急性脑梗死溶栓治疗后脑微出血的影响因素分析
Analysis of Influencing Factors of Cerebral Microhemorrhage after Thrombolytic Ther-apy for Acute Cerebral Infarction
DOI: 10.12677/ACM.2023.134817, PDF, 下载: 124  浏览: 196 
作者: 吴烨珺*, 王颖颖, 王蓉蓉, 赵雄飞#:延安大学咸阳医院神经内科,陕西 咸阳;吴雅娜:空军军医大学附属第二医院神经外科监护室,陕西 西安
关键词: 急性脑梗死溶栓脑微出血独立危险因素Acute Cerebral Infarction Thrombolytic Therapy Cerebral Microbleeds Independent Risk Factors
摘要: 目的:分析急性脑梗死溶栓治疗后合并脑微出血的可能影响因素。方法:入选2018年1月至2022年3月于延安大学咸阳医院因急性脑梗死发病而入院患者165例,经过阿替普酶溶栓治疗后,根据患者影像学是否合并脑微出血,将患者分为无脑微出血组(73例)和脑微出血组(92例)。比较两组患者的年龄、性别、发病至溶栓治疗时间、是否合并高血压、是否合并糖尿病、是否合并心房颤动、入院NIHSS评分、改良Rankin评分、GlasgGow评分、出院NIHSS评分、同型半胱氨酸(Hcy)水平、脂蛋白相关磷脂酶A2 (Lp-PLA2)水平、总胆固醇(TG)水平、甘油三酯(TC)水平、高密度脂蛋白(HDL)水平、低密度脂蛋白(LDL)水平,探讨急性脑梗死溶栓治疗后患者合并脑微出血的可能影响因素。采用单因素及多因素Logistic回归分析影响急性脑梗死溶栓治疗患者发生脑微出血的可能因素,并制定相应的风险预测模型。结果:合并高血压(OR = 3.191, P = 0.002)、合并糖尿病(OR = 2.516, P = 0.025)、高Lp-PLA2水平(OR = 1.004, P = 0.039)是急性脑梗死溶栓治疗后发生脑微出血的独立危险因素。合并心房颤动(OR = 0.185, P = 0.029)、高LDL水平(OR = 0.630, P = 0.025)是急性脑梗死溶栓治疗后发生脑微出血的独立保护因素。根据OR值并制定风险预测模型,Lp-PLA2水平 ≥ 198.5 ng/mL的患者为急性脑梗死溶栓治疗后合并脑微出血的高风险人群,灵敏度为77.2%,特异度为61.6%。结论:在急性脑梗死溶栓治疗后,对既往有高血压史、糖尿病史及高Lp-PLA2水平者应密切关注,以预防脑微出血,改善患者预后。
Abstract: Objective: To analyze the possible influencing factors of cerebral microbleeds after thrombolytic therapy for acute cerebral infarction. Methods: A total of 165 patients admitted to the Xianyang Hospital of Yan’an University for acute cerebral infarction from January 2018 to March 2022 were enrolled. After alteplase thrombolytic therapy, the patients were divided into two groups: one is non-cerebral microbleeds group (73 cases) and the other is cerebral microbleeds group (92 cases), according to whether the patients had cerebral microbleeds on imaging tests. Age, sex, time from onset to thrombolytic therapy, hypertension, diabetes, atrial fibrillation, NIHSS score at admission, modified Rankin score, GlasgGow score, NIHSS score at discharge, homocysteine (Hcy) level, Lipo-protein-associated phospholipaseA2 (Lp-PLA2) level, total cholesterol (TG) level, triglyceride (TC) level, high density lipoprotein (HDL) level, low density lipoprotein (LDL) level were compared be-tween the two groups. To investigate the possible influencing factors of cerebral microbleeds in pa-tients after thrombolytic therapy for acute cerebral infarction, univariate and multivariate Logistic regression analysis were used to analyze the possible factors affecting the occurrence of cerebral microbleeds in patients after thrombolytic therapy for acute cerebral infarction, and the corre-sponding risk prediction model was developed. Results: Hypertension (OR = 3.191, P = 0.002), dia-betes (OR = 2.516, P = 0.025) and high Lp-PLA2 level (OR = 1.004, P = 0.039) were independent risk factors for cerebral microbleeds after thrombolytic therapy for acute cerebral infarction. Atrial fi-brillation (OR = 0.185, P = 0.029) and high LDL level (OR = 0.630, P = 0.025) were independent protective factors for cerebral microbleeds after thrombolytic therapy for acute cerebral infarction. According to the OR value and the risk prediction model, patients with hematalLp-PLA2 level ≥ 198.5 ng/mL were at high risk of cerebral microbleeds after thrombolysis for acute cerebral infarc-tion. The sensitivity and specificity were respectively at 77.2% and 61.6%. Conclusion: After thrombolysis therapy for acute cerebral infarction, special attention should be paid to patients with a history of hypertension, diabetes and high hematal Lp-PLA2 level to prevent cerebral microbleeds and improve the prognosis of patients.
文章引用:吴烨珺, 吴雅娜, 王颖颖, 王蓉蓉, 赵雄飞. 急性脑梗死溶栓治疗后脑微出血的影响因素分析[J]. 临床医学进展, 2023, 13(4): 5785-5793. https://doi.org/10.12677/ACM.2023.134817

