|
[1]
|
Mancianti, F., Nardoni, S., Corazza, M., D’Achille, P. and Ponticelli, C. (2003) Environmental Detection of Micro-sporum canis Arthrospores in the Households of Infected Cats and Dogs. Journal of Feline Medicine and Surgery, 5, 323-328. [Google Scholar] [CrossRef]
|
|
[2]
|
Gnat, S., Łagowski, D., Nowakiewicz, A. and Zięba, P. (2018) Tinea Corporis by Microsporum Canis in Mycological Laboratory Staff: Unexpected Results of Epide-miological Investigation. Mycoses, 61, 945-953. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Aneke, C.I., Otranto, D. and Cafarchia, C. (2018) Therapy and Antifungal Susceptibility Profile of Microsporum canis. Journal of Fungi, 4, Article No. 107. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Yang, Z., Chen, W., Wan, Z., Song, Y. and Li, R. (2021) Tinea Capitis by Microsporum canis in an Elderly Female with Extensive Dermatophyte Infection. Mycopathologia, 186, 299-305. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wang, R., Huang, C., Zhang, Y. and Li, R. (2021) Invasive Dermatophyte Infection: A Systematic Review. Mycoses, 64, 340-348. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Teo, T.S.P., Crawford, L.C., Pilch, W.T., et al. (2021) Mycetoma Caused by Microsporum canis in a Patient with Renal Transplant: A Case Report and Review of the Literature. Transplant Infectious Disease, 23, e13516. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Vaezi, A., Fakhim, H., Abtahian, Z., et al. (2018) Frequency and Geographic Distribution of CARD9 Mutations in Patients with Severe Fungal Infections. Frontiers in Microbiology, 9, Article 2434. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Vargas-Navia, N., Ayala Monroy, G.A., Franco Rúa, C., Malagón Caicedo, J.P. and Rojas Hernández, J.P. (2020) Tiña Capitis en niños [Tinea Capitis in Children]. Revista Chilena de Pe-diatria, 91, 773-783. [Google Scholar] [CrossRef]
|
|
[9]
|
Gupta, A.K., Friedlander, S.F. and Simkovich, A.J. (2022) Tinea Capitis: An Update. Pediatric Dermatology, 39, 167-172. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Rodríguez-Cerdeira, C., Martínez-Herrera, E., Szepietowski, J.C., et al. (2021) A Systematic Review of Worldwide Data on Tinea Capitis: Analysis of the Last 20 Years. Journal of the Euro-pean Academy of Dermatology and Venereology, 35, 844-883. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Doss, R.W., El-Rifaie, A.-A., Radi, N. and El-Sherif, A.Y. (2018) Antimicrobial Susceptibility of Tinea Capitis in Children from Egypt. Indian Journal of Dermatology, 63, 155-159.
|
|
[12]
|
Liang, G., Zheng, X., Song, G., et al. (2020) Adult Tinea Capitis in China: A Retrospective Analysis from 2000 to 2019. Mycoses, 63, 876-888. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Xia, X. (2022) Family Outbreak of Microsporum canis Infection. QJM: An International Journal of Medicine, 115, 679-680. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Brosh-Nissimov, T., Ben-Ami, R., Astman, N., et al. (2018) An Outbreak of Microsporum Canis Infection at a Military Base Associated with Stray Cat Exposure and Person-to-Person Transmission. Mycoses, 61, 472-476. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Watanabe, M., Tsuchihashi, H., Ogawa, T., et al. (2022) Microsporum ca-nis Infection in a Cat Breeder Family and an Investigation of Their Breeding Cats. Medical Mycology Journal, 63, 139-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Ramos, M.L.M., Coelho, R.A., Brito-Santos, F., et al. (2020) Comparative Analysis of Putative Virulence-Associated Factors of Microsporum canis Isolates from Human and Animal Patients. Mycopathologia, 185, 665-673. