X-连锁血小板减少症的诊断与治疗
Diagnosis and Treatment of X-Linked Thrombocytopenia
DOI: 10.12677/ACM.2023.134838, PDF, HTML, XML, 下载: 174  浏览: 276 
作者: 彭祥钰, 于 洁:重庆医科大学附属儿童医院血液肿瘤中心,重庆
关键词: X连锁血小板减少症WASp血小板减少X-Linked Thrombocytopenia WASp Thrombocytopenia
摘要: X连锁血小板减少症(X-linked thrombocytopenia, XLT)是WAS相关疾病中临床表型相对较轻的一种,一般仅表现为血小板减少和/或小血小板。WAS相关疾病是一种罕见的X连锁免疫缺陷病,这类疾病是由WAS基因突变引起的,WAS基因突变影响WAS蛋白(Wiskott-Aldrich syndrome protein, WASp)表达水平,WASp仅在造血细胞中表达并调节肌动蛋白细胞骨架重塑,从而调节各种细胞功能,包括细胞迁移、免疫突触组装和信号传导。对婴幼儿期起病的血小板计数减少伴小血小板的男性患儿应警惕XLT可能,WAS基因检测和WASp检测可明确诊断,早期的干细胞移植是经典型WAS患者的首选治疗方案,而XLT患者的治疗方案尚无统一意见。本综述旨在综合国内外对于XLT疾病的研究,来探讨XLT的诊断与治疗方案。
Abstract: X-linked thrombocytopenia is a relatively mild clinical phenotype of WAS-associated disorders, usually presenting only with thrombocytopenia and/or microplatelets, and is a rare X-linked im-munodeficiency disorder caused by mutations in the WAS gene that affect the expression level of WAS protein, WASp, which is expressed only in haematopoietic cells and regulates actin Cytoskele-tal remodelling, which regulates a variety of cellular functions including cell migration, immune synapse assembly and signalling. Early stem cell transplantation is the treatment of choice for pa-tients with classic WAS, while there is no consensus on the treatment of XLT patients. The aim of this review is to synthesize the national and international research on XLT disease to discuss the diagnosis and treatment options for XLT.
文章引用:彭祥钰, 于洁. X-连锁血小板减少症的诊断与治疗[J]. 临床医学进展, 2023, 13(4): 5931-5937. https://doi.org/10.12677/ACM.2023.134838

1. 引言

X-连锁血小板减少症(X-linked thrombocytopenia, XLT)是WAS相关疾病中临床表型相对较轻的一种,WAS相关疾病是一系列造血细胞疾病,主要是由WAS基因变异导致血小板和淋巴细胞功能缺陷引起,包括Wiskott-Aldrich综合征、X连锁血小板减少症和X连锁先天性中性粒细胞减少症(XLN)。WAS是一种X连锁罕见病,发病率约为1/100,000 [1] ,患儿几乎都是男性;其中约50%的患者为WAS表型,其余为XLT表型,WAS基因突变导致XLN的情况更为罕见,迄今仅报道了4个家族中不到12例患者 [2] [3] [4] [5] 。WAS基因突变所导致疾病的严重程度不一,重型患者(经典型WAS)表现为反复细菌和病毒感染、湿疹明显或严重、可合并自身免疫性疾病或恶性肿瘤;轻型患者仅表现为血小板减少、血小板体积变小,即XLT。经典型WAS若不治疗,通常会在儿童早期或青春期死亡;目前普遍认为异基因造血干细胞移植(HSCT)是治愈经典型WAS患儿的重要措施,移植后的总体生存率可达到90%以上。但对于XLT患者而言,尚无普遍认可的治疗方案,有研究显示XLT患儿的总体生存率接近正常人,XLT患儿接受HSCT治疗的风险和获益比还不明确。

