膜外镇痛已成为分娩过程中最有效和首选的镇痛方式。但在产程进展中也存在一些缺点,包括运动阻滞、产妇低血压、第二产程延长、尿潴留等 [4] 。因此,如何正确平衡局部麻醉药的使用和并发症的处理是麻醉医师面临的主要挑战。传统方法使用局部麻醉药联合阿片类药物来解决这些问题。然而,硬膜外使用阿片类药物常带来许多不良反应,如呼吸抑制、瘙痒、恶心呕吐等 [1] 。

DEX是一种高选择性α2肾上腺素能受体激动剂,通过作用于中枢和外周神经系统的α2受体发挥镇静、镇痛、抗焦虑、抗谵妄、抗交感等作用,且不引起呼吸抑制。DEX联合局麻药已成功用于硬膜外分娩镇痛,它可以增加子宫收缩频率和幅度,促进产程进展 [5] ,同时其大部分从母体循环中很快得到代谢,而进入胎儿循环的量很少,对新生儿更安全 [6] 。这是由于其脂溶性高,更容易在胎盘中滞留,胎盘转运率较低 [7] 。目前已有更多研究报道了将其用于分娩镇痛,并且取得了舒适和满意的效果,现将相关研究进展予以综述。

2. DEX的药理学特性

2.1. 药代动力学和药效学

DEX是一种α2肾上腺素能受体激动药,它具有镇静、镇痛、抗焦虑和解交感神经的作用,对呼吸功能有轻微的抑制作用 [8] 。在临床麻醉中主要将其用作镇静催眠剂,其通过中枢和外周神经系统的α2受体来发挥相应的药理作用。2008年,FDA批准将DEX用于操作镇静和未插管患者的镇静 [9] ,另有研究表明,其可有效缩短重症患者ICU住院时间和拔管时间 [10] 。

DEX的受体选择性(α2:α1)为1620:1,可乐定的为220:1,因此α2受体选择性甚至比可乐定高10倍 [11] 。静脉注射和透皮给药后,血药浓度达峰值时间分别为1.6~1.7 h和6 h;口服、口腔粘膜和肌注后的生物利用度分别为16%、82%和104% [12] 。因此,临床很少经口服应用。DEX在血浆中,94%与白蛋白和α1糖蛋白结合,它容易通过血脑屏障 [13] ,迅速在全身广泛分布。因此,其具有良好而持久的中枢镇静作用。

2.2. 代谢和排除

DEX在体内99%通过肝脏的葡萄糖醛酸化(主要途径)和细胞色素P450介导的羟化作用代谢 [14] ,其中95%是通过尿液排泄,5%通过粪便排泄 [15] 。

DEX的平均消除半衰期为静脉和肌内给药后1.5~3 h,经皮给药后可长达5.6 h [12] 。ICU长时间(>24 h)输注DEX的老年、低体重、肝功能损害、低白蛋白血症、低心排血量等危重症患者,其血浆分布容积下降,血浆清除率下降,消除半衰期延长,导致镇静时间延长 [16] [17] [18] 。因此,对该类患者,应降低输注速率,以达到相似的DEX浓度。然而,在对ICU患者进行长时间(>6 h)镇静的另一项研究中发现,与正常患者相比,低白蛋白血症患者DEX的最大血浆浓度降低21.2%,稳态分布体积增加了40.5%,消除半衰期缩短了33.5% [19] 。

2.3. 作用机制

α2-AR激动剂可能与抑制性G蛋白偶联的三种α2-AR亚型(α2A、α2B和α2C)结合和一氧化氮介导的cGMP途径的激活有关 [19] 。其中,α2A和α2C亚型主要发现于中枢神经系统,α2B亚型发现于血管平滑肌。DEX主要与G蛋白偶联的α2A亚型结合,从而抑制腺苷环化酶,降低一磷酸腺苷水平,导致去甲肾上腺素能神经元的超极化。并可抑制脑干蓝斑的突触前去甲肾上腺素能神经元放电 [20] ,通过激活内源性促进睡眠通路,而导致觉醒丧失的中枢镇静作用的同时 [19] ,也会导致交感神经反应减弱,心率和血压降低 [21] 。在α2受体上的离子机制是,通过抑制神经递质囊泡融合所需的钙内流来抑制感觉功能的传导 [22] 。