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhi, H., Shen, H., Zhong, Y., et al. (2021) Tinea Capitis in Chil-dren: A Single-Institution Retrospective Review from 2011 to 2019. Mycoses, 64, 550-554. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Moriello, K.A., Coyner, K., Paterson, S. and Mignon, B. (2017) Diagnosis and Treatment of Dermatophytosis in Dogs and Cats. Clinical Consensus Guidelines of the World Association for Vet-erinary Dermatology. Veterinary Dermatology, 28, 266-e68. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Dong, J., Liang, G., Zheng, H., et al. (2021) In Vitro Activity of Ravuconazole against Candida auris and Vaginal Candida Isolates. Mycoses, 64, 651-655. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Bueno, J.G., Martinez, C., Zapata, B., et al. (2010) In Vitro Activity of Fluconazole, Itraconazole, Voriconazole and Terbinafine against Fungi Causing Onychomycosis. Clinical and Experimental Dermatology, 35, 658-663. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ghannoum, M. (2015) Azole Resistance in Dermatophytes: Prevalence and Mechanism of Action. Journal of the American Podiatric Medical Association, 106, 79-86. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hsiao, Y.-H., Chen, C., Han, H.S. and Kano, R. (2018) The First Report of Terbinafine Resistance Microsporum canis from a Cat. Journal of Veterinary Medical Science, 80, 898-900. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Nyuykonge, B., Lim, W., van Amelsvoort, L., et al. (2022) Eumycetoma Causative Agents Are Inhibited in Vitro by Luliconazole, Lanoconazole and Ravuconazole. Mycoses, 65, 650-655. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Fernández-Torres, B., Carrillo-Muñoz, A., Ortoneda, M., et al. (2003) In-terlaboratory Evaluation of the Etest® for Antifungal Susceptibility Testing of Dermatophytes. Medical Mycology, 41, 125-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Aneke, C.I., Rhimi, W., Hubka, V., Otranto, D. and Otranto, C. (2021) Virulence and Antifungal Susceptibility of Microsporum canis Strains from Animals and Humans. Antibiotics, 10, Article No. 296. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Aneke, C.I., Rhimi, W., Otranto, D. and Cafarchia, C. (2020) Synergistic Effects of Efflux Pump Modulators on the Azole Antifungal Susceptibility of Microsporum canis. Myco-pathologia, 185, 279-288. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Bishnoi, A., Vinay, K. and Dogra, S. (2018) Emergence of Re-calcitrant Dermatophytosis in India. The Lancet Infectious Diseases, 18, 250-251. [Google Scholar] [CrossRef]
|
|
[28]
|
Felici, M., Tugnoli, B., Ghiselli, F., et al. (2020) In Vitro Anticoccidial Activity of Thymol, Carvacrol, and Saponins. Poultry Science, 99, 5350-5355. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yamada, T., Maeda, M., Alshahni, M.M., et al. (2017) Terbinafine Resistance of Trichophyton Clinical Isolates Caused by Specific Point Mutations in the Squalene Epoxidase Gene. Anti-microbial Agents and Chemotherapy, 61, e00115-17. [Google Scholar] [CrossRef]
|
|
[30]
|
Aneke, C.I., Rhimi, W., Otranto, D. amd Cafarchia, C. (2020) Com-parative Evaluation of E-Test and CLSI Methods for Itraconazole, Fluconazole and Ketoconazole Susceptibilities of Mi-crosporum canis Strains. Mycopathologia, 185, 495-502. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Thatai, P. and Sapra, B. (2016) Critical Review on Retrospective and Prospective Changes in Antifungal Susceptibility Testing for Dermatophytes. Mycoses, 59, 615-627. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Afshari, M.A., Shams-Ghahfarokhi, M. and Razzaghi-Abyaneh, M. (2016) Antifungal Susceptibility and Virulence Factors of Clinically Isolated Dermatophytes in Tehran, Iran. Iranian Journal of Microbiology, 8, 36-46.