2. 发病机制

WAS基因位于Xpll.22~Xpll.23,包括12个外显子,编码由502个氨基酸组成的WAS蛋白(Wiskott-Aldrich syndrome protein, WASp)。WASp在肌动蛋白相关蛋白Arp2/3介导下激活肌动蛋白聚合,关联信号传导通路与肌动蛋白细胞骨架重构 [6] 。WASp仅表达于造血细胞,是造血细胞中许多功能所必需的,它的缺失会导致多种细胞功能缺陷。如WASp缺失可影响免疫突触的形成 [7] ,突触形成异常导致T细胞与其他细胞的相互作用不足,T细胞的迁移和黏附能力受损。由于T细胞功能异常,B细胞稳态受到干扰,导致循环中成熟B细胞、脾边缘区前体细胞及边缘区B细胞的耗竭 [8] 。NK细胞的数量正常或增多,但由于细胞表面的免疫突触形成缺陷,缺乏WASP的NK细胞的细胞毒功能受损 [9] 。目前认为,在预防自身免疫和肿瘤免疫监视方面,恒定自然杀伤T (iNKT)细胞起重要作用,而WAS患者完全没有iNKT细胞,XLT患者的iNKT细胞减少 [10] 。Treg细胞对效应T细胞的抑制作用需细胞与细胞间直接接触,缺乏WASp的Treg细胞不能与效应T细胞形成突触,这可能是其功能下降的原因。缺乏WASp的髓系细胞的吞噬和趋化功能受损 [11] 。综上,多种免疫细胞谱系功能因WASp缺失而缺陷,最终导致免疫功能的整体失调,表现为异常炎症反应、自身免疫发生和恶性肿瘤的易感性。

缺乏WASp会导致特定的血小板缺陷,从而导致血小板破坏和出血倾向增加,但WASp在血小板发育和功能中的作用尚不清楚。有研究显示WAS/XLT患者骨髓中的巨核细胞数量正常或增加,在体外实验中表现出正常的血小板生成,然而体内研究证实其无法生成正常的血栓 [12] 。此外,研究发现血小板在外周破坏也是导致血小板减少症的原因。研究发现,与正常对照血小板相比,巨噬细胞的离体吞噬作用有所增加 [13] ;XLT患者在脾切除后几乎都能达到正常的血⼩板计数 [14] ;因此认为,WAS/XLT血小板的内在缺陷增强了脾脏和骨髓中网状内皮系统的吞噬作用 [15] [16] 。另一方面,在WAS/XLT患者中可检测到抗血小板抗体,并且常与严重的血小板减少症病例相关 [17] 。这些证据共同表明,针对大多数WAS/XLT患者,血小板减少是由多种机制共同介导的,还需要进一步研究阐明其发生机制。

3. 基因型与临床表型

目前已报道有超过400种WAS基因突变。最常见的是错义突变,其次是剪接位点突变、短片段缺失和无义突变,插入突变、复合突变和大片段缺失不太常见 [18] [19] 。目前已发现6个突变热点(热点的定义是在大于2.5%的WAS/XLT人群中出现),其中3个热点是编码区的点突变,另3个涉及剪接位点(c.559 + 5G > A; c.777 + 1G > N; c.777 + 1_4del) [20] 。

国外对WASp突变的大型家庭队列研究表明,WAS或XLT的临床表型与突变导致的WASp蛋白表达有关。研究显示,75%的XLT患者具有可检测到的WASp,而大多数经典型WAS患者的外周血单核细胞中WASp几乎缺乏 [21] 。据此,有研究认为可将WASp表达与否用来预测WAS相关疾病临床严重程度,允许表达WASp的WAS患者如错义突变患者以及部分剪接点突变患者,绝大多数呈现为较温和的XLT表型;不表达或只表达截断WASp的患者常呈经典型WAS表型 [18] [19] 。

从基因型和临床表现的关系看,特定的WAS致病变异并不普遍与XLT相关,存在特殊情况。如同一家族中受累男性的临床表型差异很大 [22] ;部分报道中患者的遗传性致病性突变发生良性变异逆转,临床症状得到改善 [23] ;此外,像其他单基因疾病一样,如遇到普遍存在的或罕见的病原体,WAS相关疾病的临床表型很可能被其他基因(如修饰特应性的基因)修饰。

4. 临床表现

在WAS相关疾病中,引入了一项评分根据临床表现帮助患者进行临床分类:<1分为iXLT患者;1或2分为XLT患者;3~4分为典型WAS患者;5分仅指发生自身免疫反应和/或恶性肿瘤的XLT或WAS患者。由于该病的临床表现会逐渐发展,在<2岁的男孩中表现通常不完整。因此,在婴儿期应用WAS评分预测疾病的严重程度是不准确的 [24] 。

