调控肿瘤微环境实现血管正常化的研究进展
Research Progress in the Regulation of Tumor Microenvironment for Vascular Normalization
DOI: 10.12677/ACM.2023.134883, PDF, HTML, XML, 下载: 255  浏览: 403 
作者: 李 璐:济宁医学院临床医学院,山东 济宁;刘艳荣*:济宁医学院附属医院病理科,山东 济宁
关键词: 肿瘤血管正常化肿瘤微环境血管生成Tumor Vascular Normalization Tumor Microenvironment Angiogenesis
摘要: 异常肿瘤血管导致低氧、低pH的恶性微环境形成,加剧肿瘤恶化、机体免疫抑制和治疗耐药,肿瘤血管已成为治疗的重要靶点。传统的抗血管生成疗法由于容易产生耐药仍存在争议。基于此,有学者提出肿瘤血管的正常化理论,即肿瘤血管生成回到更成熟和稳定的血管系统。肿瘤微环境(TME)在微血管的启动和发展中起着重要的作用。近年来,许多研究致力于通过TME提高肿瘤微血管正常化治疗效果。本文综述了基于肿瘤微环境在血管正常化中的靶向和重塑策略最新研究进展,并对其中存在的问题及未来的发展进行讨论。
Abstract: Abnormal tumor blood vessels lead to the formation of a malignant microenvironment with low ox-ygen and low pH, which aggravates tumor deterioration, immunosuppression and drug resistance. Tumor blood vessels have become an important target for treatment. Traditional anti- angiogenesis therapy is still controversial due to drug resistance. Based on this, some scholars have proposed the normalization theory of tumor blood vessels, that is, to achieve tumor angiogenesis back to a more mature and stable vascular system. Tumor microenvironment (TME) plays an important role in the initiation and development of microvessels. In recent years, many studies have focused on improv-ing the therapeutic effect of tumor microvascular normalization by TME. This article reviews the latest research progress of targeting and remodeling strategies based on tumor microenvironment in vascular normalization, and discusses the existing problems and future development.
文章引用:李璐, 刘艳荣. 调控肿瘤微环境实现血管正常化的研究进展[J]. 临床医学进展, 2023, 13(4): 6274-6282. https://doi.org/10.12677/ACM.2023.134883

1. 引言

肿瘤血管生成是一个从原有的血管建立新血管的生物过程,对肿瘤的发展和转移至关重要 [1] 。实体瘤中的血管为肿瘤细胞和嵌入细胞外基质(extracellular matrix, ECM)的宿主基质细胞提供稳定的营养和氧气供应 [2] 。为了支持癌细胞的高增殖率,肿瘤需要迅速发展新的血管网络。相比于正常组织血管,肿瘤血管中的组织、结构和功能都是异常的 [3] 。由于肿瘤组织高渗透性和缺乏功能性淋巴管,异常的血管生成对抗肿瘤药物的输送形成了生理障碍,并促进了肿瘤细胞的增殖和发展 [4] 。同时肿瘤中异常的微血管造成了以缺氧和酸中毒为特征的微环境,从而降低了放疗和化疗等抗肿瘤治疗的效果 [5] 。

肿瘤微环境(tumor microenvironment, TME)是肿瘤存在的细胞环境,提供促进癌症生长、侵袭和血管生成的条件。TME包括细胞外成分和各种基质细胞,如内皮细胞、肿瘤相关成纤维细胞(cancer associated fibroblasts, CAFs)和免疫细胞等 [6] 。肿瘤微环境在肿瘤血管生成过程中起着至关重要的作用,如肿瘤细胞分泌的促血管生成因子从细胞外基质动员,或从宿主基质细胞如CAFs、肿瘤相关巨噬细胞(tumor associated macrophages, TAMs)和调节性T细胞(regulatory T lymphocytes, Tregs)细胞释放,这些基质细胞通过分泌生长因子和趋化因子形成必不可少的通信网络。此外,异常代谢环境,如缺氧和酸中毒有助于促血管生成因子的分泌,如血管内皮生长因子(vascular endothelial growth factor, VEGF),基质金属蛋白酶(matrix metalloproteinases, MMP)等,促进肿瘤生长和转移 [7] 。

抗血管生成药物已广泛应用于肾细胞癌、肝细胞癌、结直肠癌等各类癌症治疗 [8] 。最近研究显示,抗血管内皮生长因子单药治疗的临床效率不高,并可能促进肿瘤的侵袭和转移,在James C. Yang的试验中,贝伐珠单抗的临床获益幅度很小。高剂量贝伐珠单抗组和安慰剂组之间疾病进展的时间差异仅为几个月 [9] 。大剂量的药物使用也常常出现各种不良反应 [10] ,比如高血压、出血等。因此针对肿瘤血管生成并使其正常化的新型疗法已发展成为肿瘤治疗的主要方向。本综述拟阐述通过在调控TME的基础上肿瘤血管正常化的新策略,以恢复血管生成之间的平衡,促进肿瘤血管向更正常的表型逆转。

