|
[1]
|
Tulving, E. (1983) Elements of Episodic Memory. Oxford University Press, Oxford.
|
|
[2]
|
Rönnlund, M., Nyberg, L., Bäckman, L., & Nilsson, L.-G. (2005) Stability, Growth, and Decline in Adult Life Span Development of Declarative Memory: Cross-Sectional and Longitudinal Data from a Population-Based Study. Psychology and Aging, 20, 3-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Antonenko, D., et al. (2018) Neuronal and Behavioral Effects of Multi-Day Brain Stimulation and Memory Training. Neurobiology of Aging, 61, 245-254. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Flöel, A., et al. (2012) Non-Invasive Brain Stimulation Improves Object-Location Learning in the Elderly. Neurobiology of Aging, 33, 1682-1689. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Crossman, M., Bartl, G., Soerum, R. and Sandrini, M. (2019) Effects of Transcranial Direct Current Stimulation over the Posterior Parietal Cortex on Episodic Memory Reconsolidation. Cortex, 121, 78-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Friehs, M.A., Greene, C. and Pastötter, B. (2021) Transcranial Direct Current Stimulation Over the Left Anterior Temporal Lobe During Memory Retrieval Differentially Affects True and False Recognition in the DRM Task. European Journal of Neuroscience, 54, 4609-4620. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Malinow, R. and Malenka, R.C. (2002) AMPA Receptor Trafficking and Synaptic Plasticity. Annual Review of Neuroscience, 25, 103-126. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Moyer, J.R., Power, J.M., Thompson, L.T. and Disterhoft, J.F. (2000) Increased Excitability of Aged Rabbit CA1 Neurons after Trace Eyeblink Conditioning. Journal of Neuroscience, 20, 5476-5482. [Google Scholar] [CrossRef]
|
|
[9]
|
Kumar, A. and Foster, T.C. (2019) Alteration in NMDA Receptor Mediated Glutamatergic Neurotransmission in the Hippocampus During Senescence. Neurochemical Research, 44, 38-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Foster, T., Kyritsopoulos, C. and Kumar, A. (2017) Central Role for NMDA Receptors in Redox Mediated Impairment of Synaptic Function During Aging and Alzheimer’s Disease. Behavioural Brain Research, 322, 223-232. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Wu, S.-Y., et al. (2020) BDNF Reverses Aging-Related Microglial Activation. Journal of Neuroinflammation, 17, Article No. 210. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Verkhratsky, A., Zorec, R., Rodriguez-Arellano, J.J. and Parpura, V. (2019) Neuroglia in Ageing. In: Verkhratsky, A., Ho, M., Zorec, R. and Parpura, V., Eds., Neuroglia in Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, Vol 1175, Springer, Singapore, 181-197. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Herz, J., et al. (2021) GABAergic Neuronal IL-4R Mediates T Cell Effect on Memory. Neuron, 109, 3609-3618. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Salinska, E. and Stafiej, A. (2003) Metabotropic Glutamate Receptors (mGluRs) Are Involved in Early Phase of Memory Formation: Possible Role of Modulation of Glutamate Release. Neurochemistry International, 43, 469-474. [Google Scholar] [CrossRef]
|
|
[15]
|
赵永才, 吴耿安, 黄亨奋. 运动与记忆: N-甲基-D-天冬氨酸受体和谷氨酸在学习记忆中的作用[J]. 中国临床康复, 2005, 9(37): 101-103.
|
|
[16]
|
Spurny, B., et al. (2020) Hippocampal GABA Levels Correlate with Retrieval Performance in an Associative Learning Paradigm. NeuroImage, 204, Article ID: 116244. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Farr, S.A., Uezu, K., Creonte, T.A., Flood, J.F. and Morley, J.E. (2000) Modulation of Memory Processing in the Cingulate Cortex of Mice. Pharmacology Biochemistry and Behavior, 65, 363-368. [Google Scholar] [CrossRef]
|
|
[18]
|
Jiménez-Balado, J. and Eich, T.S. (2021) GABAergic Dysfunction, Neural Network Hyperactivity and Memory Impairments in Human Aging and Alzheimer’s Disease. Seminars in Cell & Developmental Biology, 116, 146-159. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
李佳琪, 高丽, 周玉枝, 秦雪梅, 杜冠华. 衰老性学习记忆减退相关的脑内单胺类神经递质研究进展[J]. 药学学报, 2017, 52(11): 1639-1646.