|
|
[33]
|
Abastabar, M., Jedi, A., Guil-lot, J., et al. (2019) In Vitro Activities of 15 Antifungal Drugs against a Large Collection of Clinical Isolates of Micro-sporum canis. Mycoses, 62, 1069-1078. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Ansari, S., Hedayati, M.T., Zomorodian, K., et al. (2016) Molecular Characterization and in Vitro Antifungal Susceptibility of 316 Clinical Isolates of Dermatophytes in Iran. Mycopathologia, 181, 89-95. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Leung, A.K.C., Hon, K.L., Leong, K.F., Barankin, B. and Lam, J.M. (2020) Tinea Capitis: An Updated Review. Recent Patents on Inflammation & Allergy Drug Discovery, 14, 58-68. [Google Scholar] [CrossRef]
|
|
[36]
|
Badali, H., Mohammadi, R., Mashedi, O., de Hoog, G.S. and Meis, J.F. (2015) In Vitro Susceptibility Patterns of Clinically Important Trichophyton and Epidermophyton Species against Nine Antifungal Drugs. Mycoses, 58, 303-307. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Irimie, M., Tătaru, A., Oantă, A. and Moga, M. (2014) In Vitro Suscepti-bility of Dermatophytes Isolated from Patients with End-Stage Renal Disease: A Case-Control Study. Mycoses, 57, 129-134. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Mahajan, A., Kaur, L., Singh, G., Dhawan, R.K. and Singh, L. (2021) Multipotentiality of Luliconazole against Various Fungal Strains: Novel Topical Formulations and Patent Review. Recent Advances in Anti-Infective Drug Discovery, 16, 182-195. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Jo Siu, W.J., Tatsumi, Y., Senda, H., et al. (2013) Comparison of in Vitro Antifungal Activities of Efinaconazole and Currently Available Antifungal Agents against a Vari-ety of Pathogenic Fungi Associated with Onychomycosis. Antimicrobial Agents and Chemotherapy, 57, 1610-1616. [Google Scholar] [CrossRef]
|
|
[40]
|
Danielli, L.J., Lopes, W., Vainstein, M.H., Fuentefria, A.M. and Apel, M.A. (2017) Biofilm Formation by Microsporum canis. Clinical Microbiology and Infection, 23, 941-942. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Gupta, A.K., Daigle, D. and Carviel, J.L. (2016) The Role of Bio-films in Onychomycosis. Journal of the American Academy of Dermatology, 74, 1241-1246. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Borghi, E., Borgo, F. and Morace, G. (2016) Fungal Biofilms: Up-date on Resistance. In: Imbert, C., Ed., Fungal Biofilms and Related Infections. Advances in Experimental Medicine and Biology, Vol. 931, Springer, Cham, 37-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Brilhante, R.S.N., Correia, E.E.M., Guedes, G.M.M., et al. (2018) In Vitro Activity of Azole Derivatives and Griseofulvin against Planktonic and Biofilm Growth of Clinical Isolates of Der-matophytes. Mycoses, 61, 449-454. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Denning, D.W. (2022) Antifungal Drug Resistance: An Update. European Journal of Hospital Pharmacy, 29, 109-112. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Jacobs, S.E., Zagaliotis, P. and Walsh, T.J. (2021) Novel An-tifungal Agents in Clinical Trials. F1000Research, 10, Article No. 507. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Dovo, E.E., Zohoncon, T.M., Tovo, S.F., et al. (2022) First Detection of Mutated ERG11 Gene in Vulvovaginal Candida albicans Isolates at Ouagadougou/Burkina Faso. BMC In-fectious Diseases, 22, Article No. 678. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Gnat, S., Łagowski, D., Dyląg, M., Ptaszyńska, A. and Nowakiewicz, A. (2021) Modulation of ERG Gene Expression in Fluconazole-Resistant Human and Animal Isolates of Trichophyton verrucosum. Brazilian Journal of Microbiology, 52, 2439-2446. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Rodrigues, C.F., Gonçalves, B., Rodrigues, M.E., et al. (2017) The Effectiveness of Voriconazole in Therapy of Candida glabrata’s Biofilms Oral Infections and Its Influence on the Matrix Composition and Gene Expression. Mycopathologia, 182, 653-664. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Alizadeh, F., Khodavandi, A. and Zalakian, S. (2017) Quantitation of Ergosterol Content and Gene Expression Profile of ERG11 Gene in Fluconazole-Resistant Candida albicans. Current Medical Mycology, 3, 13-19.