2.4. 药物配方和剂量

DEX,又称4-[(1S)-1-(2,3-二甲基苯基)乙基]-1h-咪唑,分子式C13H16N2,是其右旋对映体 [23] ,在临床中被用作镇静和镇痛药。目前,临床使用的是水溶性盐酸盐,有0.1 mg/1mL和0.2 mg/2mL两种制剂,在输注前,需将其稀释至4 μg/mL或8 μg/mL。

3. DEX对机体的影响

3.1. 镇静作用

DEX通过激活蓝核突触前和突触后的α2受体发挥镇静催眠作用,从而诱导一种类似自然睡眠的无意识状态,其独特之处在于患者保持容易唤醒和合作 [24] [25] 。2008年,FDA将其批准用于非插管患者在手术和其他手术之前和/或期间的镇静。DEX先以1 µg/kg负荷量输注10 min,随后以0.2~0.7 µg/kg/h的速度静脉输注进行术中镇静 [26] 。尽管其有剂量相关的镇静效应,但它的使用并未严重损害记忆和认知功能 [21] [26] 。近年来,DEX滴鼻被用作小儿全身麻醉前镇静药物,可减少对镇痛药的需求,在与父母分离时减轻应激和焦虑,减少鼻腔刺激反应和术后恶心呕吐发生率 [27] 。

3.2. 镇痛作用

DEX的镇痛作用被认为主要是通过结合位于中枢和脊髓α2受体,使脊神经根、脊髓前角和背角的中间神经元发生超极化,使痛觉传递物如P物质和谷氨酸的释放减少,阻断延髓–脊髓传导通路,抑制了疼痛信号向中枢的传递,还可以通过作用于外周神经细胞释放类胆碱样物质,来提高疼痛阈值,从而综合发挥镇痛作用 [28] 。一项荟萃研究发现,DEX用于术后镇痛,使术后24 h时的疼痛强度降低了约0.7分,术后24 h内阿片类药物用量减少了30%,术后恶心呕吐降低约为9% [29] 。在另一项由Venn RM等人 [30] 进行的研究中,心脏病患者的术后镇痛需求减少了50%,并且挽救性咪达唑仑镇静需求减少了80%。

3.3. 抗寒颤作用

研究表明,DEX鞘内用药抗寒战机制可能与良好的镇静,导致肾上腺素能寒颤应急反应的减弱有关 [31] 。另外,DEX通过对外界体温信息,在脊髓和中枢体温调节中心之间双向传递进行抑制,阻碍机体做出应激寒战反应,从而达到抑制机体寒战产热的运动 [32] 。

3.4. 延长神经阻滞时间

局麻药复合DEX鞘内注射通过不同作用机制的相加或协同延长神经阻滞时间。局麻药通过阻断钠通道发挥作用,而DEX通过抑制突触前感觉型神经纤维C传导和突触后运动型背角神经元发生超极化实现协同延长感觉和运动阻滞时间 [33] 。右美托咪定导致的局部血管收缩,减缓了结合于脊髓上局麻药吸收入血液循环的速度,使神经阻滞时间延长。另外,有研究发现对蓝斑和中缝核的直接中枢效应似乎也起延长神经阻滞时间的作用 [34] 。

4. DEX在分娩镇痛中的应用

4.1. 硬膜外分娩镇痛

传统的硬膜外分娩镇痛具有安全可靠、可持续给药等特点,但是阿片类药物会增加产妇恶心呕吐、皮肤瘙痒、呼吸抑制甚至新生儿Apgar评分降低等不良反应 [1] 。为了减少以上不良反应,需要麻醉医生寻找一种更安全舒适的佐剂。已有大量临床研究表明,DEX在镇痛分娩中取得了满意的效果,使局麻药(最常用罗哌卡因,Ropivacaine,ROP)起效时间缩短、镇痛强度增强、持续时间延长,大大减少了局部麻醉药和麻醉性镇痛药物的使用量,并且没有发现明显的不良反应 [35] 。

