NAT  >> Vol. 2 No. 2 (May 2012)

    卟啉有机纳米聚集体的研究
    Research the Property of Organic Nano Gathered Based on Porphyrin

  • 全文下载: PDF(951KB) HTML   XML   PP.32-37   DOI: 10.12677/nat.2012.22007  
  • 下载量: 3,184  浏览量: 11,128   科研立项经费支持

作者:  

王贺:延边大学;
吴学:延边大学,长白山生物资源与功能分子教育部重点实验室

关键词:
卟啉H聚集J聚集自组装
Porphyrin; H-Aggregation; J-Aggregation; Self-Assemble

摘要:

本文设计合成了两个以卟啉为核心尾端分别连有亲水基团和疏水基团的枝状化合物,并对其在水中的聚集行为进行研究及表征。通过紫外可见(UV-vis)吸收光谱和扫描电子显微镜(SEM)的分析,发现在连有疏水基团的卟啉化合物1是H型聚集的棒状结构,而连有亲水基团的卟啉化合物2则是J型聚集的空心球结构(直径大约340 nm),与纳米粒度分析仪计算的结果基本一致。所以我们得出,通过改变卟啉外部的取代基可以调控其纳米聚集体的形貌。

We designed and synthesized dendritic porphyrin which brings hydrophilic groups and hydrophobic groups. Their different aggregation behaviors in aqueous solution were studied by using UV absorption spectroscopy, scanning electron microscopy (SEM) and Nanoparticle technology. Results indicated that porphyrin 1 bearing hydrophobic group can form rod-like structures introduced by H-aggregation. Porphyrin 2 containing hydrophilic moiety can form hollow spherical structures (diameter is about 340 nm) caused by J-aggregation. So we have come, by changing the the por- phyrins external substituents can be modulated by the morphology of nano-aggregates.

文章引用:
王贺, 吴学. 卟啉有机纳米聚集体的研究[J]. 纳米技术, 2012, 2(2): 32-37. http://dx.doi.org/10.12677/nat.2012.22007

参考文献

[1] X. Zhang, J. C. Shen. Self-assembled ultrathin films: From lay- ered nanoarchitectures to functional assemblies. Advanced Materials, 1999, 11(13): 1139.
[2] T. Nesemann. Positive nonlinear difference equations: Some re- sults and applications. Nonlinear Annals, 2001, 47(7): 4707- 4717.
[3] V. Balzani, A. Credi, F. M. Raymo and J. F. Stoddart. Artificial molecular machines. Angewandte Chemie International Edition, 2000, 39(19): 3348-3391.
[4] M. I. Skolink. Radar handbook. New York: McGraw-Hill, 1990: 234-238.
[5] C. M. Drain, A. Varotto and I. Radivojevic. Self-organized porphyrinic materials. Chemical Reviews, 2009, 109(5): 1630-1658.
[6] Z. Wang, Z. Li, C. J. Medforyh and J. A. Shelnutt. Self-assembly and self-metallization of porphyrin nanosheets. Journal of the American Chemical Society, 2007, 129(9): 2440-2441.
[7] M. Sauer. Single-molecule-sensitive fluorescent sensors based on photoinduced intramolecular charge transfer. Angewandte Chemie International Edition, 2003, 42: 1790-1793.
[8] I. Hamza. Intracellular trafficking of porphyrins. ACS Chemical Biology, 2006, 1(10): 627- 629.
[9] P. -C. Lo, C. M. H. Chan, J.-Y. Liu, W.-P. Fong and D. K. P. Ng. Highly photocytotoxic glucosylated silicon (iv) phthalocyanince. Effects of peripheral chloro substitution on the photophysical and photodynamic properties. Journal of Medical Chemistry, 2007, 50: 2100-2107.
[10] R. Vanyur, K. Heberger and J. Jakus. Prediction of Anti-HIV-1 activity of a series of tetrapyrrole molecules. Journal of Chemical Information and Computer Science, 2003, 43(1): 1829-1836.
[11] Y. Li, X. Li, H. Liu, S. Wang, H. Gan, J. Li, N. Wang, X. He and D. Zhu. Controlled self-assembly behavior of an amphiphilic bisporphyrin-bipyridinium-palladium complex: From multibilayer vesiclesto hollow capsules. Angewandte Chemie International Edition, 2006, 45(22): 3639-3643.
[12] X. Gong, T. Milic, C. Xu, J. D. Batteas and C. M. Drain. Prepa- ration and Characterization of porphyrin nanoparticles. Journal of American Chemical Society, 2002, 124(48): 14290-14291.
[13] N. C. Maiti, S. Mazumdar and N. Periasamy. J- and H- Aggre- gates of porphyrin-surfaetant complex: Time-resolved fluores- cence and other spectroscopic studies. Journal of Physical Chem- istry, 1998, 102: 1528-1538.
[14] 王丽丽. 两亲性金属卟啉界面和溶液有序组装结构的研究[D]. 山东大学, 2009.
[15] X. Gong, T. Milic, C. Xu, J. D. Batteas and C. M. Drain. Prepa- ration and characterization of porphyrin nanoparticles. Journal of American Chemical Society, 2002, 124: 14290-14291.
[16] M. Kasha, H. R. Rawls and M. A. EI-Bayoumi. The exciton model in molecular spectroscopy. Pure Applied Chemistry, 1965, 11(3-4): 371-392.