先天性心脏病相关肺动脉高压致病因素研究进展
Research Progress in Pathogenic Factors of Congenital Heart Disease Associated with Pulmonary Arterial Hypertension
DOI: 10.12677/ACM.2023.134787, PDF, 下载: 147  浏览: 269  科研立项经费支持
作者: 艾力夏提·阿地力:新疆医科大学第一附属医院冠心病一科,新疆 乌鲁木齐;陈 铀*:新疆医科大学第一附属医院心脏中心,新疆 乌鲁木齐
关键词: 先天性心脏病相关肺动脉高压致病因素研究进展Congenital Heart Disease Associated Pulmonary Arterial Hypertension Pathogenic Factors Recent Research Progress
摘要: 先天性心脏病相关肺动脉高压(Congenital heart disease-associated pulmonary arterial hyperten-sion, CHD-PAH)是心血管发育异常导致肺动脉压力增高的一种疾病,其致病因素的研究受到广泛关注。CHD-PAH的病因和发病机制尚未完全明确,随着一些新技术的发展,又发现了许多该病的致病因素,其致病因素可分为遗传因素和环境因素两方面。现对近年来CHD-PAH的致病因素即环境因素及遗传因素两方面的研究进展进行综述。
Abstract: Congenital Heart Disease-associated Pulmonary Arterial Hypertension (CHD-PAH) is a disease in which abnormal cardiovascular development leads to increased pulmonary artery pressure. Studies on the pathogenic factors of the disease have received wide attention. The etiology and pathogenesis of CHD-PAH are not fully understood. With the development of some new technologies, many pathogenic factors of the disease have been discovered. Its pathogenic factors can be divided into genetic factors and environmental factors. Recent research progress in the pathogenesis of CHD-PAH, namely environmental and genetic factors, is reviewed.
文章引用:艾力夏提·阿地力, 陈铀. 先天性心脏病相关肺动脉高压致病因素研究进展[J]. 临床医学进展, 2023, 13(4): 5569-5576. https://doi.org/10.12677/ACM.2023.134787

1. 引言

先天性心脏病相关肺动脉高压(Congenital heart disease-associated pulmonary arterial hypertension, CHD-PAH)是先天性心脏缺陷引起的肺血流增加和肺动脉高压疾病。CHD-PAH是一种终生的、进行性发展的疾病 [1] 。CHD-PAH的致病因素复杂,早期诊断困难 [2] 。先天性心脏病并发肺动脉高压时,患者的死亡率会显著增加 [3] ,西班牙的一项关于先心病10年间的死亡率研究中提出在64,831名先天性心脏病患者中,有2970 (4.58%)人死亡,死亡率最高的是CHD-PAH (占死亡人数的41.4%),其次是主动脉弓中断(20%),最低的是房间隔缺损(1%) [4] 。目前研究认为,遗传因素和环境因素是参与CHD-PAH患者血管重构的两大因素。随着基因检测技术的进步,许多新的致病基因被发现,现代流行病学研究和检验手段提供了环境致病因素方面的证据。

2. 遗传因素

关于CHD-PAH遗传因素的研究是近几年来比较热门的领域。遗传因素研究在儿童CHD-PAH患者的致病因素的研究中多见,唐氏综合征(Down’s syndrome)、SOX17 (Sex determining region Y-box 17)、TBX4 (T-Box transcription factor 4)、BMPR2 (Bone morphogenetic protein type II receptor)、FLNA (Filamin A)、ACVRL1 (Activin receptor-like kinase 1 gene)、ATP13A3等被发现是CHD-PAH的发病相关基因。

2.1. SOX17

SOX17是HMG-box转录因子家族的成员,是最近发现的CHD-PAH的发病的风险基因之一 [5] 。心脏的发育受基因的精准调控,其中SOX17基因参与心脏动脉血管内皮细胞的发育,该基因的变异会使心脏肺动脉失去正常的大小,畸形的肺动脉不能维持正常的心脏代偿,进一步导致CHD-PAH [6] 。Zhao等 [7] 通过对一个四代先心病家庭进行全外显子测序和桑格测序得出SOX17功能缺失变异与家族性CHD-PAH有关。Zhu等 [8] 对来自国家生物样本数据库的2572例肺动脉高压病例进行了外显子组测序,分析得出SOX17基因是CHD-PAH的风险基因,其中349例CHD-PAH病人中有10例与SOX17基因变异相关。此后,Zhu等对哥伦比亚大学的肺动脉高压中心和科罗拉多儿童医院中招募的共256名CHD-PAH患者行全外显子组测序得出SOX17基因罕见的有害变异导致的病例约占PAH-CHD病例的3.2%。Hiraide等 [9] 报告了4例SOX17基因突变的日本CHD-PAH患者,结果支持SOX17为CHD-PAH新的致病基因。