Zhao Y [36] 等人研究发现,0.125% ROP + 0.5 μg/kg DEX单次负荷剂量相较于单纯使用ROP,可减轻产妇疼痛评分,且未出现运动阻滞、血流动力学不稳定、产程延长及恶心呕吐等并发症。还有研究发现,0.1% ROP复合5 μg/mL DEX行硬膜外分娩镇痛可以降低分娩时发热的发生率,减轻分娩疼痛,且不增加不良事件的发生 [37] 。Pang R Y [38] 等人将0.125% ROP分别联合2 μg/mL芬太尼(Fentanyl, FEN)和0.3、0.4、0.5 μg/mL DEX硬膜外腔持续输注进行分娩镇痛,结果发现,浓度低至0.3和0.4 μg/mL DEX仍可以提供满意的镇痛效果,并且在减少ROP每小时平均用量和减少阿片类药物引起的皮肤瘙痒等副作用方面优于输注2 μg/mL FEN组。Zhang T [39] 等人研究证实,0.5 μg/mL DEX复合0.1% ROP行硬膜外分娩镇痛比0.5 μg/mL舒芬太尼(Sufentanil, SUF)组,在进入活跃期后的镇痛效果更好,镇静评分更高,第一产程时间更短。导致第一产程时间缩短的原因可能是,DEX作为α2肾上腺素能受体激动剂,可引起子宫平滑肌收缩频率增加,加快第一产程时间 [5] 。Zhang W [40] 等人研究表明,0.1% ROP行硬膜外分娩镇痛的EC50为0.083%,复合0.5 μg/mL DEX后EC50降0.062%。另有文献报道 [41] ,0.5 μg/mL DEX复合0.1% ROP用于产前非肥胖和肥胖产妇,结果非肥胖组和肥胖组ROP的EC50分别为0.095%和0.070%,发现产前肥胖患者复合0.5 μg/mL DEX时,ROP浓度降低。另有研究发现 [42] ,将0.1% ROP与0.25 μg/mL DEX和0.25 μg/mL SUF联合应用的硬膜外分娩镇痛效果优于单独应用0.5 μg/mL SUF或0.5 μg/mL DEX。

综合以上文献,将DEX复合局麻药用于镇痛分娩效果优于单纯使用局麻药,大部分研究都推荐使用0.5 μg/mL DEX复合低浓度的局麻药(0.1% ROP最常用)。并且相较于阿片类药物作为局麻药佐剂用于分娩镇痛,DEX可以减少产妇恶心呕吐、皮肤瘙痒、呼吸抑制、寒颤等不良反应,但可能存在产妇窦性心动过缓发生率增高的风险,应予以注意。

4.2. 腰硬联合分娩镇痛

腰硬联合分娩镇痛时,DEX鞘内注射起效更迅速,镇痛效果更满意,持续时间更久,与硬膜外注射相比所需要的剂量也更小。Jain [43] 等人研究发现,蛛网膜下注射DEX 20 μg复合布比卡因(Bupivacaine, BUP) 2.5 mg比FEN 15 μg复合BUP 2.5 mg镇痛起效时间更早,持续时间更久。说明鞘内注射DEX镇痛强度和持续时间较好。另一项研究将所有产妇分为3组 [44] ,C组蛛网膜下腔单纯注射0.9%生理盐水1 mL,D组鞘内注射DEX 5 µg,S组鞘内注射SUF 5 µg。然后,所有产妇均采用0.1% ROP和0.2 μg/mL SUF行标准硬膜外自控镇痛。与C组比较,D组和S组分娩镇痛效果更好,明显缩短起效时间,延长蛛网膜下腔阻滞时间,减少局麻药用量;D组寒战和皮肤瘙痒发生率低于S组。说明蛛网膜下腔注射5 µg DEX可改善硬膜外分娩镇痛效果。