1. 引言

回顾中国过去30年的脑卒中发病情况,患病率呈逐年上升趋势,由226.45/10万人上升至240.58/10万人,如今我国脑卒中患病人数已位居全球第一,共约有2876万脑卒中患者 [1] 。急性缺血性脑卒中超急性期治疗的关键在于尽早开通闭塞血管、恢复血流。而静脉溶栓具有简单、快速、有效的特点,其中重组组织型纤溶酶原激活剂(recombinant tissue plasminogen activator, rtPA)静脉溶栓仍是国内外指南一致推荐的超早期最有效的标准治疗,通过挽救缺血半暗带、保护缺血神经细胞功能,从而极大改善临床预后 [2] 。脑微出血(Cerebral microbleeds, CMBs)是指从脑小血管漏出血液形成含铁血黄素在血管周围沉积,在磁敏感加权成像上呈现出直径2~5 mm圆形或卵圆形(非线性)的病变,常出现于皮质、皮质下白质、基底节等部位 [3] 。脑微出血是急性脑梗死溶栓治疗后的常见并发症,溶栓治疗后合并脑微出血的患者进一步发展为症状性脑出血及神经功能损伤的几率较高 [4] 。目前,对于急性脑梗死溶栓治疗后合并脑微出血的可能影响因素及其作用机制存在许多不同意见与争议 [5] [6] [7] ,本研究旨在探讨急性脑梗死患者经过阿替普酶溶栓治疗后合并脑微出血的可能影响因素并建立风险模型对脑微出血的发生进行预测,有利于早期识别出暴露于脑微出血危险因素的患者,对其进行早期干预,从而降低进一步发生脑出血转化的风险。

2. 研究对象及方法

2.1. 研究对象

选取2018年1月至2022年3月于延安大学咸阳医院因急性脑梗死发病而入院经过阿替普酶溶栓治疗的患者165例。纳入标准:1) 入院时经头颅CT或MRI确诊为急性脑梗死;2) 符合溶栓治疗(阿替普酶)的治疗指证;3) 患者经入院治疗后28~30小时内有磁共振敏感加权成像(susceptibility weighted imaging, SWI)影像资料。排除标准:1) 既往有脑出血病史;2) 经治疗后复查CT出现脑出血的患者;3) 有损害血管类的疾病相关病史,如脑淀粉样病变、血管炎、梅毒等;4) 有脑外伤史,弥漫性轴索损伤。根据患者影像学是否合并脑微出血,将患者分为无脑微出血组(73例)和脑微出血组(92例)。