2. 肿瘤微环境与血管生成

2.1. 缺氧环境

缺氧是许多类型的实体瘤中微环境的一个共同特征,肿瘤血管高度不规则导致的缺氧状态限制了肿瘤细胞的增殖,降低了传统抗肿瘤药物的敏感性 [11] 。在缺氧环境中,肿瘤细胞发生表观遗传学变化,促进上皮–间质转化(epithelial-mesenchymal transition, EMT),成为高度恶性的表型,从而增强其转移潜力 [12] 。肿瘤细胞的遗传变异促进了基因组的不稳定性,导致高度恶性变体通过克隆选择和扩展在缺氧微环境中生存,这促进了肿瘤的进展和转移,降低了对放射治疗和标准化疗的敏感性 [13] 。

缺氧诱导因子(hypoxia inducible factor, HIF)作为一种基本的转录因子,对肿瘤细胞在缺氧区的生存和增殖极为重要。HIF-1由HIF-1α和HIF-1β两个不同的亚基组成。HIF-1α在缺氧条件下会累积,而HIF-1β则是组成性表达 [14] 。HIF-1α在体内的表达受到O2张力的严格调控,在氧气充足的条件下快速降解 [15] 。在缺氧状态下,HIF-1α变得稳定,并与HIF-1β二聚,形成一个具有转录活性的HIF-1复合物 [14] 。研究表明,HIF-1可以通过与VEGF启动子中的缺氧反应元件(HRE)结合来激活VEGF基因的表达 [16] 。除VEGF外,HIF-1还调控其他几种血管生成因子的表达,如胎盘样生长因子、血小板衍生生长因子-β (platelet derived growth factor, PDGF-β)、血管生成素-1 (angiopoietin-1, Ang-1)和Ang-2等 [17] 。因此,HIF-1的稳定性和转录激活促进了血管生成。

2.2. 酸性微环境

酸中毒是实体瘤中代谢环境异常的另一个标志 [18] 。肿瘤微环境产生的酸性代谢产物,如缺氧区域的无氧糖酵解产生的乳酸,造成肿瘤细胞外pH值(6.5∼6.9)比正常组织pH值7.4更低 [19] 。细胞外低pH值环境中也会引起压力诱导的基因表达的改变,包括VEGF、白细胞介素-8 (IL-8)和MMPs,导致体外肿瘤细胞的血管生成和转移 [20] 。有研究表明,细胞外酸性环境可以独立地在肿瘤中上调VEGF的转录。对VEGF启动子区域的分析显示,细胞外酸性环境通过肾素–血管紧张素–醛固酮系统(Ras)-ERK1/2-AP1途径诱导VEGF表达,还可通过细胞核因子κB(NF-κB)诱导IL-8的表达以及通过HIF-1诱导VEGF/VEGF-A的表达来促进血管生成 [21] 。酸性环境中MMPs可以转化为其活性形式。激活的MMPs通过释放ECM结合的血管生成生长因子,通过裂解内皮细胞–细胞粘附,以及通过暴露ECM中隐性的促血管生成整合素结合位点来增强血管生成 [22] 。ECM结构成分的降解对肿瘤诱导的血管生成至关重要。总之,酸性诱导的促血管生成因子在肿瘤微环境中促进肿瘤血管生成。

2.3. 肿瘤相关成纤维细胞

CAFs是肿瘤微环境中的一个特定细胞群,通过分泌生长因子参与肿瘤血管生成,为肿瘤细胞提供培育性微环境,并通过重塑局部细胞外基质促进肿瘤细胞的侵袭 [23] 。CAFs分泌蛋白包括α-平滑肌肌动蛋白(α-SMA)、成纤维细胞特异性蛋白-1 (FSP-1)和成纤维细胞活化蛋白(fibroblast activation protein, FAP)。CAFs分泌细胞因子、趋化因子和生长因子等,这些生物活性分子可以诱导肿瘤细胞的增殖、迁移、血管生成和转移 [24] 。CAFs通过分泌VEGF招募和激活内皮细胞,促进肿瘤血管生成 [25] 。CAFs还分泌MMPs,有助于降解ECM,促进侵袭和血管生成 [26] 。CAFs分泌的另两个因子CXCL12/SDF-1和转换生长因子-β (transforming growth factor-β, TGF-β) [27] 。CXCL12/SDF-1作为一种趋化因子,能够诱导血管生成并增强肿瘤细胞的增殖能力。TGF-β可以调节相邻上皮细胞的致癌潜能。Wallace等人证明,Ets2通过涉及肿瘤血管生成的机制作为纤维母细胞特异性的肿瘤生长效应物 [28] 。这些由CAFs分泌的因子有助于肿瘤血管生成,从而促进肿瘤的进展和转移。