为了安全起见,DEX用于鞘内注射,大多推荐使用剂量不超过10 μg,如果合用阿片类或局麻药时,其剂量应降低。

4.3. 静脉分娩镇痛

对于椎管内分娩镇痛有禁忌证的女性(如凝血功能障碍、存在椎管内穿刺禁忌、脊髓等神经系统疾病等),缓解分娩疼痛的替代策略是必要的。静脉输注阿片类药物(最常用的是瑞芬太尼,Remifentanil,REM)已被广泛用作替代方案行分娩镇痛,但其对产妇和新生儿有剂量依赖性的呼吸抑制。DEX的清醒镇静、呼吸抑制轻以及协同镇痛作用,可以降低阿片类药物使用量,减少恶心呕吐、呼吸抑制等不良反应发生率,使其在静脉分娩镇痛中具有独特的优势 [45] 。Abdalla W [46] 等人给予产妇0.25 μg/kg/h REM复合0.5 μg/kg/h DEX静脉输注(先在20 min内给予1 μg/kg负荷量)发现,联合使用REM和DEX的产妇在产程第二阶段的疼痛评分低于单独使用REM,REM总用量降低53.3%。而单纯使用REM镇痛的产妇并发症发生率升高,患者满意度评分降低。说明REM复合DEX静脉分娩镇痛,可以改善分娩镇痛的效果,减少阿片类药物使用量,降低该类药物相关并发症。另外,Palanisamy [47] 等人报道了在隐匿性脊柱裂患者分娩时,连续输注DEX作为FEN静脉辅助镇痛取得了满意的效果。此外,有研究证实,硬膜外镇痛分娩联合DEX静注,可以提供良好的镇痛效果,不但可以缩短产程,减少硬膜外局麻药用量, 还可以改善分娩后高凝状态。

综上文献所述,DEX静脉输注虽然不能提供良好的分娩镇痛,但可以发挥提高特殊情况下使用REM静脉分娩镇痛或改善硬膜外分娩镇痛效果不良的优势,减少阿片类药物的用量,从而预防或减少恶心呕吐等相关不良反应的发生。

5. 总结

DEX是一种被广泛使用的镇静镇痛药物,在分娩镇痛的新领域,虽然缺少相关临床指南,但是大量的临床研究已经证实其安全有效。其独特的高胎盘滞留率、促进宫缩及减少分娩时发热等优点,为分娩提供了安全舒适的保障。更有意义的是,其优化分娩镇痛效果、延长镇痛时间等作用,可以减少产后抑郁发生率,有助于提高产妇产后身心健康。DEX应用于分娩镇痛领域的合适用法和最佳剂量还在不断探索阶段,仍有待于进一步临床研究,来优化镇痛效果,降低并发症发生率,提高母婴安全。

