一类具有对数非线性项的分数阶阻尼波方程的局部适定性
Local Well-Posedness for a Classof Fractional Damped Wave Equations with Logarithmic Nonlinearity
DOI: 10.12677/AAM.2023.124152, PDF, HTML, 下载: 187  浏览: 247 
作者: 林玲娜:广州大学数学与信息科学学院, 广东 广州
关键词: 阻尼波动方程分数阶Laplace算子对数非线性项局部适定性Damped Wave Equations Fractional Laplace Operator Logarithmic Nonlinearity Local Well-Posedness
摘要: 本文主要考虑具有对数非线性项的分数阶阻尼波动方程的初边值 问题,其中s ∈ (0, 1)。 算子(−∆)s为分数阶Laplace算子,近年来,该算子成为了物理学、 金融数 学、 流体动力学等学科领域中的研究热点。 本文在任意初始能量下,利用Galerkin逼近法和压缩 映射原理,证明该方程解的局部适定性。
Abstract: In this paper, we mainly deal with the initial-boundary value problem for the frac- tional damped wave equations , where s ∈ (0, 1). The operator (−∆)s is the fractional Laplace operator. In recent years, this operator has become a research hotspot in physics, financial mathematics, fluid dynamics and oth- er disciplines. At the arbitrary initial energy levels, the local well-posedness of weak solutions to above problem is proved by using Galerkin approximation method and contraction mapping principle under some certain conditions.
文章引用:林玲娜. 一类具有对数非线性项的分数阶阻尼波方程的局部适定性[J]. 应用数学进展, 2023, 12(4): 1474-1482. https://doi.org/10.12677/AAM.2023.124152

参考文献

[1] Bisci, G.M., Radulescu, V.D. and Servadei, R. (2016) Variational Methods for Nonlocal Frac- tional Problems. In: Encyclopedia of Mathematics and Its Applications, Vol. 162, Cambridge University Press, Cambridge.
[2] Bucur, C. and Valdinoci, E. (2016) Nonlocal Diffusion and Applications. In: Lecture Notes of the Unione Matematica Italiana, Vol. 20, Springer, Cham.
https://doi.org/10.1007/978-3-319-28739-3
[3] Dipierro, S., Medina, M. and Valdinoci, E. (2017) Fractional Elliptic Problems with Critical Growth in the Whole of Rn. In: Publications of the Scuola Normale Superiore, Vol. 15, Edizionidella Normale, Pisa.
[4] Barrow, J.D. and Parsons, P. (1995) Inflationary Models with Logarithmic Potentials. Physical Review D, 52, 5576-5587.
https://doi.org/10.1103/PhysRevD.52.5576
[5] Enqvist, K. and McDonald, J. (1998) Q-Balls and Baryogenesis in the MSSM. Physics Letters, 425, 309-321.
https://doi.org/10.1016/S0370-2693(98)00271-8
[6] Liu, W.J., Yu, J.Y. and Li, G. (2021) Global Existence, Exponential Decay and Blow-Up of Solutions for a Class of Fractional Pseudo-Parabolic Equations with Logarithmic Nonlinearity. Discrete & Continuous Dynamical Systems S, 14, 4337-4366.
https://doi.org/10.3934/dcdss.2021121
[7] Lian, W. and Xu, R.Z. (2019) Global Well-Posedness of Nonlinear Wave Equation with Weak and Strong Damping Terms and Logarithmic Source Term. Advances in Nonlinear Analysis, 9, 613-632.
https://doi.org/10.1515/anona-2020-0016
[8] Xu, R.Z., Lian, W., Kong, X.K. and Yang, Y.B. (2019) Fourth Order Wave Equation with Nonlinear Strain and Logarithmic Nonlinearity. Applied Numerical Mathematics, 141, 185-205.
https://doi.org/10.1016/j.apnum.2018.06.004
[9] Di Nezza, E., Palatucci, G. and Valdinoci, E. (2012) Hitchhiker’s Guide to the Fractional Sobolev Spaces. Bulletin des Sciences Math´ematiques, 136, 521-573.
https://doi.org/10.1016/j.bulsci.2011.12.004