XLT患者属于临床表现相对较轻的WAS亚型,表现为先天性血小板减少,有时仅为间歇性X连锁血小板减少症(intermittent X-linked thrombocytopenia, iXLT) [25] ,或存在轻度的湿疹、感染及免疫缺陷。XLT患者的病情严重程度显著轻于典型WAS,远期生存良好。但是,XLT患者生命过程中仍然可能发生高于健康人群的严重事件,包括危及生命的感染(尤其是脾切除后)、严重出血、自身免疫性疾病和肿瘤 [26] 。

5. 诊断

出现先天性或早发性血小板减少伴血小板体积减少的男性患儿都应考虑XLT的诊断,若检测出WAS基因致病性突变即可确诊。也可使用抗WASp抗体通过流式细胞仪筛查淋巴细胞的WASp [27] 表达,但该检测可能漏诊表达无功能或低功能突变WASp的WAS/XLT患者。综合这两种方法有助于估计疾病的严重程度和远期结局。

携带导致WASp缺失的WAS小婴儿,可能随年龄的增长才会逐渐出现预期的临床表型,故婴儿时期临床表型较轻的患儿,需长期随访以判断临床严重程度。此外,对于确诊病例的家族成员可进行携带者检查、遗传咨询和产前诊断,从而避免缺陷患儿出生。对于存在WAS/XLT患病风险的男性胎儿的产前诊断,可通过绒毛膜绒毛取样或培养的羊水细胞作为基因组DNA的来源进行DNA分析 [28] 。

XLT在临床上常被误诊为ITP [29] ,前者的血小板体积很小(有极少例外 [30] ),而后者的血小板体积较大,有助于鉴别。但自动血小板计数仪不会计数特别小的血小板,需要使用血涂片手动计数。对于初诊为ITP的患儿,经激素和或免疫球蛋白治疗后血小板减少反复发生,需要警惕XLT。

6. 治疗

6.1. 常规治疗或支持治疗

对于经典型WAS,常使用抗生素预防感染,如使用复方磺胺甲恶唑预防耶氏肺孢子菌感染,而对于XLT患者,抗生素预防性治疗对整体生存率无明显有利影响,Abert等人的研究将XLT患者是否接受抗生素预防性治疗分为两组,其中16人接受抗生素预防性治疗,116人未接受抗生素预防治疗,结果显示两组患者的无事件生存率差异无统计学意义(P = 0.70) [26] 。XLT患者若免疫球蛋白水平明显降低,需要静脉用免疫球蛋白(invenous immuneglobulin, IVIG)替代治疗。关于血小板输注治疗,除非血小板减少伴严重出血(颅内出血或消化道出血等),否则不需要预防性输注血小板使其数量维持在一定的范围内 [31] ;反复输注血小板可能导致抗HLA抗体的产生,导致紧急情况下的输血小板效果降低,并可能对未来HCT成功植入的机会产生负面影响。关于免疫接种,XLT/WAS患儿应避免使用活疫苗,其他灭活疫苗可以安全地应用,但可能不能产生具有保护水平的抗体。

6.2. 血小板生成素受体激动剂

血小板生成素受体激动剂(Thrombopoietin receptor agonist, TPO-RA)作为二线药物治疗ITP获得了更好的成效和优先的推荐。有研究应用TPO-RAs之一的艾曲泊帕治疗WAS和XLT患者的血小板减少,报道提示大多数患者的PLT计数有增加 [32] 。另有研究应用艾曲波帕预防等待移植的WAS患者的出血 [17] ,结果显示血小板计数提升的效果不如ITP患者。

6.3. 脾切除术

脾脏是血小板破坏的场所和器官,脾脏切除治疗是治疗难治复发ITP的有效措施。前期有临床研究应用脾切除术治疗WAS/XLT,手术后患者循环中血小板的数量增多,出血倾向减少 [33] 。但脾切除术伴随着致命败血症的风险 [26] ,WAS/XLT患者在脾切除术后需终生预防性使用抗生素,而且脾切除后如果需要进行HSCT,感染风险极大增加。因此一般不主张行脾切除手术,尤其是可能需要HSCT的患者。