2.2. 研究资料采集

查询并记录165例纳入患者的临床基本资料,如姓名、年龄、性别、住院及出院日期、联系方式、住院号等。采集患者影像资料:患者入院MRI、急性脑梗死溶栓治疗后28~30小时内的SWI等图像及临床报告。本研究的所有患者均在1.5/3.0T西门子超导性磁共振成像系统机器完成核磁检查,参数如下:轴位SWI扫描参数如TR:76.50 ms,TE:47.98 ms,反转角30.00˚,FOV 24.0 cm × 24.0 cm,矩阵256 × 256;层厚20.0 mm。所有影像学报告均由2名影像科医师独立完成。CMB在SWI上的最大直径为5~10 mm,对于患者的CMBs位置及数量鉴定,使用微出血解剖评定量表(Microbleed Anatomic Rating Scale, MARS)和脑观察微出血量表(Brain Observer Microbleed Scale, BOMBS),并且排除钙、铁的沉积、流空效应、脑外伤导致的弥漫性轴索损伤、所造成的混淆。询问并记录既往病史如高血压、糖尿病、房颤等病史。采集患者入院NIHSS评分、入院改良Rankin评分、入院GlasgGow评分、出院NIHSS评分和实验室检查如:血总胆固醇、甘油三酯、高密度脂蛋白、低密度脂蛋白、同型半胱氨酸及脂蛋白磷脂酶A2水平。

2.3. 统计学方法

采用SPSS 26.0统计软件进行统计分析。正态分布的计量资料采用均数±标准差进行描述,组间比较采用t检验;计数资料采用百分比描述,组间比较采用卡方检验;对可能的影响因素进行单因素二元logistic回归分析,将有差异的影响因素进行多因素二元logistic回归分析,以上统计学结果P < 0.05,认为差异有统计学意义。运用ROC曲线来分析危险因素预测脑微出血,根据约登指数得到截断值、特异度、敏感度、ROC曲线下面积等。

3. 结果

3.1. 急性脑梗死溶栓治疗后未发生脑微出血组与发生脑微出血组临床资料对比

急性脑梗死患者经过溶栓治疗后,根据其有无新发脑微出血的情况,分为未发生脑微出血和发生脑微出血两个组。分别统计了两个组中患者的各项临床资料并进行了对比分析,结果见表1所示:两组患者的年龄、性别、发病至溶栓时间(h)、既往房颤发病率、入院NIHSS评分、改良Rankin评分、GlasgGow评分、出院NIHSS评分、同型半胱氨酸(Hcy)、总胆固醇(TG)、甘油三酯(TC)、高密度脂蛋白(HDL)皆无显著性差异;两组患者的既往高血压发病率和既往糖尿病发病率存在显著性差异(P < 0.05),发生脑微出血组合并高血压比率(76.1%)显著高于未发生脑微出血组(50.7%)、发生脑微出血组合并糖尿病比率(39.1%)显著高于未发生脑微出血组(19.2%);两组患者的生化检测指标脂蛋白相关磷脂酶A2 (Lp-PLA2)和低密度脂蛋白(LDL)水平存在显著性差异(P <0.05),发生脑微出血组的Lp-PLA2水平(263.54 ± 89.72 ng/mL)显著高于未发生脑微出血组(219.30 ± 105.03 ng/mL)、发生脑微出血组的LDL水平(2.32 ± 0.80 mmol/L)显著低于未发生脑微出血组(2.64 ± 0.94 mmol/L)。

Table 1. Comparison of clinical data between the non-cerebral microbleeds group and the cerebral microbleeds group after thrombolysis for acute cerebral infarction

表1. 急性脑梗死溶栓治疗后未发生脑微出血组与发生脑微出血组临床资料对比

表注:*P < 0.05与无脑微出血组相比较,HCY:同型半胱氨酸;Lp-PLA2:脂蛋白相关磷脂酶A2;TG:总胆固醇;TC:甘油三酯;HDL:高密度脂蛋白;LDL:低密度脂蛋白。

3.2. 急性脑梗死溶栓治疗后脑微出血影响因素的单因素Logistic回归分析

将急性脑梗死溶栓治疗后无脑微出血组和脑微出血组患者的年龄、性别、发病至溶栓治疗时间、是否合并高血压、是否合并糖尿病、是否合并心房颤动、入院NIHSS评分、改良Rankin评分、GlasgGow评分、出院NIHSS评分、同型半胱氨酸(Hcy)水平、脂蛋白相关磷脂酶A2 (Lp-PLA2)水平、总胆固醇(TG)水平、甘油三酯(TC)水平、高密度脂蛋白(HDL)水平、低密度脂蛋白(LDL)水平进行单因素Logistic回归分析,以P < 0.10作为筛选标准,结果见表2所示:合并高血压(OR = 3.096, P = 0.001)、合并糖尿病(OR = 2.709, P = 0.006)、高Lp-PLA2水平(OR = 1.006, P = 0.006)是急性脑梗死溶栓治疗后发生脑微出血的可能危险因素。合并心房颤动(OR = 0.274, P = 0.063)、高LDL水平(OR = 0.658, P = 0.025)是急性脑梗死溶栓治疗后发生脑微出血的可能保护因素。

