tRF-His-GTG-037在血管平滑肌细胞表型转换中的表达及生物信息学分析
Expression and Bioinformatics Analysis of tRF-His-GTG-037 in the Phenotypic Transformation of Rat Vascular Smooth Muscle Cells
DOI: 10.12677/HJBM.2023.132022, PDF, HTML, XML, 下载: 275  浏览: 409  国家科技经费支持
作者: 冯 越:西北大学生命科学学院,陕西 西安;李新秋:仁怀市人民医院外科,贵州 遵义;燕银芳, 赵 朝:西北大学第一附属医院西安市第一医院中心实验室,陕西 西安;纪玉强*:西北大学第一附属医院西安市第一医院中心实验室,陕西 西安;西安市神经免疫疾病创新转化重点实验室,陕西,西安
关键词: 血管平滑肌细胞tRNA衍生的小RNAs表型转换Vascular Smooth Muscle Cell Transfer RNA tRNA-Derived Small RNAs Phenotypic Transformation
摘要: 目的:探讨tRF-His-GTG-037在血管平滑肌细胞(vascular smooth muscle cell, VSMC)表型转换中的表达水平并利用生物信息学分析其潜在的作用。方法:利用荧光定量PCR检测tRF-His-GTG-037在VSMC表型转化过程中的表达水平。基于miRanda和TargetScan预测tRF-His-GTG-037的靶基因。对预测的靶基因进行GO (Gene Ontology)功能分析和KEGG(Kyoto Encyclopedia of Genes and Genomes)通路分析。结果:与正常VSMC (1.18 ± 0.25)相比,tRF-His-GTG-037在血小板衍生因子BB (platelet-derived growth factor BB, PDGF-BB)诱导VSMC中的表达水平(2.50 ± 0.40)明显升高(t = 2.78, P = 0.008)。预测tRF-His-GTG-037共有93个靶基因,其中49个基因与心血管疾病发病有关,Rac1、组织因子途径抑制物(tissue factor pathway inhibitor, TFPI)、细胞色素P450家族成员1B1 (recombinant cytochrome P450 1B1, CYP1B1)、TWIST1与VSMC的增殖、迁移有关。GO分析结果发现生物过程(biological process, BP)富集项目429个,细胞成分(cell composition, CC)富集项目50个,分子功能(molecular function, MF)富集项目29个。KEGG通路分析结果发现的cAMP信号通路、AMPK信号通路与VSMC的增殖、迁移有关。结论:tRF-His-GTG-037在VSMC表型转换表达水平增高,可能作用于Rac1、TFPI、CYP1B1、TWIST1等靶基因通过cAMP信号通路、AMPK信号通路在VSMC表型转换过程中发挥作用。
Abstract: Objective: To investigate the expression level of tRF-His-GTG-037 in the phenotypic transformation of vascular smooth muscle cells (VSMCs) and analyze t its potential role with bioinformatics. Methods: The expression level of tRF-His-GTG-037 in VSMC phenotype transformation was detected by fluorescence quantitative PCR. The target gene of tRF-His-GTG-037 was predicted based on miRanda and TargetScan. The predicted target genes were analyzed for GO (Gene Ontology) function and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway. Results: Compared with normal VSMC (1.18 ± 0.25), the expression level of tRF-His-GTG-037 in PDGF-BB (platelet-derived growth factor BB) induced VSMC (2.50 ± 0.40) was significantly higher (t = 2.78, P = 0.008). It was predicted that there were 93 target genes in tRF-His-GTG-037, 49 of which were related to the pathogenesis of cardiovascular disease. Rac1, tissue factor pathway inhibitor (TFPI), recombinant cytochrome P450 1B1 (CYP1B1) and TWIST1 are related to the proliferation and migration of VSMC. The results of GO analysis found 429 biological process (BP) enrichment projects, 50 cell composition (CC) enrichment projects, and 29 molecular function (MF) enrichment projects. The results of KEGG pathway analysis showed that the cAMP signal pathway and AMPK signal pathway were related to the proliferation and migration of VSMC. Conclusions: The expression level of tRF-His-GTG-037 in VSMC phenotypic transformation increased. tRF-His-GTG-037 may play a role in VSMC phenotypic transformation by targeting genes such as Rac1, TFPI, CYP1B1 and TWIST1 through cAMP signal pathway and AMPK signal pathway.
文章引用:冯越, 李新秋, 燕银芳, 赵朝, 纪玉强. tRF-His-GTG-037在血管平滑肌细胞表型转换中的表达及生物信息学分析[J]. 生物医学, 2023, 13(2): 190-198. https://doi.org/10.12677/HJBM.2023.132022