|
|
[50]
|
Wang, M., Zhao, Y., Cao, L., et al. (2021) Transcriptome Sequencing Revealed the Inhibitory Mechanism of Ketoconazole on Clinical Microsporum canis. Journal of Veterinary Science, 22, e4. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Odds, F.C., Brown, A.J. and Gow, N.A. (2003) Antifungal Agents: Mechanisms of Action. Trends in Microbiology, 11, 272-279. [Google Scholar] [CrossRef]
|
|
[52]
|
Salehi, Z., Shams-Ghahfarokhi, M. and Razzaghi-Abyaneh, M. (2018) Antifungal Drug Susceptibility Profile of Clinically Important Dermatophytes and Determination of Point Mutations in Terbinafine-Resistant Isolates. European Journal of Clinical Microbiology & Infectious Diseases, 37, 1841-1846. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
El-Awady, R., Saleh, E., Hashim, A., et al. (2017) The Role of Eukaryotic and Prokaryotic ABC Transporter Family in Failure of Chemotherapy. Frontiers in Pharmacol-ogy, 7, Article 535. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Prasad, R., Shah, A.H. and Rawal, M.K. (2016) Antifungals: Mechanism of Action and Drug Resistance. In: Ramos, J., Sychrová, H. and Kschischo, M., Eds., Yeast Membrane Transport. Advances in Experimental Medicine and Biology, Vol. 892, Springer, Cham, 327-349. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Perlin, D.S., Shor, E. and Zhao, Y. (2015) Update on Anti-fungal Drug Resistance. Current Clinical Microbiology Reports, 2, 84-95. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Bhati, R., Sreedharan, S.M., Rizvi, A., Khan, M.S. and Singh, R. (2022) An Insight into Efflux-Mediated Arsenic Resistance and Biotransformation Potential of Enterobacter Cloacae RSC3 from Arsenic Polluted Area. Indian Journal of Microbiology, 62, 456-467. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Iatta, R., Puttilli, M.R., Immediato, D., Otranto, D. and Cafarchia, C. (2017) The Role of Drug Efflux Pumps in Malassezia pachydermatis and Malassezia furfur Defence against Azoles. Mycoses, 60, 178-182. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Martins, M.P., Franceschini, A.C.C., Jacob, T.R., Rossi, A. and Mar-tinez-Rossi, N.M. (2016) Compensatory Expression of Multidrug-Resistance Genes Encoding ABC Transporters in Dermatophytes. Journal of Medical Microbiology, 65, 605-610. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Kano, R., Hsiao, Y.-H., Han, H.S., et al. (2018) Resistance Mechanism in a Terbinafine-Resistant Strain of Microsporum canis. Mycopathologia, 183, 623-627. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Bischofsberger, M., Winkelmann, F., Rabes, A., Reisinger, E.C. and Sombetzki, M. (2020) Pathogen-Host Interaction Mediated by Vesicle-Based Secre-tion in Schistosomes. Protoplasma, 257, 1277-1287. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Kano, R., Okabayashi, K., Nakamura, Y., Watanabe, S. and Ha-segawa, A. (2001) Expression of Ubiquitin Gene in Microsporum canis and Trichophyton mentagrophytes Cultured with Fluconazole. Antimicrobial Agents and Chemotherapy, 45, 2559-2562. [Google Scholar] [CrossRef]
|
|
[62]
|
Amin, M.E., Azab, M.M., Hanora, A.M., et al. (2017) Antifungal Activity of Silver Nanoparticles on Fluconazole Resistant Dermatophytes Identified by (GACA)4 and Isolated from Primary School Children Suffering from Tinea Capitis in Ismailia-Egypt. Cellular and Molecular Biology, 63, 63-67. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Robbins, N., Caplan, T. and Cowen, L.E. (2017) Molecu-lar Evolution of Antifungal Drug Resistance. Annual Review of Microbiology, 71, 753-775.
|
|
[64]
|
Packeu, A., Stubbe, D., Roesems, S., et al. (2020) Lineages within the Trichophyton rubrum Complex. Mycopathologia, 185, 123-136. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Persinoti, G.F., de Aguiar Peres, N.T., Jacob, T.R., et al. (2014) RNA-Sequencing Analysis of Trichophyton rubrumtranscriptome in Response to Sublethal Doses of Acriflavine. BMC Genomics, 15, Article No. S1. [Google Scholar] [CrossRef]
|
|
[66]
|
Mendes, N.S., Bitencourt, T.A., Sanches, P.R., et al. (2018) Transcriptome-Wide Survey of Gene Expression Changes and Alternative Splicing in Trichophyton rubrum in Response to Undecanoic Acid. Scientific Reports, 8, Article No. 2520. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Pérez-Laguna, V., García-Malinis, A.J., Aspiroz, C., Rezusta, A. and Rezusta, Y. (2018) Antimicrobial Effects of Photodynamic Therapy. Italian Journal of Dermatology and Venereolo-gy, 153, 833-846.