2.4. 免疫细胞

2.4.1. 肿瘤相关巨噬细胞

TAMs是肿瘤微环境中的巨噬细胞,根据功能表型不同,巨噬细胞大致分为M1型(经典活化巨噬细胞)和M2型(替代活化巨噬细胞)。M1型巨噬细胞参与炎症反应,清除体内病原体,参与抗肿瘤免疫。在肿瘤微环境中,TAMs一般表现为M2型巨噬细胞的特征,表达集落刺激因子-1 (CSF-1)、VEGF-A和CC趋化因子配体2 (CCL2) [29] 。TAMs释放多种促血管生成因子,如VEGF、碱性成纤维细胞生长因子(bFGF)、肿瘤坏死因子-α (TNF-α)、胸苷磷酸化酶(TP)、肾上腺髓质素(ADM)、脑信号素4D (Sema4D)、尿激酶型纤溶酶原组成激活剂(uPA)和几种血管生成调节酶,包括MMP-2、MMP-7、MMP-9和MMP-12 [30] 。VEGF-A是TAMs释放的主要促血管生成细胞因子,其水平与在几种类型的癌症中具有TAMs密度。研究表明,VEGF-A还可以从ECM的酶促裂解中释放出来,而TAMs释放的MMP-9可将ECM降解。MMP-9在增加VEGF生物利用度和启动肿瘤血管化方面也具有重要作用。uPA在介导ECM降解和促进血管侵袭发挥重要作用 [31] 。TP还通过刺激内皮细胞(EC)的迁移促进血管生长。TAMs分泌的ADM和Sema4D有助于诱导肿瘤血管生成,促进血管成熟和肿瘤生长 [32] 。

2.4.2. T淋巴细胞

在TME中,有三种主要的T细胞类型,包括Treg细胞,CD8+ T细胞和CD4+辅助性T细胞-1 (T helper-1, Th1) [33] 。在抑制肿瘤血管生成方面,CD8+T细胞和CD4+ Th1细胞分泌γ干扰素(IFN-γ)抑制内皮细胞迁移和增殖。IFN-γ作为免疫调节淋巴因子,诱导IP-10和MIG的表达并调节CXCR3来抑制肿瘤血管形成 [34] 。IFN-γ还上调了TAMs中的血管抑制趋化因子的表达,如CXCL9、CXCL10和CXCL11。另外,IFN-γ通过IFN-γ/STAT1信号传导参与了TAMs向抗肿瘤表型(M1)的重新编程,导致肿瘤抑制和血管重塑 [35] 。

Tregs细胞在调节肿瘤血管生成方面表现出相反的作用。Treg细胞通过缺氧诱导的CCL28分泌VEGF,促进肿瘤血管的形成。Treg细胞还间接抑制CD4+ Th1细胞的活性,而CD4+ Th1细胞分泌IFN-γ协助肿瘤血管正常化 [34] 。有研究表示,Treg细胞可以激活肿瘤血管生成的关键细胞群TAMS (M2) [35] 。在TME中,异常的代谢环境引起免疫抑制,表现为Treg细胞的浸润和免疫效应细胞(CD8+ T细胞和CD4+ Th1)功能的降低 [35] ,而免疫抑制细胞激活和募集的增加反过来会诱发更多异常血管生成,从而形成免疫激活中断的恶性循环。

3. 肿瘤微循环靶向和重塑策略

3.1. 靶向HIF-1诱导血管正常化

由于HIF-1在肿瘤血管生成和转移中的作用,HIF-1的特异性靶点成为抗血管生成治疗的一个重要的目标 [36] 。研究证明,许多化合物可以通过靶向HIF-1使肿瘤微血管正常化。如米诺环素具有有效的抗血管生成活性,抑制缺氧诱导的VEGF表达。进一步的研究结果表明,米诺环素可以抑制mTOR信号传导,增加eIF2α的磷酸化,而eIF2α已知参与HIF-1α表达的翻译调节 [37] 。异硫氰酸苯乙酯(PEITC)作为一种天然的膳食异硫氰酸酯,在缺氧状态可以抑制HIF-1α积累,并通过抑制PI3K和MAPK信号通路减少缺氧诱导的VEGF的分泌,从而抑制肿瘤血管生成 [38] 。绿原酸是人类饮食中最丰富的多酚之一,可以通过抑制HIF-1α/AKT途径阻断缺氧刺激的血管生成 [39] 。