1. 前言

血管平滑肌细胞(vascular smooth muscle cell, VSMC)是血管壁的主要细胞成分之一,在维持血管张力、正常血压和血流分布过程中发挥重要作用。在生理条件下,VSMC表现出收缩表型,调节血管张力并维持组织血流 [1] ;当血管受损时,VSMC转化为合成表型,并获得增殖、迁移和合成大量细胞外基质成分的能力,进而导致血管壁增厚、管腔狭窄、血管顺应性降低和血管重塑。多项研究证实,VSMC的表型转化是其增殖和向血管内膜迁移的基础 [1] ,是高血压 [2] 、动脉粥样硬化 [3] [4] 、肺动脉高压 [5] 、动脉瘤 [6] 、移植后动脉疾病和血管成形术后再狭窄 [7] 等血管重塑疾病的细胞病理学基础。因此,阐明VSMC表型转化的调控机制将有助于预防和治疗血管重塑以及逆转增殖性血管疾病,然而VSMC表型转化的调控机制尚不清楚。

tRNA衍生的小RNAs (Transfer RNA tRNA-derived small RNAs, tsRNAs)是一类来源于成熟tRNA或tRNA前体的非编码单链RNAs,大致分为两大类:tiRNA (或者tRNA halves)和tRFs (tRNA衍生片段),参与应激反应、蛋白质翻译调控、核糖体生物合成、细胞增殖与凋亡、表观遗传信息的跨代传递等多种生理和病理过程 [8] ,在肿瘤、神经退行性疾病、代谢性疾病、感染性疾病、心血管疾病等病理过程中发挥重要作用 [9] ,有关tsRNAs与VSMC表型转换的研究刚刚起步。我们前期测序结果发现tRF-His-GTG-037在VSMC表型转化过程中表达水平增高,为了进一步研究tRF-His-GTG-037的生物学功能,本研究利用荧光定量PCR进一步验证tRF-His-GTG-037的VSMC表型转化过程中的表达水平,采用生物信息学方法分析tRF-His-GTG-037的靶基因和潜在的功能,初步探讨tRF-His-GTG-037在VSMC表型转化过程中的作用。

2. 材料与方法

2.1. 材料

大鼠胸主动脉平滑肌细胞A7r5由中国科学院细胞库/干细胞库提供;胎牛血清、DMEM、TRIzolTM试剂购自美国赛默飞公司;血小板衍生因子BB (platelet-derived growth factor BB, PDGF-BB)购自美国R&D公司;rtStarTM tRF&tiRNA预处理试剂盒、rtStar第一链cDNA合成试剂盒、荧光定量试剂盒购自美国Arraystar公司;引物购自上海生工公司。荧光定量PCR仪(7500)购自美国ABI公司,倒置显微镜(s100)购自日本尼康公司,冷冻高速离心机(5804R)购自德国Eppendorf公司。

2.2. 方法

2.2.1. 细胞培养

A7r5细胞在含有10% (v/v)胎牛血清的DMEM中培养,培养温度为37℃,CO2浓度为5%。VSMC以2 × 105个细胞/孔的密度接种在6孔板中培养12小时,饥饿24小时后用20 ng/ml PDGF-BB诱导24小时后收集细胞 [10] 。