|
|
[68]
|
Shen, J.J., Arendrup, M.C., Jemec, G.B.E. and Saunte, D.M.L. (2021) Photodynamic Therapy: A Treatment Option for Terbinafine Resistant Trichophyton Species. Photodiagnosis and Photodynamic Therapy, 33, Article ID: 102169. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Gnat, S., Łagowski, D., Dyląg, M., Zielinski, J. and Nowakie-wicz, A. (2021) In Vitro Evaluation of Photodynamic Activity of Methylene Blue against Trichophyton verrucosum Az-ole-Susceptible and -Resistant Strains. Journal of Biophotonics, 14, e202100150. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Scalas D., Mandras N., Roana J., et al. (2018) Use of Pinus sylvestris L. (Pinaceae), Origanum vulgare L. (Lamiaceae), and Thymus vulgaris L. (Lamiaceae) Essential Oils and Their Main Components to Enhance Itraconazole Activity against Azole Susceptible/not-Susceptible Cryptococcus neoformans Strains. BMC Complementary and Alternative Medicine, 18, Article No. 143. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
AlMatar, M., Albarri, O., Makky, E.A. and Köksal, F. (2021) Ef-flux Pump Inhibitors: New Updates. Pharmacological Reports, 73, 1-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Sahni, K., Singh, S. and Dogra, S. (2018) Newer Topical Treat-ments in Skin and Nail Dermatophyte Infections. Indian Dermatology Online Journal, 9, 149-158. [Google Scholar] [CrossRef]
|
|
[73]
|
Zareshahrabadi, Z., Totonchi, A., Rezaei-Matehkolaei, A., et al. (2021) Molecular Identification and Antifungal Susceptibility among Clinical Isolates of Dermatophytes in Shiraz, Iran (2017-2019). Mycoses, 64, 385-393. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Altinbaş, R., Özakkaş, F., Bariş, A., Turan, D. and Şen, S. (2018) In Vitro Susceptibility of Seven Antifungal Agents against Dermatophytes Isolated in İstanbul. Turkish Journal of Medical Sci-ences, 48, 615-619. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Jachiet, M., Lanternier, F., Rybojad, M., et al. (2015) Posaconazole Treatment of Extensive Skin and Nail Dermatophytosis Due to Autosomal Recessive Deficiency of CARD9. JAMA Dermatology, 151, 192-194. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Joaquim, A.R., Pippi, B., de Cesare, M.A., et al. (2019) Rapid Tools to Gain Insights into the Interaction Dynamics of New 8-Hydroxyquinolines with Few Fungal Lines. Chemical Biology & Drug Design, 93, 1186-1196. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
da Silva, N.M., Gentz, C.B., Reginatto, P., et al. (2021) 8-Hydroxyquinoline 1,2,3-Triazole Derivatives with Promising and Selective Antifungal Activity. Medical Mycology, 59, 431-440. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Ouf, S.A., Gomha, S.M., Eweis, M., et al. (2020) Antider-matophytic Activity of Some Newly Synthesized Arylhydrazonothiazoles Conjugated with Monoclonal Antibody. Scien-tific Reports, 10, Article No. 20863. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Tunsagool, P., Ploypetch, S., Jaresitthikunchai, J., et al. (2021) Efficacy of Cyclic Lipopeptides Obtained from Bacillus subtilis to Inhibit the Growth of Microsporum canis Isolated from Cats. Heliyon, 7, e07980. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Načeradská, M., Fridrichová, M., Kellnerová, D., Peková, S. and Lány, P. (2017) Antifungal Effects of the Biological Agent Pythium oligandrum Observed in Vitro. Journal of Feline Medicine and Surgery, 19, 817-823. [Google Scholar] [CrossRef]
|
|
[81]
|
Gabrielová, A., Mencl, K., Suchánek, M., et al. (2018) The Oo-mycete Pythium oligandrum Can Suppress and Kill the Causative Agents of Dermatophytoses. Mycopathologia, 183, 751-764. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Abdel-Aziz, M.M., Al-Omar, M.S., Mohammed, H.A. and Emam, T.M. (2020) In Vitro and Ex Vivo Antibiofilm Activity of a Lipopeptide Biosurfactant Produced by the En-tomopathogenic Beauveria bassiana Strain against Microsporum canis. Microorganisms, 8, Article No. 232. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Mondal, S. and Singh, S. (2021) Immunization in Special Situations. Indian Pediatrics, 58, 217-218. [Google Scholar] [CrossRef]
|
|
[84]
|
Lin, S.-C., Chang, P.-C., Lin, C.-H., Liang, H.-J. and Huang, C.-H. (2022) Particulate Cell Wall Materials of Lactobacillus acidophilus as Vaccine Adjuvant. Veterinary Sciences, 9, Article No. 698. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Vermout, S.M., Brouta, F.D., Descamps, F.F., et al. (2004) Evaluation of Immunogenicity and Protective Efficacy of a Microsporum canis Metalloprotease Subunit Vaccine in Guinea Pigs. FEMS Immunology & Medical Microbiology, 40, 75-80. [Google Scholar] [CrossRef]
|
|
[86]
|
Gao, B.-J., Mou, Y.-N., Tong, S.-M., Ying, S.-H. and Feng, M.-G. (2020) Subtilisin-Like Pr1 Proteases Marking the Evolution of Pathogenicity in a Wide-Spectrum In-sect-Pathogenic Fungus. Virulence, 11, 365-380. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Dai, P., Lv, Y., Gong, X., et al. (2021) RNA-Seq Analysis of the Effect of Zinc Deficiency on Microsporum canis, ZafA Gene Is Important for Growth and Pathogenicity. Frontiers in Cellular and Infection Microbiology, 11, Article 727665. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Nejadmoghaddam, M.R., Minai-Tehrani, A., Ghahremanzadeh, R., et al. (2019) Antibody-Drug Conjugates: Possibilities and Challenges. Avicenna Journal of Medical Biotechnology, 11, 3-23.