2.2. TBX4

TBX4是T-box转录基因家族的成员,在发育中的心房、胚胎肢芽、肺和气管的间充质、肢体发育和肺的生长分支中都有表达 [10] 。TBX4突变不仅会导致心脏发育畸形,组织学检查结果显示还会导致肺动脉血管重塑,肺远端发育异常,进一步发展成CHD-PAH [11] 。Welch等 [12] 提到TBX4变异导致的CHD-PAH在儿童病例中多见,TBX4基因变异在儿童特发性肺动脉高压病例中占7.7%,在CHD-PAH病例中占4.9%。Galambos等 [13] 对19名CHD-PAH儿童进行了肺组织病理活检和临床研究,发现TBX4基因突变是导致CHD-PAH的原因之一,这19名患儿出生时或在婴儿和儿童时期出现了严重的肺动脉高压,通常同时出现的还有先天性心脏缺陷等表现。Gonzalez等 [14] 从西班牙肺动脉高压患者的基因检测数据中,筛选出7个家庭8名TBX4基因的致病相关变异患者中,有2名是CHD-PAH患者。

2.3. BMPR2

BMPR2基因是肿瘤生长因子受体(TGF-β)家族的一员。BMPR2基因变异导致肺动脉高压的外显率在女性中占27%~50%,在男性中占14%~43%,这取决于基因内的变异位点。BMPR2基因变异造成肺动脉高压的同时可能会导致先天性心脏病 [15] 。据Morell等 [16] 研究指出BMPR2基因突变与右心室病理性重塑有关,BMPR2基因突变造成的microRNA功能缺陷可能在CHD-PAH发病机制中起重要作用。Bajolle 等 [17] 病案报告中一名有房室间隔缺损(Atrioventricular septal defect, AVSD)产前诊断的男性早产儿(35周,出生体重2.1 kg),行右心导管检查结果显示有严重的肺动脉高压,经专业团队基因检测确定患儿CHD-PAH是杂合子BMPR2基因突变造成的。Du等 [18] 的单细胞RNA测序表明BMPR2基因突变通过ID基因调控右心室功能,BMPR2信号通过IDs调节心脏分化,ID基因的表达缺失可引起BMPR2基因突变进而导致心肌细胞功能障碍,并进一步发展为CHD-PAH,作者为了验证ID基因在CHD-PAH中发挥的作用,培育了一批ID基因敲除小鼠,并采用彩色多普勒超声心动图观察,其中33.3%基因敲除小鼠在2个月大时出现了先天性心脏病,这其中50%的小鼠在6个月时有肺动脉高压。

2.4. FLNA基因

FLNA基因转录的FLNA是一种调节细胞形态和转移的蛋白质。Chen等 [19] 提出FLNA缺乏会导致心脏发育过程中更容易发生动脉导管未闭(Patent ductus arteriosus, PDA)和房间隔缺损(Atrial septal defect, ASD),患有FLNA缺陷的个体可能发展出不同程度的肺动脉高压,严重时需要使用药物治疗。Deng等 [20] 的综述中记录了19例2010年到2020年以来在武汉心脏中心发现的与FLNA基因变异相关的CHD-PAH患儿的病例数据。Burrage等 [21] 的案例分析中提到在波士顿儿童医院遗传诊断实验室(Boston, MA)进行的FLNA基因的桑格测序分析得出FLNA基因的缺失和重复与CHD-PAH相关。Mori等 [22] 提出FLNA基因突变的CHD-PAH患者行PDA封堵术和房、室间隔缺损修补术后,患者的肺动脉高压也得到了改善。