|
|
[20]
|
Monte-Silva, K., et al. (2009) Dose-Dependent Inverted U-Shaped Effect of Dopamine (D2-Like) Receptor Activation on Focal and Nonfocal Plasticity in Humans. Journal of Neuroscience, 29, 6124-6131. [Google Scholar] [CrossRef]
|
|
[21]
|
Thirugnanasambandam, N., Grundey, J., Paulus, W. and Nitsche, M.A. (2011) Dose-Dependent Nonlinear Effect of L-DOPA on Paired Associative Stimulation-Induced Neuroplasticity in Humans. Journal of Neuroscience, 31, 5294-5299. [Google Scholar] [CrossRef]
|
|
[22]
|
Seaman, K.L., et al. (2019) Differential Regional Decline in Dopamine Receptor Availability across Adulthood: Linear and Nonlinear Effects of Age. Human Brain Mapping, 40, 3125-3138. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Karrer, T.M., Josef, A.K., Mata, R., Morris, E.D. and Sama-nez-Larkin, G.R. (2017) Reduced Dopamine Receptors and Transporters but Not Synthesis Capacity in Normal Aging Adults: A Meta-Analysis. Neurobiology of Aging, 57, 36-46. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Mei, Y., et al. (2015) Aging-Associated Formalde-hyde-Induced Norepinephrine Deficiency Contributes to Age-Related Memory Decline. Aging Cell, 14, 659-668. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Luo, Y., et al. (2015) Reversal of Aging-Related Emotional Memory Deficits by Norepinephrine via Regulating the Stability of Surface AMPA Receptors. Aging Cell, 14, 170-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Haider, S., et al. (2014) Age-Related Learning and Memory Deficits in Rats: Role of Altered Brain Neurotransmitters, Acetylcholinesterase Activity and Changes in Antioxidant Defense System. AGE, 36, 1291-1302. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Saleem, S., Tabassum, S., Ahmed, S., Perveen, T. and Haider, S. (2014) Senescence Related Alteration in Hippocampal Biogenic Amines Produces Neuropsychological Deficits in Rats. Pakistan Journal of Pharmaceutical Sciences, 27, 837-845.
|
|
[28]
|
Richter, N., et al. (2014) The Integrity of the Cholinergic System Determines Memory Performance in Healthy Elderly. NeuroImage, 100, 481-488. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Dennis, S.H., et al. (2016) Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus. Cerebral Cortex, 26, 414-426. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Maurer, S.V. and Williams, C.L. (2017) The Cholinergic System Modulates Memory and Hippocampal Plasticity via Its Interactions with Non-Neuronal Cells. Frontiers in Immunology, 8, Article 1489. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Mitsis, E.M., et al. (2009) Age-Related Decline in Nicotinic Receptor Availability with [123I]5-IA-85380 SPECT. Neurobiology of Aging, 30, 1490-1497. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Preston, A.R. and Eichenbaum, H. (2013) Interplay of Hippocampus and Prefrontal Cortex in Memory. Current Biology, 23, R764-R773. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kowiański, P., et al. (2018) BDNF: A Key Factor with Multipotent Impact on Brain Signaling and Synaptic Plasticity. Cellular and Molecular Neurobiology, 38, 579-593. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Caldeira, M.V., et al. (2007) BDNF Regulates the Expression and Traffic of NMDA Receptors in Cultured Hippocampal Neurons. Molecular and Cellular Neuroscience, 35, 208-219. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Mizoguchi, Y., Yao, H., Imamura, Y., Hashimoto, M. and Monji, A. (2020) Lower Brain-Derived Neurotrophic Factor Levels Are Associated with Age-Related Memory Impairment in Community-Dwelling Older Adults: The Sefuri Study. Scientific Reports, 10, Article No. 16442. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Liu, A., et al. (2018) Immediate Neurophysiological Effects of Transcranial Electrical Stimulation. Nature Communications, 9, Article No. 5092. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Reed, T. and Kadosh, R.C. (2018) Transcranial Electrical Stimulation (tES) Mechanisms and Its Effects on Cortical Excitability and Connectivity. Journal of Inherited Metabolic Disease, 41, 1123-1130. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Nitsche, M.A., et al. (2003) Pharmacological Modulation of Cortical Excitability Shifts Induced by Transcranial Direct Current Stimulation in Humans. The Journal of Physiology, 553, 293-301. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Woods, A.J., et al. (2016) A Technical Guide to tDCS, and Related Non-Invasive Brain Stimulation Tools. Clinical Neurophysiology, 127, 1031-1048. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Clark, V.P., Coffman, B.A., Trumbo, M.C. and Gasparovic, C. (2011) Transcranial Direct Current Stimulation (tDCS) Produces Localized and Specific Alterations in Neurochemistry: A 1H Magnetic Resonance Spectroscopy Study. Neuroscience Letters, 500, 67-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Hone-Blanchet, A., Edden, R.A. and Fecteau, S. (2016) Online Effects of Transcranial Direct Current Stimulation in Real Time on Human Prefrontal and Striatal Metabolites. Biological Psychiatry, 80, 432-438. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Koolschijn, R.S., et al. (2019) The Hippocampus and Neocortical Inhibitory Engrams Protect against Memory Interference. Neuron, 101, 528-541. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Podda, M.V., et al. (2016) Anodal Transcranial Direct Current Stimulation Boosts Synaptic Plasticity and Memory in Mice via Epigenetic Regulation of Bdnf Expression. Scientific Reports, 6, Article No. 22180. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Greer, P.L. and Greenberg, M.E. (2008) From Synapse to Nucleus: Cal-cium-Dependent Gene Transcription in the Control of Synapse Development and Function. Neuron, 59, 846-860. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Nitsche, M.A., et al. (2004) GABAergic Modulation of DC Stimulation-Induced Motor Cortex Excitability Shifts in Humans. European Journal of Neuroscience, 19, 2720-2726. [Google Scholar] [CrossRef]