6.4. 低剂量IL-2治疗

有研究证明,IL-2能诱导功能相关的WASp家族verprolin同源蛋白2表达,可以部分恢复NK细胞的细胞毒性 [9] [34] 。据此有部分研究人员认为可以将IL-2用以治疗WAS/XLT患者,一项I期临床试验评估了小剂量IL-2治疗WAS/XLT患者的效果,发现血小板计数轻度提升,T细胞、B细胞、NK细胞数量和Treg细胞百分比有增加的趋势 [35] 。

6.5. 造血干细胞移植

针对WAS患者,HCT是目前临床可用的唯一的根治性治疗方法。对于WAS患儿的最新临床研究显示,无论供体造血干细胞来源如何,WAS患儿HCT治疗后的总体生存率接近90%,其中MSD-HCT预后最佳 [36] [37] 。

但对于XLT患儿是否应积极进行HCT治疗,目前没有统一的结论,因为即使仅给予支持治疗,这类患者的远期结局也较好,预期寿命接近正常人群 [26] 。但在缺乏WASp的个体,尽管部分人在其整个生命周期中会表现出较温和的X连锁血小板减少症(XLT)表型,但仍可能会发展为经典型WAS,故在自身免疫和恶性肿瘤发展之前进行HCT是非常可取的,且移植时年龄与HCT后长期结果改善相关。故如果有HLA完全相合的同胞供者或相合的URD,同时需要仔细权衡该手术的急性风险及长期后果后也可选择HCT。

6.6. 基因治疗

基因治疗由于避免了移植后的排斥反应,无须进行配型,是目前在研究中的根治WAS的疗法 [38] 。首次采用γ-逆转录病毒载体基因治疗的9例患者,治疗后患者的造血干细胞(CD34+)、淋巴细胞、髓系细胞和血小板持续表达WASP,免疫缺陷、出血倾向等临床表现获得了部分或完全缓解,但由于致癌基因的激活,有7例在基因治疗后16~60个月发生白血病 [39] [40] 。目前最新的基因治疗采用WAS基因校正的自灭活慢病毒载体基因 [41] ,结果显示受试者的免疫功能均改善,血小板计数明显提升并能预防严重出血,但血小板计数未恢复正常,自身免疫和感染减少,但出现了关节炎、肾病综合征、血管炎和血小板自身抗体。大多数患者都能停用预防性抗生素和免疫球蛋白替代治疗,无治疗相关不良事件和克隆性扩增 [41] [42] [43] [44] 。结果表明,慢病毒基因治疗为WAS患者提供了持续的临床收益,对于缺乏合适的HSCT供体的WAS患者,基因治疗是一种安全有效的治疗方法。

综上,对于先天性或早发性血小板减少伴小血小板的男性患儿均需考虑XLT的诊断,根据基因检测和WASp可以确诊,在部分患者中可以通过WASp表达与否来预测患者的临床表型。XLT患者在接受一般治疗后,其预期寿命和普通人接近,但也有可能出现危机生命的并发症。因此,我们需要认识到影响这类患者预后和生活质量的因素,来为XLT患者选择安全有效的个体化疗法。