2.5. ACVRL1

ACVRL1是激活素受体激酶1基因,多见于常染色体显性遗传的心血管疾病中。ACVRL1突变会导致全肺静脉回流异常(TAPVR),TAPVR是一种罕见的CHD-PAH,Li等 [23] 对6例散发TAPVR患者和81例非TAPVR患者的血液标本进行全外显子组测序,并对所有检测到的基因变异都经过直接桑格测序分析确认,推断出ACVRL1基因突变可能与TAPVR发病机制有关。Wu等 [24] 对13例40岁以下的成人伴有肺动脉高压的二叶式主动脉瓣患者行全外显子组测序得出ACVRL1基因突变可能导致CHD-PAH。在Haarman等 [25] 的肺动脉高压致病基因的研究中提到CHD-PAH病例组(n = 19)中有1例是与ACVRL1基因突变有关的儿童患者。

2.6. ATP13A3

ATP13A3是一种的P型ATP酶基因,Gelinas等 [26] 使用外显子测序的方法在一例CHD-PAH男性儿童中发现了ATP13A3基因变异,该患儿出生时发现房间隔缺损,在9岁时被诊断为肺动脉高压,这是首次在儿科病例中发现ATP13A3基因变异可能与CHD-PAH有关。ATP13A3突变会抑制先天性心脏病患者的动脉血管内皮细胞的增殖,并加速细胞的凋亡,导致肺小动脉梗阻和闭塞,肺动脉高压逐渐加重。

2.7. 唐氏综合征

唐氏综合征(DS)也被叫做21-三体综合征,是婴幼儿常见的遗传性致畸疾病 [27] 。Zavaleta等 [28] 对墨西哥城127例唐氏综合征患着进行了体格检查、心电图和超声心动图检查,并对其行统计学分析得出与一般人群相比,DS患者罹患CHD-PAH风险较高,DS患者合并出现CHD-PAH是其他并发症的2.4倍。Masaki等 [29] 对188例21-三体综合征患者行肺组织活检报告进行多因素关联性分析得出21-三体综合征患者的AVSD发生率较高是导致PAH早期进展的可能原因之一。

3. 环境因素

环境因素导致CHD-PAH致病的原因较为复杂,而且往往不能排除混杂因素的干扰。胎儿在心脏形成的关键时期(第二周开始到第八周形成),环境中若存在的有害因素可能会导致胎儿CHD-PAH。例如孕妇铁缺乏、新生儿感染重症肺炎、孕妇患有风湿免疫病、孕期的不良生活方式、孕期滥用药物、空气污染、高海拔地区的影响、都可能是导致胎儿患有CHD-PAH的原因。

3.1. 铁缺乏

Yu [30] 等为探讨缺铁对CHD-PAH的影响,筛选了153名排除其他致病因素影响的患者分为缺铁组和对照组进行比较得出差异有统计学意义,尤其是女性患者有更加密切的相关性。孕妇铁摄入量与胎儿患CHD-PAH也有相关性,Yang [31] 等的研究对等待分娩的共474名孕妇进行了访问,收集了怀孕期间的饮食习惯和特点信息,随后采集了产前孕妇血和胎儿脐带血进行化验,分析得出孕妇铁缺乏可能会导致胎儿缺铁性低氧血症,胎儿心脏会发展为CHD-PAH。

3.2. 新生儿重症肺炎

呼吸困难是CHD-PAH患者常见症状,这可能是有重症肺炎引起的,Andrew [32] 等通过排除吸烟史、遗传因素、预先存在的肺部疾病和心衰等其他干扰因素,取患者的痰样本进行化学分析并与健康人进行对照研究发现肺部炎症与CHD-PAH发病相关。存在先天性心脏病的患者合并重症肺炎时会导致持续性的肺动脉高压,肺部病变导致的缺氧,会使先天性心脏病胎儿心脏出现右向左分流,进一步发展为CHD-PAH [33] 。

3.3. 风湿免疫病

风湿免疫病母亲的抗SS-A(Ro)/SS-B(La)抗体可经胎盘运输至胎儿体内,可使胎儿出现心脏损害的风险增加 [34] 。当母亲患有风湿免疫病时,胎儿结构性畸形的发生率明显高于一般人群,这些异常胎儿出生时同时患有不同程度的肺动脉高压 [35] 。Maltret [36] 的研究中提出法国新生儿狼疮综合征登记数据中有4例新生儿狼疮综合征患儿患有CHD-PAH,CHD-PAH可能为新生儿狼疮综合征的一种罕见表现。