NOTES

*通讯作者。

参考文献

[1] Van de Velde, M. and Carvalho, B. (2016) Remifentanil for Labor Analgesia: An Evidence-Based Narrative Review. In-ternational Journal of Obstetric Anesthesia, 25, 66-74.
https://doi.org/10.1016/j.ijoa.2015.12.004
[2] Mo, J., et al. (2022) Association between Perinatal Pain and Postpartum Depression: A Systematic Review and Meta-Analysis. Jour-nal of Affective Disorders, 312, 92-99.
https://doi.org/10.1016/j.jad.2022.06.010
[3] Deng, C.-M., et al. (2021) Neuraxial Labor Analgesia Is Associated with a Reduced Risk of Postpartum Depression: A Multicenter Prospective Cohort Study with Propensity Score Matching. Journal of Affective Disorders, 281, 342-350.
https://doi.org/10.1016/j.jad.2020.12.027
[4] Anim-Somuah, M., Smyth, R.M. and Jones, L. (2011) Epidural versus Non-Epidural or No Analgesia in Labour. Cochrane Database of Systematic Reviews, No. 12, Article No. CD000331.
https://doi.org/10.1002/14651858.CD000331.pub3
[5] Sia, A.T., Kwek, K. and Yeo, G.S. (2005) The in Vitro Effects of Clonidine and Dexmedetomidine on Human Myometrium. International Journal of Obstetric Anesthesia, 14, 104-107.
https://doi.org/10.1016/j.ijoa.2004.11.004
[6] Wang, C., et al. (2017) Effect and Placental Transfer of Dexmedetomidine during Caesarean Section under Epidural Anaesthesia. Journal of International Medical Research, 45, 964-972.
https://doi.org/10.1177/0300060517698330
[7] Ala-Kokko, T.I., et al. (1997) Transfer of Clonidine and Dexmedetomidine Across the Isolated Perfused Human Placenta. Acta Anaesthesiologica Scandinavica, 41, 313-319.
https://doi.org/10.1111/j.1399-6576.1997.tb04685.x
[8] Belleville, J.P. et al. (1992) Effects of Intravenous Dex-medetomidine in Humans: I. Sedation, Ventilation, and Metabolic Rate. Anesthesiology, 77, 1125-1133.
https://doi.org/10.1097/00000542-199212000-00013
[9] Keating, G.M. (2015) Dexmedetomidine: A Review of Its Use for Sedation in the Intensive Care Setting. Drugs, 75, 1119-1130.
https://doi.org/10.1007/s40265-015-0419-5
[10] Cruickshank, M., et al. (2016) Alpha-2 Agonists for Sedation of Mechanically Ventilated Adults in Intensive Care Units: A Systematic Review. Health Technology Assessment, 20, 1-117.
https://doi.org/10.3310/hta20250
[11] Virtanen, R., Savola, J.M., Saano, V. and Nyman, L. (1988) Characterization of the Selectivity, Specificity and Potency of Medetomidine as an α2-Adrenoceptor Agonist. European Journal of Phar-macology, 150, 9-14.
https://doi.org/10.1016/0014-2999(88)90744-3
[12] Anttila, M., Penttilä, J., Helminen, A., Vuorilehto, L. and Scheinin, H. (2003) Bioavailability of Dexmedetomidine after Extravascular Doses in Healthy Subjects. British Journal of Clinical Pharmacology, 56, 691-693.
https://doi.org/10.1046/j.1365-2125.2003.01944.x
[13] Panzer, O., Moitra, V. and Sladen, R.N. (2011) Pharma-cology of Sedative-Analgesic Agents: Dexmedetomidine, Remifentanil, Ketamine, Volatile Anesthetics, and the Role of Peripheral Mu Antagonists. Anesthesiology Clinics, 29, 587-605.
https://doi.org/10.1016/j.anclin.2011.09.002
[14] Rodrigues, A.D. and Roberts, E.M. (1997) The in Vitro Interac-tion of Dexmedetomidine with Human Liver Microsomal Cytochrome P4502D6 (CYP2D6). Drug Metabolism and Disposition, 25, 651-655.
[15] Philipp, M., Brede, M. and Hein, L. (2002) Physiological Significance of α2-Adrenergic Receptor Subtype Diversity: One Receptor Is Not Enough. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283, R287-R295.
https://doi.org/10.1152/ajpregu.00123.2002
[16] Iirola, T., et al. (2011) Pharmacokinetics of Prolonged Infusion of High-Dose Dexmedetomidine in Critically Ill Patients. Critical Care, 15, Ar-ticle No. R257.
https://doi.org/10.1186/cc10518