2.2.2. 荧光定量PCR

用TRIzol™试剂从VSMC中提取总RNA,采用rtStar™ tRF&tiRNA预处理试剂盒对总RNA进行预处理,使用rtStar第一链cDNA合成试剂盒进行逆转录反应,严格按照试剂盒说明书进行操作。利用Primer 5.0设计合成tRF-His-GTG-037及内参U6 PCR引物,序列如下:U6:F:5’-GCTTCGGCAGCACATATACTAAAAT-3’;R:5’-CGCTTCACGAATTTGCGTGTCAT-3’tRF-His-GTG-037:F: 5’-GTCCGACGATCTAGACTGTGA-3’;R: 5’-CGTGTGCTCTTCCGATCTAG-3’。PCR反应体系如下:2 × Master Mix 5 µl、10 µM的PCR特异上下游引物各0.5 µl、模板2.0 µl加水至总体积为10 µl;反应条件:95℃,10 min;40个PCR循环(95℃,10秒;60℃,60秒)。通过2-ΔΔCt方法分析tRF-His-GTG-037的相对表达水平 [11] 。

2.2.3. 生物信息学分析

基于miRanda [12] 和TargetScan [13] 预测tRF-His-GTG-037的靶基因。对预测的靶基因的进行GO (Gene Ontology)功能分析和KEGG (Kyoto Encyclopedia of Genes and Genomes)通路分析,GO分析用于描述基因和基因产物属性(http://www.geneontology.org),GO分析包括生物过程(biological process, BP)、细胞组成(cell composition, CC)和分子功能(molecular function,MF)。Fisher检验用于计算每个GO的显著性水平,P值越小,GO越显著。通路分析是利用KEGG数据库(https://www.genome.jp/kegg/pathway.html)对tRF-His-GTG-037功能进行分析,P值(EASE得分、Fisher-P值或Hypergeometric-P值)表示与条件相关的路径的显著性,P值越小,通路越重要。

2.3. 统计学分析

所有数据均采用GraphPad Prism 8.0 软件进行处理,Fisher精确检验进行GO分析,EASE得分、Fisher-P值或Hypergeometric-P值用于检验相关通路的显著性。两组之间tRF-His-GTG-037表达水平的比较采用使用t检验,P < 0.05被认为具有统计学意义。

3. 结果

3.1. tRF-His-GTG-037在VSMC表型转换过程中的表达

为了进一步验证tRF-His-GTG-037在VSMC表型转换过程中的表达水平,采用荧光定量PCR检测其水平,结果发现与正常VSMC(1.18 ± 0.25)相比,tRF-His-GTG-037在PDGF-BB诱导VSMC中的表达水平(2.50 ± 0.40)明显升高,两组间差异具有统计学意义(t = 2.78, P = 0.008)。

3.2. tRF-His-GTG-037靶基因预测

利用miRanda [12] 和TargetScan [13] 预测tRF-His-GTG-037的靶基因,结果显示共有93个靶基因。根据查阅文献,其中49个基因与心血管疾病发病有关(见图1)。目前国内外研究发现Rac1 [14] [15] 、组织因子途径抑制物(tissue factor pathway inhibitor, TFPI) [16] [17] 、细胞色素P450家族成员1B1 (Recombinant Cytochrome P450 1B1, CYP1B1) [18] 、TWIST1 [19] 与VSMC的增殖、迁移有关。

Figure 1. Target genes of tRF-His-GTG-037 related to cardiovascular disease

图1. 与心血管疾病相关tRF-His-GTG-037靶基因

Table 1. GO analysis of target gene tRF-His-GTG-037 (top 10)

表1. tRF-His-GTG-037靶基因的GO分析(前10个)

3.3. tRF-His-GTG-037靶基因的GO分析

为了进一步探讨tRF-His-GTG-037的功能,对tRF-His-GTG-037预测的靶基因进行GO分析,结果发现生物过程(BP)富集项目429个,细胞成分(CC)富集项目50个,分子功能(MF)富集项目29个,这些项目具有统计学意义(P < 0.05)。表1列出了每个部分的前10个富集项目和每个富集项目的差异表达基因的数量,共有161个BP基因、377个CC基因和56个MF基因。BP、CC和MF的富集分数最高的项目分别是信号转导调控(GO:0009966, P = 0.000143)、细胞内结构(GO:0005622, P = 0.000035)和AMP结合(GO:0016208, P = 0.002418)。