参考文献

[1] Stray-Pedersen, A., Abrahamsen, T.G. and Frøland, S.S. (2000) Primary Immunodeficiency Diseases in Norway. Jour-nal of Clinical Immunology, 20, 477-485.
https://doi.org/10.1023/A:1026416017763
[2] Devriendt, K., Kim, A., Mathijs, G., et al. (2001) Constitutively Activating Mutation in WASP Causes X-Linked Severe Congenital Neutropenia. Nature Genetics, 27, 313-317.
https://doi.org/10.1038/85886
[3] Ancliff, P.J., Blundell, M.P., Cory, G.O., et al. (2006) Two Novel Activating Mutations in the Wiskott-Aldrich Syndrome Protein Result in Congenital Neutropenia. Blood, 108, 2182-2189.
https://doi.org/10.1182/blood-2006-01-010249
[4] Beel, K., Cotter, M.M., Blatny, J., et al. (2009) A Large Kindred with X-Linked Neutropenia with an I294T Mutation of the Wiskott-Aldrich Syndrome Gene. British Journal of Haematology, 144, 120-126.
https://doi.org/10.1111/j.1365-2141.2008.07416.x
[5] Kobayashi, M., Yokoyama, K., Shimizu, E., et al. (2018) Phenotype-Based Gene Analysis Allowed Successful Diagnosis of X-Linked Neutropenia Associated with a Novel WASp Mutation. Annals of Hematology, 97, 367-369.
https://doi.org/10.1007/s00277-017-3134-3
[6] Blundell, M.P., Worth, A., Bouma, G. and Thrasher, A.J. (2010) The Wiskott-Aldrich Syndrome: The Actin Cytoskeleton and Immune Cell Function. Disease Markers, 29, 157-175.
https://doi.org/10.1155/2010/781523
[7] Malinova, D., Fritzsch, M., Nowosad, C.R., et al. (2016) WASp-Dependent Actin Cytoskeleton Stability at the Dendritic Cell Immunological Synapse is Required for Extensive, Functional T Cell Contacts. Journal of Leukocyte Biology, 99, 699-710.
https://doi.org/10.1189/jlb.2A0215-050RR
[8] Westerberg, L.S., de la Fuente, M.A., Wermeling, F., et al. (2008) WASP Confers Selective Advantage for Specific Hematopoietic Cell Populations and Serves a Unique Role in Marginal Zone B-Cell Homeostasis and Function. Blood, 112, 4139-4147.
https://doi.org/10.1182/blood-2008-02-140715
[9] Gismondi, A., Cifaldi, L., Mazza, C., et al. (2004) Impaired Natural and CD16-Mediated NK Cell Cytotoxicity in Patients with WAS and XLT: Ability of IL-2 to Correct NK Cell Functional Defect. Blood, 104, 436-443.
https://doi.org/10.1182/blood-2003-07-2621
[10] Locci, M., Draghici, E., Marangoni, F., et al. (2009) The Wis-kott-Aldrich Syndrome Protein is Required for iNKT Cell Maturation and Function. Journal of Experimental Medicine, 206, 735-742.
https://doi.org/10.1084/jem.20081773
[11] Lorenzi, R., Brickell, P.M., Katz, D.R., Kinnon, C. and Thrasher, A.J. (2000) Wiskott-Aldrich Syndrome Protein Is Necessary for Efficient IgG-Mediated Phagocytosis. Blood, 95, 2943-2946.
https://doi.org/10.1182/blood.V95.9.2943.009k17_2943_2946
[12] Ochs, H.D., Slichter, S.J., Harker, L.A., et al. (1980) The Wiskott-Aldrich Syndrome: Studies of Lymphocytes, Granulocytes, and Platelets. Blood, 55, 243-252.
https://doi.org/10.1182/blood.V55.2.243.243
[13] Prislovsky, A., Zeng, X., Sokolic, R.A., et al. (2013) Platelets from WAS Patients Show an Increased Susceptibility to ex Vivo Phagocytosis. Platelets, 24, 288-296.
https://doi.org/10.3109/09537104.2012.693991
[14] Marathe, B.M., Prislovsky, A., Astrakhan, A., et al. (2009) Antiplatelet Antibodies in WASP(−) Mice Correlate with Evidence of Increased in Vivo Platelet Consumption. Experi-mental Hematology, 37, 1353-1363.
https://doi.org/10.1016/j.exphem.2009.08.007