3.4. 不良生活方式

孕妇吸烟、饮酒等不良生活方式都可能会造成胎儿CHD-PAH发病 [37] 。吸烟、饮酒等不良生活方式,可能对母子两代人造成伤害。母亲孕期吸烟可能会造成宫内胎儿暴露于有害化学气体,这种情况下的胎儿正常发育所需生物学途径会被这些气体阻断,胎儿心脏结构发育畸形,继而会引起肺动脉高压 [38] 。孕期饮酒可能会造成胎儿CHD-PAH,Chen [39] 的研究表明孕期饮酒可以影响Wnt/β-Catenin信号传导通路,该通路与心脏细胞的增殖、分化、成熟有关,该信号通路异常会使胎儿有患CHD-PAH的风险。Li [40] 等的孕期斑马鱼酒精暴露实验表明胎儿宫内酒精暴露会导致无法恢复的先天性心脏病、心脏肺动脉狭窄、肺动脉高压。

3.5. 孕期滥用药物

孕期滥用药物导致的CHD-PAH可能参与胎儿发育的多个环节,可能会造成遗传基因的变异,也可能会影响转录信号的表达。目前已知可造成CHD-PAH的药物有抗癫痫药物苯巴比妥、丙戊酸钠等 [41] ,抗精神病药物有帕罗西汀、氟西汀、利培酮、齐拉西酮、阿立哌唑、奥氮平、喹硫平等药物 [42] [43] 。

3.6. 空气污染

孕期接触空气污染可能会造成胎儿患CHD-PAH的风险,Padula [44] 的流行病学调查报告显示:PM2.5、PM10、NO2、CO、O3等大气污染会导致的心脏畸形有房间隔缺损、室间隔缺损、法洛四联症、艾森曼格综合征等。妊娠妇女暴露于SO2、NO2、NO、O3、CO、PM10中会明显增加胎儿患CHD-PAH的风险,男婴可能对空气污染更加敏感,患病风险更高 [45] [46] 。

3.7. 高海拔地区的影响

高海拔地区CHD-PAH有较高的发病率,祁生贵等 [47] 以中国高原地区藏族为研究对象,研究了不同海拔高度对CHD-PAH的影响,该研究得出高海拔地区对该地区藏族ASD患者合并PAH的影响有统计学意义(OR = 2.75, P < 0.05)。海拔大于2000的高原地区居民的先天性心脏病患者由于高原低氧环境的刺激其肺血管更容易发生重构,继而导致CHD-PAH [48] 。

4. 结论与展望

目前对CHD-PAH致病因素的研究主要集中于遗传和环境因素等方面。这些研究使用了基因测序的方法发现了一些基因的变异与CHD-PAH发病相关。孕妇自身的疾病、不良生活方式、孕期滥用药物、所处生活环境的空气污染状况,高海拔造成的低氧环境也和胎儿患CHD-PAH相关。CHD-PAH的死亡率远比单纯先天性心脏病高,积极探究CHD-PAH的致病因素十分有意义 [49] ,遗传基因检测,定期孕检能很好的帮助我们规避该疾病。明确致病因素有利于降低CHD-PAH的患病率,不仅能减轻病患家庭的经济负担,还可以有效改善患者生存质量。