许多小分子蛋白也可以通过靶向HIF-1来抑制肿瘤血管生成。富含组氨酸的糖蛋白(HPRG)具有强大的肿瘤血管正常化的特性。实验证据表明,VNP-pNHPRG可以通过下调HIF-1α-VEGF/Ang-2信号通路,延缓肿瘤生长,提高原发性B16F10小鼠模型的生存时间 [40] 。此外,Gramicidin A,一种形成通道的离子团,可以通过上调VHL肿瘤抑制蛋白的表达来减弱HIF的转录活性和各种缺氧反应基因的表达,因此可以针对羟基化的HIF进行蛋白酶体降解 [41] 。miRNAs也可以成为调节缺氧引起的血管生成的治疗方法。miR-20b、miR-199a和miR-155已经证明是通过调节HIF-1的表达而成为抗血管生成的有效靶点 [42] 。

3.2. 解除酸性微环境实现血管正常化

肿瘤微环境中,酸中毒通过正常细胞的死亡、ECM的破坏而促进新血管的形成和抑制免疫反应。碳酸氢钠是控制pH值的主要缓冲剂,在临床前模型中,口服碳酸氢钠能够增加肿瘤周围的pH值并抑制肿瘤的生长和局部侵袭 [43] 。H+-乳酸共转运体(NHE)和H+ ATP酶参与细胞外酸化,因此抑制H+泵可以成为抑制肿瘤血管生成和转移的潜在策略 [44] 。V-ATP酶作为质子泵,负责酸化细胞内区和细胞周围空间 [45] 。抑制V-ATP酶可以抑制肿瘤细胞的迁移,进一步减少VEGFR2的表达并阻断Notch靶基因的转录,为多因素抗血管生成治疗提供了一种新的方法 [46] 。据报道,血管抑制素通过与其β亚基结合抑制细胞表面ATP合成酶的活性,可具有抗肿瘤的功效 [47] 。

3.3. 靶向CAFs调控血管生成

单一药物的抗血管内皮生长因子治疗无法有效对抗血管生成。对CAFs和肿瘤细胞之间的交叉对话进行联合干预,也是一种正常化血管生成的新策略 [25] 。FAP是CAFs细胞表面标记,抗FAP抗体的治疗有助于减少肿瘤的进展和扩散 [48] 。维甲酸(RA)可通过下调α-SMA、FAP和IL-6的表达水平来调节CAFs,从而抑制胰腺癌细胞的迁移和EMT [49] 。CAFs产生的PDGF-C促进肿瘤细胞分泌VEGF,针对PDGF-C的抗体可用于抑制血管生成 [50] 。在结肠癌中,CAFs是诱导肿瘤血管生成的IL-6的重要来源,抗IL6受体抗体阻断肿瘤与间质相互作用来抑制肿瘤血管生成 [51] 。CAFs分泌的TGF-β是肿瘤血管生成的关键调节因子,研究证明,特异性TGF-β小分子抑制剂SB-431542可以抑制癌细胞的远处转移 [52] 。另外,当成纤维细胞与癌细胞共培养时,环氧合酶-2(COX-2)表达显着增加,导致VEGF和MMP14上调。COX-2抑制剂,如塞来昔布或罗非考昔,具有靶向CAFs诱导血管生成的潜力 [53] 。

3.4. 免疫治疗与血管正常化

3.4.1. 靶向TAMs

免疫疗法可有效治疗癌症,并已成为许多癌症的标准疗法。重编程TAMs或阻止TAMs积聚和浸润以使肿瘤脉管系统正常化具有抗血管生成和抗癌治疗的潜力 [54] 。研究表明,阻断VEGF-VEGFR、CXCL12-CXCR4和ANG2-TIE2的轴有利于抑制TAMs的募集 [55] 。鉴于M1巨噬细胞具有通过促进表达来破坏癌细胞的内在能力抗血管生成因子,如CXCL9和IFN-β,将TAMs重编程为抗肿瘤表型可能代表一种抑制血管生成和激发抗肿瘤反应的策略。因此,在细胞水平上,将TAMs表型从M2转换为M1是一种更有希望的抑制促血管生成活性的方法 [56] 。HIF-1、COX-2和NF-κB等靶点有望促进巨噬细胞再极化。COX-2在多种肿瘤中是组成型的表达,COX-2的抑制通过以IFN-g依赖性方式改变TAMs表型来减少肿瘤进展。此外,塞来昔布作为一种选择性COX-2抑制剂,可以将TAMs表型从M2改变为M1,与ApcMin/+小鼠息肉数量的减少成比例,上调M1相关细胞因子干扰素-g(IFN-g)的表达,并减少肠道肿瘤的进展 [57] 。

调节TAMs释放的血管生成因子是分子水平上抗血管生成的潜在疗法。miR-150可用于靶向TAMs,以在体外上调其VEGF分泌。通过使用微泡,靶向miR-150的反义RNA可用于下调miR-150和VEGF水平并减弱体内血管生成 [58] 。TAMs通过释放各种基质重塑蛋白水解酶如MMP-2、MMP-7、MMP-9和MMP-12,来影响ECM的结构。其中,由TAMs产生的MMP-9对肿瘤血管生成和进展至关重要 [59] 。靶向MMP-9的疗法可以抑制雌激素处理的K14-HPV16转基因小鼠模型中的肿瘤血管生成。