3.4. tRF-His-GTG-037靶基因的通路分析

条形图显示了显著富集通路的前十个富集分数(-log10(Pvalue))值(见图2),差异基因分别富集于昼夜节律、脂肪细胞因子信号通路、非酒精性脂肪肝、长寿调节途径、肥厚型心肌病、DNA复制、cAMP信号通路、AMPK信号通路、蛋白酶体、酒精性肝病。

Figure 2. Pathway analysis of target genes of tRF-His-GTG-037 (top 10)

图2. tRF-His-GTG-037靶基因的通路分析(前10位)

4. 讨论

转运RNA (transfer RNA, tRNA)是细胞内主要的RNA分子之一,通常由73~93个核苷酸组成,tRNA具有保守的三叶草二级结构,在蛋白质合成过程中发挥关键作用。近年来研究表明在特定的细胞/组织中成熟tRNA或tRNA前体经过核酸酶(如Dicer、血管生成素)剪切,可以产生tsRNAs [8] 。越来越多的研究发现tsRNAs与心肌炎、心房颤动、动脉粥样硬化(atherosclerosis,AS)、心肌缺血、主动脉夹层(aortic dissection,AD)等心血管疾病密切相关 [20] 。Wang等人对急性期和恢复期暴发性心肌炎患儿血浆和配对健康志愿者进行小RNA测序,结果发现暴发性心肌炎患儿急性期血浆中tiRNA-Gln-TTG-001表达水平增高,其表达水平与高敏心肌肌钙蛋白和一些炎症标志物的值相关;体外模拟心肌炎细胞模型证实心肌细胞可以释放tiRNA-Gln-TTG-001;生物信息学分析发现tiRNA-Gln-TTG-001的潜在靶基因与肌管分化和代谢有关,推测Ras、MAPK、PI3K-Akt信号通路可能对暴发性心肌炎的发病和进展产生关键影响,凋亡和自噬,这些结果提示tiRNA-Gln-TTG-001可能在暴发性心肌炎发病中起重要作用 [21] 。利用高通量测序在房颤或不患有房颤的风湿性心脏病患者的三对心脏乳头肌中共鉴定出219个精确匹配的tsRNAs,其中77个tsRNAs发生了不同的变化 [22] 。利用动物模型发现心肌缺血期间166个tsRNAs上调,136个tsRNsA下调,而热量限制可以调节55个tsRNAs的表达 [23] 。在AS斑块中发现的315个tsRNAs中,131个和184个分别上调和下调,进一步研究提示tRFGly-GCC可能通过调节VSMC中的细胞粘附、增殖、迁移和表型转化参与AS发病 [24] 。对正常和球囊损伤的大鼠颈总动脉进行小RNA测序结果发现tRFs/tiRNAs的表达谱在两组间有显著差异,tRNAGlnCTG衍生片段(tRFGlnCTG)在受损颈总动脉中过度表达,且丰度较高,在体外实验中,合成的tRFGlnCTG模拟物可促进大鼠VSMC的增殖和迁移 [25] 。临床研究发现对照组相比,AD患者主动脉组织中共有41个tRFs/tiRNAs表达失调(12个上调,29个下调),细胞实验证实tRF-1:30-chrM.Met-CAT可促进VSMC的增殖、迁移和表型转换 [26] 。另外一项研究在人和小鼠AD模型中发现5'-tiRNA-Cys-GCA显著下调,体外实验发现5'-tiRNA Cys-GCA过度表达抑制了VSMCs的增殖和迁移,5'-tiRNA Cys-GCA通过STAT4信号通路是主动脉夹层病理过程的潜在调节因子 [27] 。利用高通量测序研究发现在增殖人主动脉平滑肌细胞中有1838个差异表达的tsRNA,其中887个表达增加,951个表达减少 [28] 。这些研究结果均提示tsRNAs在心血管疾病和VSMC增殖、迁移过程中发挥重要作用。tRF-His-GTG-037是我们前期利用RNA测序技术在VSMC表型转化过程中表达水平增高的一种tsRNA,荧光定量PCR的结果显示tRF-His-GTG-037在PDGF-BB诱导的VSMC表达水平明显升高,进一步验证了测序结果,提示tRF-His-GTG-037可能参与了VSMC表型转换过程。