基金项目

Cdc27基因变异在先天性心脏病家系中机制的研究(81860064)。

NOTES

*通讯作者。

参考文献

[1] Zhu, N., Welch, C.L., Wang, J., et al. (2018) Rare Variants in SOX17 Are Associated with Pulmonary Arterial Hyper-tension with Congenital Heart Disease. Genome Medicine, 10, Article No. 56.
https://doi.org/10.1186/s13073-018-0566-x
[2] Rosenzweig, E.B. and Krishnan, U. (2021) Congenital Heart Disease-Associated Pulmonary Hypertension. Clinics in Chest Medicine, 42, 9-18.
https://doi.org/10.1016/j.ccm.2020.11.005
[3] Brida, M. and Gatzoulis, M.A. (2018) Pulmonary Arterial Hyper-tension in Adult Congenital Heart Disease. Heart, 104, 1568-1574.
https://doi.org/10.1136/heartjnl-2017-312106
[4] Perez-Lescure, P.J., Mosquera, G.M., Latasa, Z.P., et al. (2018) Congenital Heart Disease Mortality in Spain during a 10 Year Period (2003-2012). Anales de Pediatría, 88, 273-279.
https://doi.org/10.1016/j.anpede.2017.06.003
[5] Zhu, N., Swietlik, E.M., Welch, C.L., et al. (2021) Rare Variant Analysis of 4241 Pulmonary Arterial Hypertension Cases from an International Consortium Implicates FBLN2, PDGFD, and Rare De Novo Variants in PAH. Genome Medicine, 13, Article No. 80.
https://doi.org/10.1186/s13073-021-00891-1
[6] Corada, M., Orsenigo, F., Morini, M.F., et al. (2013) Sox17 Is Indispensable for Acquisition and Maintenance of Arterial Identity. Nature Communications, 4, Article No. 2609.
https://doi.org/10.1038/ncomms3609
[7] Zhao, L., Jiang, W.F., Yang, C.X., et al. (2021) SOX17 Loss-of-Function Variation Underlying Familial Congenital Heart Disease. European Journal of Medical Genetics, 64, Article 104211.
https://doi.org/10.1016/j.ejmg.2021.104211
[8] Zhu, N., Pauciulo, M.W., Welch, C.L., et al. (2019) Novel Risk Genes and Mechanisms Implicated by Exome Sequencing of 2572 Individuals with Pulmonary Ar-terial Hypertension. Genome Medicine, 11, Article No. 69.
https://doi.org/10.1186/s13073-019-0685-z
[9] Hiraide, T., Kataoka, M., Suzuki, H., et al. (2018) SOX17 Muta-tions in Japanese Patients with Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 198, 1231-1233.
https://doi.org/10.1164/rccm.201804-0766LE
[10] Welch, C.L. and Chung, W.K. (2020) Genetics and Other Omics in Pediatric Pulmonary Arterial Hypertension. Chest, 157, 1287-1295.
https://doi.org/10.1016/j.chest.2020.01.013
[11] Arora, R., Metzger, R.J. and Papaioannou, V.E. (2012) Multiple Roles and Interactions of Tbx4 and Tbx5 in Development of the Respiratory System. PLOS Genetics, 8, e1002866.
https://doi.org/10.1371/journal.pgen.1002866
[12] Welch, C.L. and Chung, W.K. (2020) Genetics and Genomics of Pediatric Pulmonary Arterial Hypertension. Genes, 11, Article 1213.
https://doi.org/10.3390/genes11101213
[13] Galambos, C., Mullen, M.P., Shieh, J.T., et al. (2019) Phenotype Characterisation of TBX4 Mutation and Deletion Carriers with Neonatal and Paediatric Pulmonary Hypertension. The European Respiratory Journal, 54, Article 1801965.
https://doi.org/10.1183/13993003.01965-2018
[14] Hernandez-Gonzalez, I., Tenorio, J., Palomino-Doza, J., et al. (2020) Clinical Heterogeneity of Pulmonary Arterial Hypertension Associated with Variants in TBX4. PLOS ONE, 15, e0232216.
https://doi.org/10.1371/journal.pone.0232216
[15] Abou, H.O.K., Haidar, W., Nemer, G., et al. (2018) Clinical and Genetic Characteristics of Pulmonary Arterial Hypertension in Lebanon. BMC Medical Genetics, 19, Article No. 89.
https://doi.org/10.1186/s12881-018-0608-7
[16] Morrell, N.W., Aldred, M.A., Chung, W.K., et al. (2019) Genetics and Genomics of Pulmonary Arterial Hypertension. The European Respiratory Journal, 53, Article 1801899.