3.4.2. 靶向T淋巴细胞

CD8+ T细胞和CD4+ Th1细胞可以抑制血管内皮细胞的增殖,诱导血管抑制性趋化因子的产生。一些靶向T淋巴细胞的药物输送系统(DDS)已用于抗肿瘤免疫治疗并导致肿瘤血管减少 [60] 。研究证实,红细胞膜包裹的PLGA纳米粒子(Man-RBC-NPhgp)通过增加IFN-γ的分泌和CD8+ T细胞应答而显著抑制肿瘤的生长、转移和血管生成 [61] 。此外,Lip E7/CpG的构建 [62] ,使外周血中CD4+ T细胞和CD8+ T细胞显著增加,TME中免疫抑制状态的逆转显示肿瘤血管的形成明显减少。

清除Treg细胞或提高免疫效应细胞的活性对于肿瘤血管的正常化是有帮助的。用于抗原特异性免疫治疗的CTGF/E7 DNA疫苗联合节律性紫杉醇可以有效地耗尽Treg细胞并抑制肿瘤血管生成 [63] 。研究表示,索拉非尼显著下调Treg细胞数量,已批准通过诱导肿瘤细胞凋亡和抗血管生成来治疗人类癌症 [64] 。

4. 重塑TME促进血管正常化在肿瘤治疗中的发展前景及展望

鉴于传统抗血管生成治疗的局限性,通过调节和靶向肿瘤微环境的组合方法对于未来肿瘤微血管的正常化是必要的。调控缺氧环境的策略不仅减少肿瘤血管生成,并且改善缺氧环境的药物治疗效果;肿瘤区域ph的改变抑制癌细胞EMT;CAFs形成的组织屏障防止药物渗透到肿瘤深部区域,所以灭活CAFs是提高药物疗效的有效途径;免疫细胞调节延缓肿瘤进展,与化疗方案相比全身毒性较低。但是为了增强血管正常化的持久性并克服单一疗法可能导致的毒性和耐药性,未来对血管正常化的研究可能会更多地关注不同的组合方法,表明肿瘤血管正常化的关键是选择合适的这些方法或与抗癌策略(包括手术、化疗、放疗)的组合,以及在联合治疗中选择合理的顺序、时间和合适的药物剂量。尽管在许多临床前研究中证明了肿瘤血管正常化的治疗益处,但仍需要寻找更多证据来证实在过渡到临床应用后是否可以达到相同的效果。