Table 2. Univariate Logistic regression analysis of influencing factors of cerebral microbleeds after thrombolytic therapy for acute cerebral infarction

表2. 急性脑梗死溶栓治疗后脑微出血影响因素的单因素Logistic回归分析

表注:*P < 0.05与无脑微出血组相比较,HCY:同型半胱氨酸;Lp-PLA2:脂蛋白相关磷脂酶A2;TG:总胆固醇;TC:甘油三酯;HDL:高密度脂蛋白;LDL:低密度脂蛋白。

3.3. 急性脑梗死溶栓治疗后脑微出血影响因素的多因素Logistic回归分析

表2中单因素分析结果中以P < 0.10作为筛选标准具有统计学差异的指标变量纳入多因素Logistic 回归分析,结果见表3所示:合并高血压(OR = 3.191, P = 0.002)、合并糖尿病(OR = 2.516, P = 0.025)、高Lp-PLA2水平(OR = 1.004, P = 0.039)是急性脑梗死溶栓治疗后发生脑微出血的独立危险因素。合并心房颤动(OR = 0.185, P = 0.029)、高LDL水平(OR = 0.630, P = 0.025)是急性脑梗死溶栓治疗后发生脑微出血的独立保护因素。

Table 3. Multivariate Logistic regression analysis of influencing factors of cerebral microbleeds after thrombolytic therapy for acute cerebral infarction

表3. 急性脑梗死溶栓治疗后脑微出血影响因素的多因素Logistic回归分析

表注:*P < 0.05与无脑微出血组相比较,Lp-PLA2:脂蛋白相关磷脂酶A2;LDL:低密度脂蛋白。

3.4. 急性脑梗死溶栓治疗后脑微出血风险预测模型

根据Lp-PLA2的Logistic回归分析结果中的OR值制定急性脑梗死溶栓治疗后脑微出血风险预测模型,结果见图1表4所示:得到ROC曲线下面积为0.711 ± 0.082,P < 0.001,ROC曲线下面积 > 0.5,证明此模型具有一定的诊断价值。我们通过该曲线对预测模型的预测结果进行统计,选取优登指数最高的点作为划分风险高低的界值,Lp-PLA2水平 ≥ 198.5 ng/mL的患者为急性脑梗死溶栓治疗后合并脑微出血的高风险人群,灵敏度为77.2%,特异度为61.6%,约登指数为0.388。

Figure 1. ROC curve of Lp-PLA2

图1. Lp-PLA2的ROC曲线

Table 4. Correlation index of the ROC curve of Lp-PLA2

表4. Lp-PLA2的ROC曲线相关指数

4. 讨论

RtPA静脉溶栓治疗急性脑梗死的疗效目前已经得到临床上的普遍认可 [8] ,然而rtPA静脉溶栓治疗急性脑梗死的并发症却是不可忽视的,往往在很大程度上影响患者的预后和神经功能恢复 [9] 。在溶栓治疗的并发症中,脑微出血往往容易被忽视,因其早期缺乏确切的临床症状和体征,在脑微出血数量较少时,一般不引起明显的临床症状,又因其在CT表现上不敏感,只有在SWI上明显的表现为直径2~5 mm的圆形或卵圆形低信号 [10] 。与此同时,脑微出血却与认知功能下降、脑出血、缺血性脑卒中复发和死亡的风险增加有关 [11] [12] [13] 。因此明确急性脑梗死溶栓治疗后脑微出血的相关危险因素有助于患者的早期干预,改善总体预后情况。