[15] Gröttum, K.A., Hovig, T., Holmsen, H., et al. (1969) Wis-kott-Aldrich Syndrome: Qualitative Platelet Defects and Short Platelet Survival. British Journal of Haematology, 17, 373-388.
https://doi.org/10.1111/j.1365-2141.1969.tb01383.x
[16] Baldini, M.G. (1972) Nature of the Platelet De-fect in the Wiskott-Aldrich Syndromee. Annals of the New York Academy of Sciences, 201, 437-444.
https://doi.org/10.1111/j.1749-6632.1972.tb16316.x
[17] Mahlaoui, N., Pellier, I., Mignot, C., et al. (2013) Char-acteristics and Outcome of Early-Onset, Severe Forms of Wiskott- Aldrich Syndrome. Blood, 121, 1510-1516.
https://doi.org/10.1182/blood-2012-08-448118
[18] Jin, Y., Mazza, C., Christie, J.R., et al. (2004) Mutations of the Wiskott-Aldrich Syndrome Protein (WASP): Hotspots, Effect on Transcription, and Translation and Pheno-type/Genotype Correlation. Blood, 104, 4010-4019.
https://doi.org/10.1182/blood-2003-05-1592
[19] Imai, K., Morio, T., Zhu, Y., et al. (2004) Clinical Course of Pa-tients with WASP Gene Mutations. Blood, 103, 456-464.
https://doi.org/10.1182/blood-2003-05-1480
[20] Ochs, H.D. and Thrasher, A.J. (2006) The Wiskott-Aldrich Syn-drome. Journal of Allergy and Clinical Immunology, 117, 725-738.
https://doi.org/10.1016/j.jaci.2006.02.005
[21] Chen, N., Zhang, Z.-Y., Liu, D.-W., et al. (2015) The Clinical Fea-tures of Autoimmunity in 53 Patients with Wiskott- Aldrich Syndrome in China: A Single-Center Study. European Journal of Pediatrics, 174, 1311-1318.
https://doi.org/10.1007/s00431-015-2527-3
[22] Moratto, D., Giliani, S., Bonfim, C., et al. (2011) Long-Term Outcome and Lineage-Specific Chimerism in 194 Patients with Wiskott-Aldrich Syndrome Treated by Hematopoietic Cell Transplantation in the Period 1980-2009: An International Collaborative Study. Blood, 118, 1675-1684.
https://doi.org/10.1182/blood-2010-11-319376
[23] Davis, B.R. and Candotti, F. (2009) Revertant Somatic Mosai-cism in the Wiskott-Aldrich Syndrome. Immunologic Research, 44, 127-131.
https://doi.org/10.1007/s12026-008-8091-4
[24] Albert, M.H., Notarangelo, L.D. and Ochs, H.D. (2011) Clinical Spectrum, Pathophysiology and Treatment of the Wiskott-Aldrich Syndrome. Current Opinion in Hematology, 18, 42-48.
https://doi.org/10.1097/MOH.0b013e32834114bc
[25] Medina, S.S., Siqueira, L.H., Colella, M.P., et al. (2017) Intermittent Low Platelet Counts Hampering Diagnosis of X-Linked Thrombocytopenia in Children: Report of Two Un-related Cases and a Novel Mutation in the Gene Coding for the Wiskott-Aldrich Syndrome Protein. BMC Pediatrics, 17, Article No. 151.
https://doi.org/10.1186/s12887-017-0897-6
[26] Albert, M.H., Bittner, T.C., Nonoyama, S., et al. (2010) X-Linked Thrombocytopenia (XLT) due to WAS Mutations: Clinical Characteristics, Long-Term Outcome, and Treatment Options. Blood, 115, 3231-3238.
https://doi.org/10.1182/blood-2009-09-239087
[27] Chiang, S.C.C., Vergamini, S.M., Husami, A., et al. (2018) Screening for Wiskott-Aldrich Syndrome by Flow Cytometry. Journal of Allergy and Clinical Immunology, 142, 333-335.
https://doi.org/10.1016/j.jaci.2018.04.017
[28] Giliani, S., Fiorini, M., Mella, P., et al. (1999) Prenatal Molecular Diagnosis of Wiskott-Aldrich Syndrome by Direct Mutation Analysis. Prenatal Diagnosis, 19, 36-40.
https://doi.org/10.1002/(SICI)1097-0223(199901)19:1<36::AID-PD458>3.0.CO;2-V
[29] Bryant, N. and Watts, R. (2011) Thrombocytopenic Syndromes Masquerading as Childhood Immune Thrombocytopenic Purpura. Clinical Pe-diatrics, 50, 225-230.