NOTES

*通讯作者。

参考文献

[1] Lugano, R., Ramachandran, M. and Dimberg, A. (2020) Tumor Angiogenesis: Causes, Consequences, Challenges and Opportunities. Cellular and Molecular Life Sciences, 77, 1745-1770.
https://doi.org/10.1007/s00018-019-03351-7
[2] Montemagno, C. and Pagès, G. (2020) Resistance to An-ti-Angiogenic Therapies: A Mechanism Depending on the Time of Exposure to the Drugs. Frontiers in Cell and Devel-opmental Biology, 8, Article 584.
https://doi.org/10.3389/fcell.2020.00584
[3] Yang, T., Xiao, H., Liu, X., et al. (2021) Vascular Normalization: A New Window Opened for Cancer Therapies. Frontiers in Oncology, 11, Article 719836.
https://doi.org/10.3389/fonc.2021.719836
[4] Viallard, C. and Larrivée, B. (2017) Tumor Angiogenesis and Vas-cular Normalization: Alternative Therapeutic Targets. Angiogenesis, 20, 409-426.
https://doi.org/10.1007/s10456-017-9562-9
[5] Roma-Rodrigues, C., Mendes, R., Baptista, P.V. and Fernandes, A.R. (2019) Targeting Tumor Microenvironment for Cancer Therapy. International Journal of Molecular Sciences, 20, Article No. 840.
https://doi.org/10.3390/ijms20040840
[6] Jena, BC. and Mandal, M. (2021) The Emerging Roles of Exosomes in Anti-Cancer Drug Resistance and Tumor Progression: An Insight towards Tumor-Microenvironment Interaction. Bio-chimica et Biophysica Acta (BBA)-Reviews on Cancer, 1875, Article ID: 188488.
https://doi.org/10.1016/j.bbcan.2020.188488
[7] Yan, J., Zhang, N., Zhang, Z., et al. (2021) Redox-Responsive Polyethyleneimine/Tetrahedron DNA/Doxorubicin Nanocomplexes for Deep Cell/tissue Penetration to Overcome Multi-drug Resistance. Journal of Controlled Release, 329, 36-49.
https://doi.org/10.1016/j.jconrel.2020.11.050
[8] Qin, S., Li, A., Yi, M., et al. (2019) Recent Advances on Anti-Angiogenesis Receptor Tyrosine Kinase Inhibitors in Cancer Therapy. Journal of Hematology & Oncology, 12, Article No. 27.
https://doi.org/10.1186/s13045-019-0718-5
[9] Yang, J.C., Haworth, L., Sherry, R.M., et al. (2003) A Random-ized Trial of Bevacizumab, an Anti-Vascular Endothelial Growth Factor Antibody, for Metastatic Renal Cancer. New England Journal of Medicine, 349, 427-434.
https://doi.org/10.1056/NEJMoa021491
[10] Huang, M., Lin, Y., Wang, C., et al. (2022) New Insights into Anti-angiogenic Therapy Resistance in Cancer: Mechanisms and Therapeutic Aspects. Drug Resistance Updates, 64, Article ID: 100849.
https://doi.org/10.1016/j.drup.2022.100849
[11] Xu, X.-X., Chen, S.-Y., Yi, N.-B., et al. (2022) Research Pro-gress on Tumor Hypoxia-Associative Nanomedicine. Journal of Controlled Release, 350, 829-840.
https://doi.org/10.1016/j.jconrel.2022.09.003
[12] Aventaggiato, M., Barreca, F., Sansone, L., et al. (2022) Sirtuins and Hypoxia in EMT Control. Pharmaceuticals, 15, Article No. 737.
https://doi.org/10.3390/ph15060737
[13] Tang, M., Bolderson, E., O’Byrne, K.J. and Richard, D.J. (2021) Tumor Hypoxia Drives Genomic Instability. Frontiers in Cell and Developmental Biology, 9, Article 626229.
https://doi.org/10.3389/fcell.2021.626229
[14] Janssens, L.K. and Stove, C.P. (2021) Sensing an Oxygen Sensor: Development and Application of Activity-Based Assays Directly Monitoring HIF Heterodimerization. Analytical Chem-istry, 93, 14462-14470.
https://doi.org/10.1021/acs.analchem.1c02923
[15] Gunaratnam, L. and Bonventre, J.V. (2009) HIF in Kidney Disease and Development. Journal of the American Society of Nephrology, 20, 1877-1887.
https://doi.org/10.1681/ASN.2008070804
[16] Kaur, B., Khwaja, F.W., Severson, E.A., et al. (2005) Hypoxia and the Hypoxia-Inducible-Factor Pathway in Glioma Growth and Angiogenesis. Neuro-Oncology, 7, 134-153.
https://doi.org/10.1215/S1152851704001115
[17] Wicks, E.E. and Semenza, G.L. (2022) Hypoxia-Inducible Fac-tors: Cancer Progression and Clinical Translation. Journal of Clinical Investigation, 132, e159839.
https://doi.org/10.1172/JCI159839
[18] Bauer, D., Visca, H., Weerakkody, A., et al. (2022) PET Imaging of Acid-ic Tumor Environment with 89Zr-Labeled pHLIP Probes. Frontiers in Oncology, 12, Article 882541.
https://doi.org/10.3389/fonc.2022.882541
[19] Abumanhal-Masarweh, H., Koren, L., Zinger, A., et al. (2019) So-dium Bicarbonate Nanoparticles Modulate the Tumor Ph and Enhance the Cellular Uptake of Doxorubicin. Journal of Controlled Release, 296, 1-13.