本研究中的急性脑梗死溶栓治疗后脑微出血影响因素的多因素Logistic回归分析结果显示,OR值最大,显著性最高的危险因素是既往高血压史,这与一些已报到的研究结果相一致 [14] [15] 。其可能的作用机制是,颅内小血管在长期高血压的影响下发生玻璃样变,血管平滑肌逐渐被纤维组织所取代,在静脉溶栓的作用影响下,极易破裂出血并形成脑微出血。在大脑深部和幕下区域,供血动脉直接从大脑后动脉和大脑中动脉产生,其保护微循环的近端血管段比其他脑区短,该解剖特性使这些血管供应区域更容易受到血压突然变化的影响而受损,进而发生脑微出血 [16] 。与此同时,既往糖尿病史也是急性脑梗死溶栓治疗后脑微出血的主要独立危险因素,目前糖尿病引起脑微出血的具体作用机制尚不明确,可能是由于糖尿病长期高血糖水平可损伤脑血管内皮细胞,进而损伤脑微血管和大血管 [17] 。本研究中合并房颤与急性脑梗死溶栓后脑微出血的发生呈现负相关,这与一些已报到的研究结果并不一致 [18] ,这可能源于本研究中样本量与抽样方法的局限性所致,也可能与诱发急性脑梗死的不同作用机制有关。同时LDL与急性脑梗死溶栓后脑微出血的发生也呈负相关,这与既往研究中的结论想一致 [19] ,说明LDL是溶栓后脑微出血的保护性因素,有研究报道降脂治疗可改变血管壁内模结构并改变氧化应激平衡从而导致血管破裂出血,会增加脑出血及出血转化的风险 [20] 。

Lp-PLA2是磷脂酶超家族中的亚型之一,也被称为血小板活化因子乙酰水解酶,由血管内膜中的巨噬细胞、T细胞和肥大细胞所分泌。在动脉粥样硬化斑块中Lp-PLA2的表达呈明显上调,并且在易损斑块纤维帽的巨噬细胞中也呈现出强表达 [21] 。Lp-PLA2可水解氧化低密度脂蛋白中的氧化磷脂,生成脂类促炎物质,如溶血卵磷脂和氧化游离脂肪酸,进而产生多种效应包括内皮细胞死亡和内皮功能异常等,刺激多种粘附因子和细胞因子的产生,这些物质可通过趋化炎症细胞进一步增强效应生成更多促炎物质,从而导致动脉粥样硬化 [22] 。目前有关于Lp-PLA2的研究主要集中在其与动脉粥样硬化之间的关系上,而Lp-PLA2与急性脑梗死溶栓治疗后脑微出血的关系却未见相关报道,其作用机制也未知。本研究所建立的诊断模型显示,高血Lp-PLA2水平(≥198.5 ng/mL)往往预示着更高的溶栓后脑微出血风险,可作为未来临床上评估急性脑梗死溶栓治疗患者脑微出血风险的新指标,具有较好的灵敏度与特异度。

本研究的局限性:本研究为回顾性研究,相较于前瞻性研究,本研究在临床数据的收集过程中,数据的资料可能错在难以避免的偏倚和无法控制的混杂因素的影响。另外受限于样本量与样本抽样地点的单一性,为使研究结论得到进一步验证,未来进行大样本、多中心研究很有必要。

5. 结论

综上所述,既往高血压、糖尿病史、血Lp-PLA2水平 ≥ 198.5 ng/mL的患者为急性脑梗死溶栓治疗后合并脑微出血的高风险人群,应对这类患者进行早期影像学诊断并进行干预,从而降低进一步发生脑出血转化和脑梗死再发的风险。