研究证实tsRNAs通过结合mRNA发挥类似miRNA的作用(降解mRNA或使mRNA稳定),或者tsRNAs与蛋白相互作用,进而影响蛋白的作用 [8] [9] 。本研究利用生物信息学预测了93个tRF-His-GTG-037的靶基因,根据目前的研究报道其中49个基因与心血管疾病发病有关,其中Rac1、TFPI、CYP1B1、TWIST1基因与VSMC的增殖、迁移有关。Rac1属于小G蛋白Rho家族,研究发现Rac1与GTP结合后可以调节多种信号通路,进而调节肌动蛋白细胞骨架重组、细胞迁移 [14] 。Ashino等人 [15] 研究证实在培养的大鼠主动脉平滑肌细胞中,PDGF刺激可快速促进ATP7A与IQGAP1和Rac1的结合,促进VSMC迁移和血管重塑。TFPI是一种抗凝蛋白,可以通过调节组织因子的活性发挥抗凝作用,有研究表明TFPI可以抑制细胞凋亡抑制蛋白的表达进而诱导平滑肌细胞凋亡的作用 [16] 。有研究发现TFPI在TNF-α刺激的VSMC中具有抗增殖作用 [17] 。国外一项研究采用从雄性Cyp1b1+/+和Cyp1b1-/-小鼠主动脉分离的VSMC进行体外实验,结果发现在Cyp1b1-/-小鼠的VSMC和用4-羟基-2,2,6,6-四甲基哌啶-1-氧基(一种超氧化物歧化酶和过氧化氢酶模拟物)处理的Cyp1b1+/+小鼠的VSMCs中,血小板衍生生长因子-BB诱导的迁移和增殖以及H2O2产生减弱,提示Cyp1b1 在VSMC的增殖、迁移中发挥作用 [18] 。TWIST1是调控细胞分化重要的转录因子之一,体内和体外SMC表型转换过程中TWIST1蛋白水平显著升高,研究表明TWIST1上调参与了血管平滑肌细胞表型转换的生物学过程。TWIST1过表达促进VSMC的表型转换,而TWIST1的siRNA靶向阻止细胞转变 [19] 。提示tRF-His-GTG-037可能通过作用于Rac1、TFPI、CYP1B1、TWIST1靶基因发挥功能。进一步通过tRF-His-GTG-037靶基因通路分析发现了显著富集通路,目前实验研究证实其中的cAMP信号通路 [29] 、AMPK信号通路 [30] 在VSMC的增殖、迁移过程中发挥重要作用。综合以上研究提示tRF-His-GTG-037可能通过cAMP信号通路、AMPK信号通路发挥作用,但具体机制需要通过进一步的实验来证实。

综上所述,tRF-His-GTG-037在VSMC表型转换表达水平增高,可能作用于Rac1、TFPI、CYP1B1、TWIST1等靶基因通过cAMP信号通路、AMPK信号通路在VSMC表型转换过程中发挥作用,这将为进一步阐明VSMC表型转化的调控机制提供新的思路。

基金项目

教育部重点实验室项目(ZSK2019009);陕西省重点研发计划项目(2021SF-151;2022SF-548);西安市科技计划项目(21YXYJ0028);贵州省卫生健康委科学技术基金项目(gzwkj2021-202);仁怀市科技计划项目(仁科支撑[2021]08号)。