[17] Iirola, T., et al. (2012) Population Pharmacokinetics of Dex-medetomidine during Long-Term Sedation in Intensive Care Patients. British Journal of Anaesthesia, 108, 460-468.
https://doi.org/10.1093/bja/aer441
[18] Välitalo, P.A., et al. (2013) Population Pharmacokinetics of Dexmedetomi-dine in Critically Ill Patients. Clinical Drug Investigation, 33, 579-587.
https://doi.org/10.1007/s40261-013-0101-1
[19] Nelson, L.E., et al. (2003) The α2-Adrenoceptor Agonist Dexme-detomidine Converges on an Endogenous Sleep-Promoting Pathway to Exert Its Sedative Effects. Anesthesiology, 98, 428-436.
https://doi.org/10.1097/00000542-200302000-00024
[20] Nacif-Coelho, C., Correa-Sales, C., Chang, L.L. and Maze, M. (1994) Perturbation of Ion Channel Conductance Alters the Hypnotic Response to the α2-Adrenergic Agonist Dexmedetomidine in the Locus Coeruleus of the Rat. Anesthesiology, 81, 1527-1534.
https://doi.org/10.1097/00000542-199412000-00029
[21] Ebert, T.J., Hall, J.E., Barney, J.A., Uhrich, T.D. and Colinco, M.D. (2000) The Effects of Increasing Plasma Concentrations of Dexmedetomidine in Humans. Anesthesiology, 93, 382-394.
https://doi.org/10.1097/00000542-200008000-00016
[22] Giovannitti, J.J., Thoms, S.M. and Crawford, J.J. (2015) Alpha-2 Adrenergic Receptor Agonists: A Review of Current Clinical Applications. Anesthesia Progress, 62, 31-39.
https://doi.org/10.2344/0003-3006-62.1.31
[23] Panzer, O., Moitra, V. and Sladen, R.N. (2009) Pharmacology of Sedative-Analgesic Agents: Dexmedetomidine, Remifentanil, Ketamine, Volatile Anesthetics, and the Role of Peripheral Mu Antagonists. Critical Care Clinics, 25, 451-469.
https://doi.org/10.1016/j.ccc.2009.04.004
[24] Zhang, Z., et al. (2015) Neuronal Ensembles Sufficient for Recovery Sleep and the Sedative Actions of α2 Adrenergic Agonists. Nature Neuroscience, 18, 553-561.
https://doi.org/10.1038/nn.3957
[25] Bekker, A. and Sturaitis, M.K. (2005) Dexmedetomidine for Neurological Surgery. Neurosurgery, 57, 1-10.
https://doi.org/10.1227/01.NEU.0000163476.42034.A1
[26] Hall, J.E., et al. (2000) Sedative, Amnestic, and An-algesic Properties of Small-Dose Dexmedetomidine Infusions. Anesthesia & Analgesia, 90, 699-705.
https://doi.org/10.1097/00000539-200003000-00035
[27] Jun, J.H., Kim, K.N., Kim, J.Y. and Song, S.M. (2017) The Effects of Intranasal Dexmedetomidine Premedication in Children: A Systematic Review and Meta-Analysis. Cana-dian Journal of Anesthesia, 64, 947-961.
https://doi.org/10.1007/s12630-017-0917-x
[28] Doze, V.A., Chen, B.-X. and Maze, M. (1989) Dexmedetomidine Produces a Hypnotic-Anesthetic Action in Rats via Activation of Central Alpha-2 Adrenoceptors. Anesthesiology, 71, 75-79.
https://doi.org/10.1097/00000542-198907000-00014
[29] Blaudszun, G., Lysakowski, C., Elia, N. and Tramèr, M.R. (2012) Effect of Perioperative Systemic α2 Agonists on Postoperative Morphine Consumption and Pain Intensity: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Anesthesiology, 116, 1312-1322.
https://doi.org/10.1097/ALN.0b013e31825681cb
[30] Venn, R.M., et al. (1999) Preliminary UK Experience of Dexmedetomidine, a Novel Agent for Postoperative Sedation in the Intensive Care Unit. Anaesthesia, 54, 1136-1142.
https://doi.org/10.1046/j.1365-2044.1999.01114.x
[31] Li, Z., et al. (2015) A Randomised Controlled Trial to Evaluate the Effectiveness of Intrathecal Bupivacaine Combined with Different Adjuvants (Fentanyl, Clonidine and Dexmedetomidine) in Caesarean Section. Drug Research, 65, 581-586.
https://doi.org/10.1055/s-0034-1395614
[32] Li, Y.Z., Jiang, Y., Lin, H. and Yang, X.P. (2019) Subarachnoid and Epidural Dexmedetomidine for the Prevention of Post-Anesthetic Shivering: A Meta-Analysis and Systematic Review. Drug Design, Development and Therapy, 13, 3785-3798.
https://doi.org/10.2147/DDDT.S204411