https://doi.org/10.1183/13993003.01899-2018
[17] Bajolle, F., Malekzadeh-Milani, S., Levy, M., et al. (2021) Multifactorial Origin of Pulmonary Hypertension in a Child with Congenital Heart Disease, Down Syndrome, and BMPR-2 Mutation. Pulmonary Circulation, 11, 1-3.
https://doi.org/10.1177/20458940211027433
[18] Du, M., Jiang, H., Liu, H., et al. (2021) Single-Cell RNA Se-quencing Reveals that BMPR2 Mutation Regulates Right Ventricular Function via ID Genes. European Respiratory Journal, 60, Article 2100327.
https://doi.org/10.1183/13993003.00327-2021
[19] Chen, M.H., Walsh, C.A. (1993) Flna Deficiency. Adam, M.P., Ardinger, H.H., Pagon, R.A., et al. GeneReviews ((R)). Seattle (WA).
[20] Deng, X., Li, S., Qiu, Q., et al. (2020) Where the Congenital Heart Disease Meets the Pulmonary Arterial Hypertension, FLNA Matters: A Case Report and Literature Review. BMC Pediatrics, 20, Article No. 504.
https://doi.org/10.1186/s12887-020-02393-2
[21] Burrage, L.C., Guillerman, R.P., Das, S., et al. (2017) Lung Transplantation for FLNA-Associated Progressive Lung Disease. The Journal of Pediatrics, 186, 118-123.
https://doi.org/10.1016/j.jpeds.2017.03.045
[22] Mori, S., Tanoue, K., Shimizu, H., et al. (2021) Lung Disease due to FLNA Mutation Improved after Shunt Closure for Congenital Heart Disease. Pediatric Pulmonology, 56, 1280-1282.
https://doi.org/10.1002/ppul.25269
[23] Li, J., Yang, S., Pu, Z., et al. (2017) Whole-Exome Sequencing Identifies SGCD and ACVRL1 Mutations Associated with Total Anomalous Pulmonary Venous Return (TAPVR) in Chinese Population. Oncotarget, 8, 27812-27819.
https://doi.org/10.18632/oncotarget.15434
[24] Wu, B., Li, J., Wang, Y., et al. (2021) Recurrent Germline Muta-tions as Genetic Markers for Aortic Root Dilatation in Bicuspid Aortic Valve Patients. Heart and Vessels, 36, 530-540.
https://doi.org/10.1007/s00380-020-01710-0
[25] Haarman, M.G., Kerstjens-Frederikse, W.S., Vissia-Kazemier, T.R., et al. (2020) The Genetic Epidemiology of Pediatric Pulmonary Arterial Hypertension. The Journal of Pediatrics, 225, 65-73.
https://doi.org/10.1016/j.jpeds.2020.05.051
[26] Gelinas, S.M., Benson, C.E., Khan, M.A., et al. (2020) Whole Exome Sequence Analysis Provides Novel Insights into the Genetic Framework of Childhood-Onset Pulmonary Arterial Hypertension. Genes, 11, Article 1328.
https://doi.org/10.3390/genes11111328
[27] Bush, D., Galambos, C. and Dunbar, I.D. (2021) Pulmonary Hyper-tension in Children with Down Syndrome. Pediatric Pulmonology, 56, 621-629.
https://doi.org/10.1002/ppul.24687
[28] Espinola-Zavaleta, N., Soto, M.E., Romero-Gonzalez, A., et al. (2015) Prevalence of Congenital Heart Disease and Pulmonary Hypertension in Down’s Syndrome: An Echocardiographic Study. Cardiovascular Ultrasound, 23, 72-77.
https://doi.org/10.4250/jcu.2015.23.2.72
[29] Masaki, N., Saiki, Y., Endo, M., et al. (2018) Is Trisomy 21 a Risk Factor for Rapid Progression of Pulmonary Arteriopathy?—Revisiting Histopathological Characteristics Using 282 Lung Biopsy Specimens. Circulation Journal, 82, 1682-1687.
https://doi.org/10.1253/circj.CJ-17-0754
[30] Yu, X., Zhang, Y., Luo, Q., et al. (2018) Iron Deficiency in Pulmonary Arterial Hypertension Associated with Congenital Heart Disease. Scandinavian Cardiovascular Journal, 52, 378-382.
https://doi.org/10.1080/14017431.2019.1567934
[31] Yang, J., Kang, Y., Cheng, Y., et al. (2020) Iron Intake and Iron Status during Pregnancy and Risk of Congenital Heart Defects: A Case-Control Study. International Journal of Cardiology, 301, 74-79.
https://doi.org/10.1016/j.ijcard.2019.11.115
