[1]
|
S. J. Lloyd, J. M. Molina-Aldareguia. Multilayered materials: A palette for the materials artist. Philosophical Transactions of the Royal Society of London, Series A, 2003, 361(1813): 2931-2949.
|
[2]
|
P. M. Derlet, P. Gumbsch, R. G. Hoagland, et al. Atomistic simulations of dislocations in confined volumes. MRS Bulletin, 2009, 34(3): 184-189.
|
[3]
|
D. L. Zheng, S. D. Chen, A. K. Soh, et al. Molecular dynamics simulations of glide dislocations induced by misfit dislocations at the Ni/Al interface. Computational Materials Science, 2010, 48(3): 551-555.
|
[4]
|
S. Shao, S. N. Medyanik. Dislocation-interface interaction in nanoscale fcc metallic bilayer. Mechanics Research Communi- cations, 2010, 37(3): 315-319.
|
[5]
|
D. Saraev, R. E. Miller. Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings. Acta Materialia, 2006, 54(1): 33-45.
|
[6]
|
S. N. Medyanik, S. Shao. Strengthening effects of coherent interfaces in nanoscale metallic bilayers. Computational Materi- als Science, 2009, 45(4): 1129-1133.
|
[7]
|
R. G. Hoagland, R. J. Kurtz and C. H. Henager. Slip resistance of interfaces and the strength of metallic multilayer composites. Scripta Materialia, 2004, 50(6): 775-779.
|
[8]
|
J. Wang, R. G. Hoagland, J. P. Hirth, et al. Atomistic modeling of the interaction of glide dislocations with “weak” interfaces. Acta Materialia, 2008, 56(19): 5685-5693.
|
[9]
|
M. Gavrila, J. P. Millet and H. Mazille. Corrosion behaviour of zinc-nickel coatings, electrodeposited on steel. Surface & Coat- ings Technology, 2000, 123(2): 164-172.
|
[10]
|
Z. S. Ma, S. G. Long, X. B. Zhang, et al. Effect of tension de- formation on microstructure and mechanism of electrodeposited nickel coating. Transactions of Nonferrous Metals Mociety of China, 2007, 17(1): 818-822.
|
[11]
|
G. Bonny, R. C. Pasianot and L. Malerba. Fe-Ni many-body potential for metallurgical applications. Modelling and Simula- tion in Materials Science and Engineering, 2009, 17(1): Article ID 025010.
|
[12]
|
S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117(1): 1-19.
|
[13]
|
C. L. Kelchner, S. J. Plimpton and J. C. Hamilton. Dislocation nucleation and defect structure during surface indentation. Physical Review B, 1998, 58(17): 11085-11088.
|
[14]
|
S. A. Kotrechko, A. V. Filatov and A. V. Ovsjannikov. Molecular dynamics simulation of deformation and failure of nanocrystals of BCC metals. Theoretical and Applied Fracture Mechanics, 2006, 45(2): 92-99.
|
[15]
|
G. E. Norman, V. V. Stegailov and A. V. Yanilkin. The modeling of high-rate tension of crystalline iron by the method of molecu- lar dynamics. High Temperature, 2007, 45(2): 164-172.
|
[16]
|
T. Hitomi, N. Morita, Y. Yoshida, et al. A study of structural phase transitions caused with tensile stress of single crystal iron-simulations of uniaxial tension tests using molecular dy- namics. Journal of the Japan Society of Precision Engineering, 1999, 65(11): 1798-1803 (in Japanese).
|
[17]
|
R. Komanduri, N. Chandrasekaran and L. M. Raff. Molecular dynamics (MD) simulation of uniaxial tension of some sin- gle-crystal cubic metals at nanolevel. International Journal of Mechanical Sciences, 2001, 43(10): 2237-2260.
|
[18]
|
D. M. Clatterbuck, D. C. Chrzan and J. J. W. Morris. The influ- ence of triaxial stress on the ideal tensile strength of iron. Scripta Materialia, 2003, 49(10): 1007-1011.
|