https://doi.org/10.1016/j.jconrel.2019.01.004
[20] Calorini, L., Peppicelli, S. and Bianchini, F. (2012) Extracellular Acidity as Favouring Factor of Tumor Progression and Metastatic Dissemination. Experimental Oncology, 34, 79-84.
[21] Végran, F., Boidot, R., Michiels, C., Sonveaux, P. and Feron, O. (2011) Lactate Influx through the Endo-thelial Cell Monocarboxylate Transporter MCT1 Supports an NF-κB/IL-8 Pathway that Drives Tumor Angiogenesis. Cancer Research, 71, 2550-2560.
https://doi.org/10.1158/0008-5472.CAN-10-2828
[22] Chaussain, C., Boukpes-si, T., Khaddam, M., et al. (2013) Dentin Matrix Degradation by Host Matrix Metalloproteinases: Inhibition and Clinical Perspectives toward Regeneration. Frontiers in Physiology, 4, Article 308.
https://doi.org/10.3389/fphys.2013.00308
[23] Zhen, Z., Tang, W., Wang, M., et al. (2017) Protein Nanocage Me-diated Fibroblast-Activation Protein Targeted Photoimmunotherapy to Enhance Cytotoxic T Cell Infiltration and Tumor Control. Nano Letters, 17, 862-869.
https://doi.org/10.1021/acs.nanolett.6b04150
[24] Madar, S., Goldstein, I. and Rotter, V. (2013) ‘Cancer Associat-ed Fibroblasts’—More than Meets the Eye. Trends in Molecular Medicine, 19, 447-453.
https://doi.org/10.1016/j.molmed.2013.05.004
[25] Luo, H., Tu, G., Liu, Z. and Liu, M. (2015) Cancer-Associated Fibroblasts: A Multifaceted Driver of Breast Cancer Progression. Cancer Letters, 361, 155-163.
https://doi.org/10.1016/j.canlet.2015.02.018
[26] Watnick, R.S. (2012) The Role of the Tumor Microenvironment in Regulating Angiogenesis. Cold Spring Harbor Perspectives in Medicine, 2, a006676.
https://doi.org/10.1101/cshperspect.a006676
[27] Rizzolio, S., Giordano, S. and Corso, S. (2022) The Importance of Being CAFs (in Cancer Resistance to Targeted Therapies). Journal of Experimental & Clinical Cancer Research, 41, Article No. 319.
https://doi.org/10.1186/s13046-022-02524-w
[28] Wallace, J.A., Li, F., Balakrishnan, S., et al. (2013) Ets2 in Tu-mor Fibroblasts Promotes Angiogenesis in Breast Cancer. PLOS ONE, 8, e71533.
https://doi.org/10.1371/journal.pone.0071533
[29] Wu, K., Lin, K., Li, X., et al. (2020) Redefining Tu-mor-Associated Macrophage Subpopulations and Functions in the Tumor Microenvironment. Frontiers in Immunology, 11, Article 1731.
https://doi.org/10.3389/fimmu.2020.01731
[30] Riabov, V., Gudima, A., Wang, N., et al. (2014) Role of Tumor Associated Macrophages in Tumor Angiogenesis and Lymphangiogenesis. Frontiers in Physiology, 5, Article 75.
https://doi.org/10.3389/fphys.2014.00075
[31] Zhang, J., Gao, J., Cui, J., et al. (2022) Tu-mor-Associated Macrophages in Tumor Progression and the Role of Traditional Chinese Medicine in Regulating TAMs to Enhance Antitumor Effects. Frontiers in Immunology, 13, Article 1026898.
https://doi.org/10.3389/fimmu.2022.1026898
[32] Wu, H., Xu, J.-B., He, Y.-L., et al. (2012) Tumor-Associated Macrophages Promote Angiogenesis and Lymphangiogenesis of Gastric Cancer. Journal of Surgical Oncology, 106, 462-468.
https://doi.org/10.1002/jso.23110
[33] Missiaen, R., Mazzone, M. and Bergers, G. (2018) The Reciprocal Function and Regulation of Tumor Vessels and Immune Cells Offers New Therapeutic Opportunities in Cancer. Semi-nars in Cancer Biology, 52, 107-116.
https://doi.org/10.1016/j.semcancer.2018.06.002
[34] Martin, J.D., Seano, G. and Jain, R.K. (2019) Normalizing Function of Tumor Vessels: Progress, Opportunities, and Challenges. Annual Review of Physiology, 81, 505-534.
https://doi.org/10.1146/annurev-physiol-020518-114700
[35] Lee, W.S., Yang, H., Chon, H.J. and Kim, C. (2020) Combination of Anti-Angiogenic Therapy and Immune Checkpoint Blockade Normalizes Vascular-Immune Crosstalk to Potentiate Cancer Immunity. Experimental & Molecular Medicine, 52, 1475-1485.
https://doi.org/10.1038/s12276-020-00500-y
[36] Pezzuto, A. and Carico, E. (20180 Role of HIF-1 in Cancer Pro-gression: Novel Insights. A Review. Current Molecular Medicine, 18, 343-351.
https://doi.org/10.2174/1566524018666181109121849
[37] Jung, H.-J., Seo, I., Jha, B.K., et al. (2014) Minocy-cline Inhibits Angiogenesis in Vitro through the Translational Suppression of HIF-1α. Archives of Biochemistry and Bi-ophysics, 545, 74-82.
https://doi.org/10.1016/j.abb.2013.12.023