[32] Low, A., George, S., Howard, L., et al. (2018) Lung Function, Inflammation, and Endothelin-1 in Congenital Heart Disease-Associated Pulmonary Arterial Hypertension. Journal of the American Heart Association, 7, e007249
https://doi.org/10.1161/JAHA.117.007249
[33] 郑杨, 杨爱君. 新生儿重症肺炎合并先天性心脏病、肺动脉高压临床分析[J]. 中国医刊, 2015, 50(11): 20-22.
[34] Fischer-Betz, R. and Specker, C. (2017) Pregnancy in Systemic Lupus Erythematosus and Antiphospholipid Syndrome. Best Practice & Research Clinical Rheumatology, 31, 397-414.
https://doi.org/10.1016/j.berh.2017.09.011
[35] Liu, J., Zhao, Y., Song, Y., et al. (2012) Pregnancy in Women with Systemic Lupus Erythematosus: A Retrospective Study of 111 Pregnancies in Chinese Women. The Journal of Maternal-Fetal & Neonatal Medicine, 25, 261-266.
https://doi.org/10.3109/14767058.2011.572310
[36] Maltret, A., Morel, N., Levy, M., et al. (2021) Pulmonary Hypertension Associated with Congenital Heart Block and Neonatal Lupus Syndrome: A Series of Four Cases. Lupus, 30, 307-314.
https://doi.org/10.1177/0961203320973073
[37] Lassi, Z.S., Imam, A.M., Dean, S.V., et al. (2014) Preconception Care: Caffeine, Smoking, Alcohol, Drugs and Other Environmental Chemical/Radiation Exposure. Reproductive Health, 11, Article No. S6.
https://doi.org/10.1186/1742-4755-11-S3-S6
[38] Baldacci, S., Gorini, F., Santoro, M., et al. (2018) Environmental and Individual Exposure and the Risk of Congenital Anomalies: A Review of Recent Epidemiological Evidence. Epidemiologia & Prevenzione, 42, 1-34.
[39] Chen, Z., Li, S., Guo, L., et al. (2021) Prenatal Alcohol Exposure Induced Congenital Heart Diseases: From Bench to Bedside. Birth Defects Research, 113, 521-534.
https://doi.org/10.1002/bdr2.1743
[40] Li, X., Gao, A., Wang, Y., et al. (2016) Alcohol Exposure Leads to Un-recoverable Cardiovascular Defects Along with Edema and Motor Function Changes in Developing Zebrafish Larvae. Biology Open, 5, 1128-1133.
https://doi.org/10.1242/bio.019497
[41] 常琦, 任明山, 吴元波. 抗癫痫药物的致畸作用[J]. 中国神经免疫学和神经病学杂志, 2016, 23(1): 55-58.
[42] De Vries, C., Gadzhanova, S., Sykes, M.J., et al. (2021) A Systematic Re-view and Meta-Analysis Considering the Risk for Congenital Heart Defects of Antidepressant Classes and Individual Antidepressants. Drug Safety, 44, 291-312.
https://doi.org/10.1007/s40264-020-01027-x
[43] Huybrechts, K.F., Hernandez-Diaz, S., Patorno, E., et al. (2016) Antipsychotic Use in Pregnancy and the Risk for Congenital Malformations. JAMA Psychiatry, 73, 938-946.
https://doi.org/10.1001/jamapsychiatry.2016.1520
[44] Padula, A.M., Yang, W., Schultz, K., et al. (2021) Gene-Environment Interactions between Air Pollution and Biotransformation Enzymes and Risk of Birth Defects. Birth Defects Research, 113, 676-686.
https://doi.org/10.1002/bdr2.1880
[45] Dadvand, P., Rankin, J., Rushton, S., et al. (2011) Ambient Air Pollution and Congenital Heart Disease: A Register-Based Study. Environmental Research, 111, 435-441.
https://doi.org/10.1016/j.envres.2011.01.022
[46] Liu, C.B., Hong, X.R., Shi, M., et al. (2017) Effects of Prenatal PM10 Exposure on Fetal Cardiovascular Malformations in Fuzhou, China: A Retrospective Case-Control Study. Environmental Health Perspectives, 125, Article 057001.
https://doi.org/10.1289/EHP289
[47] 祁生贵, 祁国荣, 陈秋红, 等. 藏族先天性心脏病合并肺动脉高压影响因素分析[J]. 中国公共卫生, 2012, 28(4): 466-468.
[48] 陈秋红, 路霖, 祁国荣, 等. 高原地区先天性心脏病并发肺动脉高压的调查分析[J]. 中华医学杂志, 2011, 91(44): 3120-3122.
[49] Goldstein, S.A. and Krasuski, R.A. (2022) Pulmonary Hypertension in Adults with Congenital Heart Disease. Cardiology Clinics, 40, 55-67.
https://doi.org/10.1016/j.ccl.2021.08.006