参考文献

参考文献

[1] Louis, S.F. and Zahradka, P. (2010) Vascular Smooth Muscle Cell Motility: From Migration to Invasion. Experimental & Clinical Cardiology, 15, e75-e85.
[2] Rossi, G.P., Cavallin, M., Belloni, A.S., et al. (2002) Aortic Smooth Muscle Cell Phenotypic Modulation and Fibrillar Collagen Deposition in Angiotensin II-Dependent Hypertension. Cardiovascular Research, 55, 178-189.
https://doi.org/10.1016/S0008-6363(02)00400-5
[3] Basatemur, G.L., Jorgensen, H.F., Clarke, M.C.H., et al. (2019) Vascular Smooth Muscle Cells in Atherosclerosis. Nature Reviews Cardiology, 16, 727-744.
https://doi.org/10.1038/s41569-019-0227-9
[4] Aherrahrou, R., Guo, L., Nagraj, V.P., et al. (2020) Genetic Regulation of Atherosclerosis-Relevant Phenotypes in Human Vascular Smooth Muscle Cells. Circulation Research, 127, 1552-1565.
https://doi.org/10.1161/CIRCRESAHA.120.317415
[5] Satoh, K., Satoh, T., Kikuchi, N., et al. (2014) Basigin Mediates Pulmonary Hypertension by Promoting Inflammation and Vascular Smooth Muscle Cell Proliferation. Circulation Research, 115, 738-750.
https://doi.org/10.1161/CIRCRESAHA.115.304563
[6] Clement, M., Chappell, J., Raffort, J., et al. (2019) Vascular Smooth Muscle Cell Plasticity and Autophagy in Dissecting Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 39, 1149-1159.
https://doi.org/10.1161/ATVBAHA.118.311727
[7] Bkaily, G., Abou Abdallah, N., Simon, Y., et al. (2021) Vascular Smooth Muscle Remodeling in Health and Disease. Canadian Journal of Physiology and Pharmacology, 99, 171-178.
https://doi.org/10.1139/cjpp-2020-0399
[8] Chen, Q., Zhang, X., Shi, J., et al. (2021) Origins and Evolving Functionalities of tRNA-Derived Small RNAs. Trends in Biochemical Sciences, 46, 790-804.
https://doi.org/10.1016/j.tibs.2021.05.001
[9] Chu, X., He, C., Sang, B., et al. (2022) Transfer RNAs-Derived Small RNAs and Their Application Potential in Multiple Diseases. Frontiers in Cell and Developmental Biology, 10, Article ID: 954431.
https://doi.org/10.3389/fcell.2022.954431
[10] Iso, Y., Usui, S., Toyoda, M., et al. (2018) Bone Marrow-Derived Mesenchymal Stem Cells Inhibit Vascular Smooth Muscle Cell Proliferation and Neointimal Hyperplasia after Arterial Injury in Rats. Biochemistry and Biophysics Reports, 16, 79-87.
https://doi.org/10.1016/j.bbrep.2018.10.001
[11] Livak, K.J. and Schmittgen, T.D. (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402-408.
https://doi.org/10.1006/meth.2001.1262
[12] Enright, A.J., John, B., Gaul, U., et al. (2003) MicroRNA Targets in Drosophila. Genome Biology, 5, R1.
https://doi.org/10.1186/gb-2003-5-1-r1
[13] Pasquinelli, A.E. (2012) MicroRNAs and Their Targets: Recognition, Regulation and an Emerging Reciprocal Relationship. Nature Reviews Genetics, 13, 271-282.
https://doi.org/10.1038/nrg3162
[14] Salloum, G., Jaafar, L. and El-Sibai, M. (2020) Rho A and Rac1: Antagonists Moving Forward. Tissue and Cell, 65, Article ID: 101364.
https://doi.org/10.1016/j.tice.2020.101364
[15] Ashino, T., Kohno, T., Sudhahar, V., et al. (2018) Copper Transporter ATP7A Interacts with IQGAP1, a Rac1 Binding Scaffolding Protein: Role in PDGF-Induced VSMC Migration and Vascular Remodeling. American Journal of Physiology-Cell Physiology, 315, C850-C862.
https://doi.org/10.1152/ajpcell.00230.2018
[16] 马丹丹, 李辉, 傅羽, 等. TFPI基因转染对血管平滑肌细胞中细胞凋亡抑制蛋白的调控[J]. 中国动脉硬化杂志, 2015, 23(8): 769-773.