|
|
[46]
|
Stagg, C.J., Bachtiar, V. and Johansen-Berg, H. (2011) The Role of GABA in Human Motor Learning. Current Biology, 21, 480-484. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Stafford, J., Brownlow, M. L., Qualley, A. and Jankord, R. (2018) AMPA Receptor Translocation and Phosphorylation Are Induced by Transcranial Direct Current Stimulation in Rats. Neurobiology of Learning and Memory, 150, 36-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Fonteneau, C., et al. (2018) Frontal Transcranial Direct Current Stimulation Induces Dopamine Release in the Ventral Striatum in Human. Cerebral Cortex, 28, 2636-2646. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Nitsche, M.A., et al. (2009) Serotonin Affects Transcranial Direct Cur-rent-Induced Neuroplasticity in Humans. Biological Psychiatry, 66, 503-508. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Kuo, M.-F., Grosch, J., Fregni, F., Paulus, W. and Nitsche, M.A. (2007) Focusing Effect of Acetylcholine on Neuroplasticity in the Human Motor Cortex. Journal of Neuroscience, 27, 14442-14447. [Google Scholar] [CrossRef]
|
|
[51]
|
Yu, T.-H., Wu, Y.-J., Chien, M.-E. and Hsu, K.-S. (2019) Transcranial Direct Current Stimulation Induces Hippocampal Metaplasticity Mediated by Brain-Derived Neurotrophic Factor. Neuropharmacology, 144, 358-367. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Fritsch, B., Reis, J., Martinowich, K., et al. (2010) Direct Current Stimulation Promotes BDNF-Dependent Synaptic Plasticity: Potential Implications for Motor Learning. Neuron, 66, 198-204. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Decker, A.L. and Duncan, K. (2020) Acetylcholine and the Complex Interdependence of Memory and Attention. Current Opinion in Behavioral Sciences, 32, 21-28. [Google Scholar] [CrossRef]
|
|
[54]
|
Stagg, C.J., et al. (2014) Local GABA Concentration Is Related to Network-Level Resting Functional Connectivity. eLife, 3, e01465. [Google Scholar] [CrossRef]
|
|
[55]
|
Shafiei, G., et al. (2019) Dopamine Signaling Modulates the Stability and Integration of Intrinsic Brain Networks. Cerebral Cortex, 29, 397-409. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Shine, J.M., Aburn, M.J., Breakspear, M. and Poldrack, R.A. (2018) The Modulation of Neural Gain Facilitates a Transition Between Functional Segregation and Integration in the Brain. eLife, 7, e31130. [Google Scholar] [CrossRef]
|
|
[57]
|
Li, S.-C. and Rieckmann, A. (2014) Neuromodulation and Aging: Implications of Aging Neuronal Gain Control on Cognition. Current Opinion in Neurobiology, 29, 148-158. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Meinzer, M., Lindenberg, R., Antonenko, D., Flaisch, T., & Flöel, A. (2013) Anodal Transcranial Direct Current Stimulation Temporarily Reverses Age-Associated Cognitive Decline and Functional Brain Activity Changes. Journal of Neuroscience, 33, 12470-12478. [Google Scholar] [CrossRef]
|
|
[59]
|
Koen, J.D. and Rugg, M.D. (2019) Neural Dedifferentiation in the Aging Brain. Trends in Cognitive Sciences, 23, 547-559. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Linnerbauer, M., Wheeler, M.A. and Quintana, F.J. (2020) Astrocyte Crosstalk in CNS Inflammation. Neuron, 108, 608-622. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Steadman, P.E., et al. (2020) Disruption of Oligodendrogenesis Impairs Memory Consolidation in Adult Mice. Neuron, 105, 150-164. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Adamsky, A., et al. (2018) Astrocytic Activation Generates de Novo Neuronal Potentiation and Memory Enhancement. Cell, 174, 59-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Vainchtein, I.D. and Molofsky, A.V. (2020) Astrocytes and Microglia: In Sickness and in Health. Trends in Neurosciences, 43, 144-154. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Du, Z., et al. (2021) Knockdown of Astrocytic Grin2a Aggravates β-Amyloid-Induced Memory and Cognitive Deficits through Regulating Nerve Growth Factor. Aging Cell, 20, e13437. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Castellani, G. and Schwartz, M. (2020) Immunological Features of Non-neuronal Brain Cells: Implications for Alzheimer’s Disease Immunotherapy. Trends in Immunology, 41, 794-804. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Bartels, T., Schepper, S.D. and Hong, S. (2020) Microglia Modulate Neurodegeneration in Alzheimer’s and Parkinson’s Diseases. Science, 370, 66-69. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Colonna, M. and Butovsky, O. (2017) Microglia Function in the Central Nervous System during Health and Neurodegeneration. Annual Review of Immunology, 35, 441-468. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Ruohonen, J. and Karhu, J. (2012) TDCS Possibly Stimulates Glial Cells. Clinical Neurophysiology, 123, 2006-2009. [Google Scholar] [CrossRef] [PubMed]
|