声明

该研究已获得患者的知情同意。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Krishnamurthi, R.V., Feigin, V.L., Forouzanfar, M.H., Mensah, G.A., Connor, M., Bennett, D.A., Moran, A.E., Sacco, R.L., Anderson, L.M., Truelsen, T., O’Donnell, M., Venketasubramanian, N., Barker-Collo, S., Lawes, C.M., Wang, W., Shinohara, Y., Witt, E., Ezzati, M., Naghavi, M., Murray, C., on Behalf of the Global Burden of Diseases, Injuries, Risk Factors Study 2010 (GBD 2010) and GBD Stroke Experts Group (2013) Global and Regional Burden of First- Ever Ischaemic and Haemorrhagic Stroke during 1990-2010: Findings from the Global Burden of Disease Study 2010. The Lancet Global Health, 1, E259-E281.
https://doi.org/10.1016/S2214-109X(13)70089-5
[2] Powers, W.J., Rabinstein, A.A., Ackerson, T., Adeoye, O.M., Bambakidis, N.C., Becker, K., Biller, J., Brown, M., Demaerschalk, B.M., Hoh, B., Jauch, E.C., Kidwell, C.S., Leslie-Mazwi, T.M., Ovbiagele, B., Scott, P.A., Sheth, K.N., Southerland, A.M., Summers, D.V. and Tirschwell, D.L. (2019) Guidelines for the Early Management of Patients with Acute Ischem-ic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke, 50, e344-e418.
https://doi.org/10.1161/STR.0000000000000211
[3] Yates, P.A., Villemagne, V.L., Ellis, K.A., Desmond, P.M., Masters, C.L. and Rowe, C.C. (2014) Cerebral Microbleeds: A Review of Clinical, Genetic and Neuroimaging Associa-tions. Frontiers in Neurology, 4, Article 205.
https://doi.org/10.3389/fneur.2013.00205
[4] Campbell, B.C., Mitchell, P.J., Kleinig, T.J., Dewey, H.M., Chu-rilov, L., Yassi, N., Yan, B., Dowling, R.J., Parsons, M.W., Oxley, T.J., Wu, T.Y., Brooks, M., Simpson, M.A., Miteff, F., Levi, C.R., Krause, M., Harrington, T.J., Faulder, K.C., Steinfort, B.S., Priglinger, M., et al., for the EXTEND-IA Investigators (2015) Endovascular Therapy for Ischemic Stroke with Perfusion-Imaging Selection. The New England Journal of Medicine, 372, 1009-1018.
https://doi.org/10.1056/NEJMoa1414792
[5] Greenberg, S.M., Vernooij, M.W., Cordonnier, C., Viswanathan, A., Al-Shahi Salman, R., Warach, S., Launer, L.J., Van Buchem, M.A., Breteler, M.M., for the Microbleed Study Group (2009) Cerebral Microbleeds: A Guide to Detection and Interpretation. The Lancet Neurology, 8, 165-174.
https://doi.org/10.1016/S1474-4422(09)70013-4
[6] Miwa, K., Koga, M., Inoue, M., Yoshimura, S., Sasaki, M., Yakushiji, Y., Fukuda-Doi, M., Okada, Y., Nakase, T., Ihara, M., Nagakane, Y., Takizawa, S., Asakura, K., Aoki, J., Kimura, K., Yamamoto, H. and Toyoda, K. (2022) Cerebral Microbleeds Development after Stroke Thrombolysis: A Secondary Analysis of the THAWS Randomized Clinical Trial. International Journal of Stroke, 17, 628-636.
https://doi.org/10.1177/17474930211035023
[7] Jabłoński, B., Gójska-Grymajło, A., Ossowska, D., Szurowska, E., Wyszomirski, A., Rojek, B. and Karaszewski, B. (2022) New Remote Cerebral Microbleeds on T2*-Weighted Echo Planar MRI after Intravenous Thrombolysis for Acute Ischemic Stroke. Frontiers in Neurology, 12, Article 744701.
https://doi.org/10.3389/fneur.2021.744701
[8] Alhadid, K., Oliveira, L. and Etherton, M.R. (2023) Intravenous Thrombolytics in the Treatment of Acute Ischemic Stroke. Current Treatment Options in Cardiovascular Medicine, 25, 15-28.
https://doi.org/10.1007/s11936-022-00973-2
[9] Zhu, A., Rajendram, P., Tseng, E., Coutts, S.B. and Yu, A.Y.X. (2022) Alteplase or Tenecteplase for Thrombolysis in Ischemic Stroke: An Illustrated Review. Research and Practice in Thrombosis and Haemostasis, 6, e12795.
https://doi.org/10.1002/rth2.12795