[17] Fu, Y., Ma, D., Liu, Y., et al. (2015) Tissue Factor Pathway Inhibitor Gene Transfer Prevents Vascular Smooth Muscle Cell Proliferation by Interfering with the MCP-3/CCR2 Pathway. Laboratory Investigation, 95, 1246-1257.
https://doi.org/10.1038/labinvest.2015.106
[18] Mukherjee, K., Song, C.Y., Estes, A.M., et al. (2018) Cytochrome P450 1B1 Is Critical for Neointimal Growth in Wire-Injured Carotid Artery of Male Mice. Journal of the American Heart Association, 7, e010065.
https://doi.org/10.1161/JAHA.118.010065
[19] Zhang, J., Guo, J.R., Wu, X.L., et al. (2021) TWIST1 Induces Phenotypic Switching of Vascular Smooth Muscle Cells by Downregulating p68 and microRNA-143/145. FEBS Open Bio, 11, 932-943.
https://doi.org/10.1002/2211-5463.13092
[20] Wang, S., Luo, Z., Yuan, L., et al. (2022) tRNA-Derived Small RNAs: Novel Insights into the Pathogenesis and Treatment of Cardiovascular Diseases. Journal of Cardiovascular Translational Research.
https://doi.org/10.1007/s12265-022-10322-0
[21] Wang, J., Han, B., Yi, Y., et al. (2021) Expression Profiles and Functional Analysis of Plasma tRNA-Derived Small RNAs in Children with Fulminant Myocarditis. Epigenomics, 13, 1057-1075.
https://doi.org/10.2217/epi-2021-0109
[22] Yang, Z.Y., Li, P.F., Li, Z.Q., et al. (2021) Altered Expression of Transfer-RNA-Derived Small RNAs in Human with Rheumatic Heart Disease. Frontiers in Cardiovascular Medicine, 8, Article ID: 716716.
https://doi.org/10.3389/fcvm.2021.716716
[23] Liu, W., Liu, Y., Pan, Z., et al. (2020) Systematic Analysis of tRNA-Derived Small RNAs Discloses New Therapeutic Targets of Caloric Restriction in Myocardial Ischemic Rats. Frontiers in Cell and Developmental Biology, 8, Article ID: 568116.
https://doi.org/10.3389/fcell.2020.568116
[24] He, X., Yang, Y., Wang, Q., et al. (2021) Expression Profiles and Potential Roles of Transfer RNA-Derived Small RNAs in Atherosclerosis. Journal of Cellular and Molecular Medicine, 25, 7052-7065.
https://doi.org/10.1111/jcmm.16719
[25] Zhu, X.L., Li, T., Cao, Y., et al. (2020) tRNA-Derived Fragments tRFGlnCTG Induced by Arterial Injury Promote Vascular Smooth Muscle Cell Proliferation. Molecular Therapy Nucleic Acids, 23, 603-613.
https://doi.org/10.1016/j.omtn.2020.12.010
[26] Fu, X., He, X., Yang, Y., et al. (2021) Identification of Transfer RNA-Derived Fragments and Their Potential Roles in Aortic Dissection. Genomics, 113, 3039-3049.
https://doi.org/10.1016/j.ygeno.2021.06.039
[27] Zong, T., Yang, Y., Lin, X., et al. (2021) 5’-tiRNA-Cys-GCA Regulates VSMC Proliferation and Phenotypic Transition by Targeting STAT4 in Aortic Dissection. Molecular Therapy Nucleic Acids, 26, 295-306.
https://doi.org/10.1016/j.omtn.2021.07.013
[28] Zhao, J.Z., Li, Q.Y., Lin, J.J., et al. (2022) Integrated Analysis of tRNA-Derived Small RNAs in Proliferative Human Aortic Smooth Muscle Cells. Cellular & Molecular Biology Letters, 27, 47.
https://doi.org/10.1186/s11658-022-00346-4
[29] Smith, S.A., Newby, A.C. and Bond, M. (2019) Ending Restenosis: Inhibition of Vascular Smooth Muscle Cell Proliferation by cAMP. Cells, 8, 1447.
https://doi.org/10.3390/cells8111447
[30] Rodríguez, C., Muñoz, M., Contreras, C., et al. (2021) AMPK, Metabolism, and Vascular Function. FEBS Journal, 288, 3746-3771.
https://doi.org/10.1111/febs.15863