https://doi.org/10.1177/0009922810385676
[30] Fathi, M., Shahraki, H., Rahmani, E.S., et al. (2019) Whole Exome Sequencing of an X-Linked Thrombocytopenia Patient with Normal Sized Platelets. Avicenna Journal of Medical Biotechnology, 11, 253-258.
[31] Ochs, H.D. (2002) The Wiskott-Aldrich Syndrome. The Israel Medical Association Journal: IMAJ, 4, 379-384.
[32] Gabelli, M., Marzollo, A., Notarangelo, L.D., Basso, G. and Putti, M.C. (2017) Eltrombopag Use in a Patient with Wiskott-Aldrich Syndrome. Pediatric Blood & Cancer, 64, e26692.
https://doi.org/10.1002/pbc.26692
[33] Mullen, C.A., Anderson, K.D. and Blaese, R.M. (1993) Splenectomy and/or Bone Marrow Transplantation in the Management of the Wiskott-Aldrich Syndrome: Long-Term Follow-up of 62 Cases. Blood, 82, 2961-2966.
https://doi.org/10.1182/blood.V82.10.2961.2961
[34] Orange, J.S., Roy-Ghanta, S., Mace, E.M., et al. (2011) IL-2 Induces a WAVE2-Dependent Pathway for Actin Reorganization That Enables WASp-Independent Human NK Cell Function. The Journal of Clinical Investigation, 121, 1535-1548.
https://doi.org/10.1172/JCI44862
[35] Jyonouchi, S., Gwafila, B., Gwalani, L.A., et al. (2017) Phase I Trial of Low-Dose Interleukin 2 Therapy in Patients with Wis-kott-Aldrich Syndrome. Clinical Immunology, 179, 47-53.
https://doi.org/10.1016/j.clim.2017.02.001
[36] Shekhovtsova, Z., Bonfim, C., Ruggeri, A., et al. (2017) A Risk Factor Analysis of Outcomes after Unrelated Cord Blood Transplantation for Children with Wiskott-Aldrich Syndrome. Haematologica, 102, 1112-1119.
https://doi.org/10.3324/haematol.2016.158808
[37] Burroughs, L.M., Petrovic, A., Brazauskas, R., et al. (202) Excellent Outcomes Following Hematopoietic Cell Transplantation for Wiskott-Aldrich Syndrome: A PIDTC Report. Blood, 135, 2094-2105.
https://doi.org/10.1182/blood.2019002939
[38] Mallhi, K.K., Petrovic, A. and Ochs, H.D. (2021) Hematopoietic Stem Cell Therapy for Wiskott-Aldrich Syndrome: Improved Outcome and Quality of Life. Journal of Blood Medicine, 12, 435-447.
https://doi.org/10.2147/JBM.S232650
[39] Boztug, K., Schmidt, M., Schwarzer, A., et al. (2010) Stem-Cell Gene Therapy for the Wiskott-Aldrich Syndrome. New England Journal of Medicine, 363, 1918-1927.
https://doi.org/10.1056/NEJMoa1003548
[40] Braun, C.J., Boztug, K., Paruzynski, A., et al. (2014) Gene Therapy for Wiskott-Aldrich Syndrome—Long-Term Efficacy and Genotoxicity. Science Translational Medicine, 6, Article No. 227ra33.
[41] Abina, S.H.-B., Gaspar, H.B., Blondeau, J., et al. (2015) Outcomes Following Gene Therapy in Pa-tients with Severe Wiskott-Aldrich Syndrome. JAMA, 313, 1550-1563.
https://doi.org/10.1001/jama.2015.3253
[42] Castiello, M.C., Scaramuzza, S., Pala, F., et al. (2015) B-Cell Recon-stitution after Lentiviral Vector-Mediated Gene Therapy in Patients with Wiskott-Aldrich Syndrome. Journal of Allergy and Clinical Immunology, 136, 692-702.
https://doi.org/10.1016/j.jaci.2015.01.035
[43] Morris, E.C., Fox, T., Chakraverty, R., et al. (2017) Gene Therapy for Wiskott-Aldrich Syndrome in a Severely Affected Adult. Blood, 130, 1327-1335.
https://doi.org/10.1182/blood-2017-04-777136
[44] Magnani, A., Semeraro, M., Adam, F., et al. (2022) Long-Term Safety and Efficacy of Lentiviral Hematopoietic Stem/ Progenitor Cell Gene Therapy for Wiskott-Aldrich Syndrome. Nature Medicine, 28, 71-80.
https://doi.org/10.1038/s41591-021-01641-x