[10] Puy, L., Pasi, M., Rodrigues, M., van Veluw, S.J., Tsivgoulis, G., Shoamanesh, A. and Cordonnier, C. (2021) Cerebral Microbleeds: From Depiction to Interpretation. Journal of Neurol-ogy, Neurosurgery and Psychiatry, 92, 598-607. (Advance Online Publication)
https://doi.org/10.1136/jnnp-2020-323951
[11] Akoudad, S., Wolters, F.J., Viswanathan, A., de Bruijn, R.F., van der Lugt, A., Hofman, A., Koudstaal, P.J., Ikram, M.A. and Vernooij, M.W. (2016) Association of Cerebral Microbleeds with Cognitive Decline and Dementia. JAMA Neurology, 73, 934-943.
https://doi.org/10.1001/jamaneurol.2016.1017
[12] Ding, J., Sigurðsson, S., Jónsson, P.V., Eiriksdottir, G., Meirelles, O., Kjartansson, O., Lopez, O.L., van Buchem, M.A., Gudnason, V. and Launer, L.J. (2017) Space and Loca-tion of Cerebral Microbleeds, Cognitive Decline and Dementia in the Community. Neurology, 88, 2089-2097.
https://doi.org/10.1212/WNL.0000000000003983
[13] Braemswig, T.B., Villringer, K., Turc, G., Erdur, H., Fie-bach, J.B., Audebert, H.J., Endres, M., Nolte, C.H. and Scheitz, J.F. (2019) Predictors of New Remote Cerebral Mi-crobleeds after IV Thrombolysis for Ischemic Stroke. Neurology, 92, e630-e638.
https://doi.org/10.1212/WNL.0000000000006915
[14] Lee, J.S., Ko, K., Oh, J.H., Park, J.H., Lee, H.K., Floriolli, D., Paganini-Hill, A. and Fisher, M. (2017) Cerebral Microbleeds, Hypertension and Intracerebral Hemorrhage in Cere-bral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy. Frontiers in Neurology, 8, Article 203.
https://doi.org/10.3389/fneur.2017.00203
[15] Wang, X.B., Dong, H., Qiu, Y.G., Lou, C.C., Huang, D.Y., Zhang, J., Chen, D.H., Feng, H. and Fang, X. (2022) Nomogram Based on Clinical and Brain Computed Tomog-raphy Characteristics for Predicting More than 5 Cerebral Microbleeds in the Hypertensive Population. Frontiers in Neurology, 13, Article 955378.
https://doi.org/10.3389/fneur.2022.955378
[16] Liu, Y., Dong, Y.H., Lyu, P.Y., Chen, W.H. and Li, R. (2018) Hypertension-Induced Cerebral Small Vessel Disease Leading to Cognitive Impairment. Chinese Medical Journal, 131, 615-619.
https://doi.org/10.4103/0366-6999.226069
[17] Coucha, M., Abdelsaid, M., Ward, R., Abdul, Y. and Ergul, A. (2018) Impact of Metabolic Diseases on Cerebral Circulation: Structural and Functional Consequences. Com-prehensive Physiology, 8, 773-799.
https://doi.org/10.1002/cphy.c170019
[18] Koh, Y.H., Lew, L.Z.W., Franke, K.B., Elliott, A.D., Lau, D.H., Thiyagarajah, A., Linz, D., Arstall, M., Tully, P.J., Baune, B.T., Munawar, D.A. and Mahajan, R. (2022) Predictive Role of Atrial Fibrillation in Cognitive Decline: A Systematic Review and Meta-Analysis of 2.8 Million Individuals. EP Eu-ropace, 24, 1229-1239.
https://doi.org/10.1093/europace/euac003
[19] Han, F., Zhai, F.F., Wang, Q., Zhou, L.X. and Zhu, Y.C. (2018) Prevalence and Risk Factors of Cerebral Small Vessel Disease in a Chinese Population-Based Sample. Journal of Stroke, 20, 239-246.
https://doi.org/10.5853/jos.2017.02110
[20] Karki, K., Knight, R.A., Han, Y., Yang, D., Zhang, J., Ledbetter, K.A., Chopp, M. and Seyfried, D.M. (2009) Simvastatin and Atorvastatin Improve Neurological Outcome af-ter Experimental Intracerebral Hemorrhage. Stroke, 40, 3384-3389.
https://doi.org/10.1161/STROKEAHA.108.544395
[21] Huang, F., Wang, K. and Shen, J. (2020) Lipopro-tein-Associated Phospholipase A2: The Story Continues. Medicinal Research Reviews, 40, 79-134.
https://doi.org/10.1002/med.21597
[22] Zhang, S., Huang, S., Hu, D., Jiang, F., Lv, Y. and Liu, G. (2022) Biolog-ical Properties and Clinical Significance of Lipoprotein-Associated Phospholipase A2 in Ischemic Stroke. Cardiovascular Therapeutics, 2022, Article ID: 3328574.
https://doi.org/10.1155/2022/3328574