[33] Lawhead, R.G., Blaxall, H.S. and Bylund, D.B. (1992) α-2A Is the Predominant α-2 Adrenergic Receptor Subtype in Human Spi-nal Cord. Anesthesiology, 77, 983-991.
https://doi.org/10.1097/00000542-199211000-00022
[34] Kanazi, G.E., et al. (2006) Effect of Low-Dose Dexmedetomidine or Clonidine on the Characteristics of Bupivacaine Spinal Block. Acta Anaesthesiologica Scandinavica, 50, 222-227.
https://doi.org/10.1111/j.1399-6576.2006.00919.x
[35] Zhang, X., Wang, D., Shi, M. and Luo, Y. (2017) Efficacy and Safety of Dexmedetomidine as an Adjuvant in Epidural Analgesia and Anesthesia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clinical Drug Investigation, 37, 343-354.
https://doi.org/10.1007/s40261-016-0477-9
[36] Zhao, Y., Xin, Y., Liu, Y., Yi, X. and Liu, Y. (2017) Effect of Epidural Dexmedetomidine Combined with Ropivacaine in Labor Analgesia: A Randomized Double-Blinded Controlled Study. The Clinical Journal of Pain, 33, 319-324.
https://doi.org/10.1097/AJP.0000000000000411
[37] Li, L., Yang, Z. and Zhang, W. (2021) Epidural Dexme-detomidine for Prevention of Intrapartum Fever during Labor Analgesia: A Randomized Controlled Trial. Pain and Therapy, 10, 391-400.
https://doi.org/10.1007/s40122-020-00215-y
[38] Pang, R.-Y., et al. (2022) Comparison of Epidural Dexme-detomidine to Fentanyl in Reducing Ropivacaine Dose in Programmed Intermittent Epidural Bolus Plus Patient Con-trolled Epidural Analgesia During Labor: A Randomized, Double-Blind, Controlled Study. Frontiers in Medicine, 9, Ar-ticle 935643.
https://doi.org/10.3389/fmed.2022.935643
[39] Zhang, T., Yu, Y., Zhang, W. and Zhu, J. (2019) Comparison of Dexmedetomidine and Sufentanil as Adjuvants to Local Anesthetic for Epidural Labor Analgesia: A Randomized Controlled Trial. Drug Design, Development and Therapy, 13, 1171-1175.
https://doi.org/10.2147/DDDT.S197431
[40] Zhang, W. and Li, C. (2018) EC50 of Epidural Ropivacaine Combined with Dexmedetomidine for Labor Analgesia. The Clinical Journal of Pain, 34, 950-953.
https://doi.org/10.1097/AJP.0000000000000613
[41] Chen, X., Cai, M., Lei, X.F. and Yu, J. (2021) Obesity De-creases the EC50 of Epidural Ropivacaine When Combined with Dexmedetomidine for Labor Analgesia. Expert Review of Clinical Pharmacology, 14, 1051-1056.
https://doi.org/10.1080/17512433.2021.1929924
[42] Li, G., et al. (2020) Combination of Sufentanil, Dexme-detomidine and Ropivacaine to Improve Epidural Labor Analgesia Effect: A Randomized Controlled Trial. Experimental and Therapeutic Medicine, 20, 454-460.
https://doi.org/10.3892/etm.2020.8730
[43] Jain, A., Mittal, A., Sharma, S. and Deep, A. (2022) Comparative Evaluation of Intrathecal Dexmedetomidine and Fentanyl as an Adjuvant for Combined Spinal-Epidural Analgesia for Labor. Anesthesia: Essays and Researches, 16, 197-202.
https://doi.org/10.4103/aer.aer_73_22
[44] Li, G., Wang, H., Qi, X., Huang, X. and Li, Y. (2021) Intrathecal Dexmedetomidine Improves Epidural Labor Analgesia Effects: A Randomized Controlled Trial. Journal of International Medical Research, 49, Article ID: 300060521999534.
https://doi.org/10.1177/0300060521999534
[45] 吴新民, 等. 右美托咪定临床应用专家共识[J]. 临床麻醉学杂志, 2018, 34(8): 820-823.
[46] Abdalla, W., Ammar, M.A. and Tharwat, A.I. (2015) Combination of Dexmedetomi-dine and Remifentanil for Labor Analgesia: A Double-Blinded, Randomized, Controlled Study. Saudi Journal of Anaes-thesia, 9, 433-438.
https://doi.org/10.4103/1658-354X.159470
[47] Palanisamy, A., Klickovich, R.J., Ramsay, M., Ouyang, D.W. and Tsen, L.C. (2009) Intravenous Dexmedetomidine as an Adjunct for Labor Analgesia and Cesarean Delivery Anesthesia in a Parturient with a Tethered Spinal Cord. International Journal of Obstetric Anesthesia, 18, 258-261.
https://doi.org/10.1016/j.ijoa.2008.10.002