|
|
[89]
|
Ouf, S.A., Mohamed, A.-A.H. and El-Adly, A.A. (2017) Enhancement of the Antidermatophytic Activity of Silver Nanoparticles by Q-Switched Nd: YAG Laser and Monoclonal Antibody Conjugation. Medical Mycology, 55, 495-506. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Khosravi, A.R., Shokri, H. and Sohrabi, N. (2014) Potential Effects of Trachyspermum copticum Essential Oil and Propolis Alcoholic Extract on Mep3 Gene Expression of Micro-sporum canis Isolates. Journal de Mycologie Médicale, 24, e101-e107. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Greatti, V.R., Oda, F., Sorrechia, R., et al. (2020) Poly-ε-Caprolactone Nanoparticles Loaded with 4-Nerolidylcatechol (4-NC) for Growth Inhibition of Microsporum ca-nis. Antibiotics, 9, Article No. 894. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Tullio, V., Roana, J., Scalas, D. and Mandras, N. (2019) Evalua-tion of the Antifungal Activity of Mentha × piperita (Lamiaceae) of Pancalieri (Turin., Italy) Essential Oil and Its Syner-gistic Interaction with Azoles. Molecules, 24, Article No. 3148. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Leal Pinto, S.M., Herrera Sandoval, L.V. and Vargas, L.Y. (2019) In Vitro Susceptibility of Microsporum spp. and Mammalian Cells to Eugenia caryophyllus Essential Oil, Eugenol and Semisynthetic Derivatives. Mycoses, 62, 41-50. [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Rodrigues, E.R., Nogueira, N.G., Zocolo, G.J., et al. (2012) Pothomorphe umbellata: Antifungal Activity against Strains of Trichophyton rubrum. Journal de Mycologie Médicale, 22, 265-269. [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
高璐, 吴建美, 刘登宇, 尉迟邈, 曲琳. 中药合剂对皮肤浅部真菌的体外抑菌作用[J]. 中国皮肤性病学杂志, 2022, 36(1): 32-36. [Google Scholar] [CrossRef]
|
|
[96]
|
罗小军, 尕丽娜, 刘红霞, 景芸, 王淑娟, 熊文君. 中药肤癣洗剂治疗浅部真菌病临床疗效与安全性的随机对照试验[J]. 中华中医药杂志, 2016, 31(3): 987-990.
|
|
[97]
|
吴长龙, 魏琴, 殷中琼, 徐娇, 石东霞. 四种中药乙醇提取物对常见皮肤癣菌的体外抗菌活性[J]. 中国兽医科学, 2010, 40(11): 1189-1193. [Google Scholar] [CrossRef]
|
|
[98]
|
张晓茹, 李冬冬, 陈大忠. 鸡冠花不同提取部位体外抗真菌活性的研究[J]. 中医药学报, 2013, 41(3): 33-34. [Google Scholar] [CrossRef]
|
|
[99]
|
庄素琪, 张莉莉, 唐春萍, 沈志滨, 陈艳芬, 温玉莹, 侯捷, 江涛. 香鳞毛蕨有效部位乳膏对犬小孢子菌的影响[J]. 中成药, 2020, 42(5): 1174-1180.
|
|
[100]
|
梁沂, 程涵, 张元国. 中药药浴治疗犬小孢子菌感染的探索[J]. 中兽医学杂志, 2019(6): 75.
|
|
[101]
|
罗春艳, 蒋著椿. 中药外洗治疗艾滋病合并真菌性皮肤病的临床研究[J]. 中医外治杂志, 2019, 28(6): 36-37.
|