[38] Gupta, B., Chiang, L., Chae, K. and Lee, D.-H. (2013) Phenethyl Isothiocyanate Inhibits Hypoxia-Induced Accumulation of HIF-1α and VEGF Expression in Human Glioma Cells. Food Chemistry, 141, 1841-1846.
https://doi.org/10.1016/j.foodchem.2013.05.006
[39] Park, J.J., Hwang, S.J., Park, J.-H. and Lee, H.-J. (2015) Chlorogenic Acid Inhibits Hypoxia-Induced Angiogenesis via Down-Regulation of the HIF-1α/AKT Pathway. Cellular Oncology, 38, 111-118.
https://doi.org/10.1007/s13402-014-0216-2
[40] Cheng, X., Zhang, X., Cheng, W., et al. (2014) Tumor-Specific Delivery of Histidine-Rich Glycoprotein Suppresses Tumor Growth and Metastasis by Anti-angiogenesis and Vessel Normalization. Current Gene Therapy, 14, 75-85.
https://doi.org/10.2174/1566523214666140305223912
[41] David, J.M., Owens, T.A., Inge, L.J., Bremner, R.M. and Rajasekaran, A.K. (2014) Gramicidin A Blocks Tumor Growth and Angiogenesis through Inhibition of Hypox-ia-Inducible Factor in Renal Cell Carcinoma. Molecular Cancer Therapeutics, 13, 788-799.
https://doi.org/10.1158/1535-7163.MCT-13-0891
[42] Serocki, M., Bartoszewska, S., Janaszak-Jasiecka, A., et al. (2018) MiRNAs Regulate the HIF Switch during Hypoxia: A Novel Therapeutic Target. Angiogenesis, 21, 183-202.
https://doi.org/10.1007/s10456-018-9600-2
[43] Ando, H., Ikeda, A., Tagami, M., et al. (2022) Oral Administra-tion of Sodium Bicarbonate Can Enhance the Therapeutic Outcome of Doxil® via Neutralizing the Acidic Tumor Micro-environment. Journal of Controlled Release, 350, 414-420.
https://doi.org/10.1016/j.jconrel.2022.08.031
[44] Parks, S.K. and Pouysségur, J. (2017) Targeting pH Regulating Proteins for Cancer Therapy—Progress and Limitations. Seminars in Cancer Biology, 43, 66-73.
https://doi.org/10.1016/j.semcancer.2017.01.007
[45] Wiedmann, R.M., von Schwarzenberg, K., Palamidessi, A., et al. (2012) The V-ATPase-Inhibitor Archazolid Abrogates Tumor Metastasis via Inhibition of Endocytic Activation of the Rho-GTPase Rac1. Cancer Research, 72, 5976- 5987.
https://doi.org/10.1158/0008-5472.CAN-12-1772
[46] Rath, S., Liebl, J., Fürst, R., Vollmar, A.M. and Zahler, S. (2014) Regulation of Endothelial Signaling and Migration by V-ATPase. Angiogenesis, 17, 587-601.
https://doi.org/10.1007/s10456-013-9408-z
[47] Fliedner, S.M., Yang, C., Thompson, E., et al. (2015) Potential Therapeutic Target for Malignant Paragangliomas: ATP Synthase on the Surface of Paraganglioma Cells. American Journal of Cancer Research, 5, 1558-1570.
[48] Zhou, X., Yan, T., Huang, C., et al. (2018) Melanoma Cell-Secreted Exosomal miR-155-5p Induce Proangiogenic Switch of Cancer-Associated Fibroblasts via SOCS1/JAK2/STAT3 Sig-naling Pathway. Journal of Experimental & Clinical Cancer Research, 37, Article No. 242.
https://doi.org/10.1186/s13046-018-0911-3
[49] Guan, J., Zhang, H., Wen, Z., et al. (2014) Retinoic Acid Inhibits Pancreatic Cancer Cell Migration and EMT through the Downregulation of IL-6 in Cancer Associated Fibroblast Cells. Cancer Letters, 345, 132-139
https://doi.org/10.1016/j.canlet.2013.12.006
[50] Crawford, Y., Kasman, I., Yu, L., et al. (2009) PDGF-C Medi-ates the Angiogenic and Tumorigenic Properties of Fibroblasts Associated with Tumors Refractory to Anti-VEGF Treatment. Cancer Cell, 15, 21-34.
https://doi.org/10.1016/j.ccr.2008.12.004
[51] Nagasaki, T., Hara, M., Nakanishi, H., et al. (2014) Interleukin-6 Released by Colon Cancer-Associated Fibroblasts Is Critical for Tumour Angiogenesis: Anti-Interleukin-6 Receptor An-tibody Suppressed Angiogenesis and Inhibited Tumour–Stroma Interaction. British Journal of Cancer, 110, 469-478.
https://doi.org/10.1038/bjc.2013.748
[52] Zhou, F., Wang, M., Luo, T., Qu, J. and Chen, W.R. (2021) Pho-to-Activated Chemo-Immunotherapy for Metastatic Cancer Using a Synergistic Graphene Nanosystem. Biomaterials, 265, Article ID: 120421.
https://doi.org/10.1016/j.biomaterials.2020.120421
[53] Cirri, P. and Chiarugi, P. (2011) Cancer Associated Fibro-blasts: The Dark Side of the Coin. American Journal of Cancer Research, 1, 482-497.
[54] Salmaninejad, A., Valilou, S.F., Soltani, A., et al. (2019) Tumor-Associated Macrophages: Role in Cancer Development and Therapeutic Implica-tions. Cellular Oncology, 42, 591-608.
https://doi.org/10.1007/s13402-019-00453-z
[55] Kioi, M., Vogel, H., Schultz, G., et al. (2010) Inhibition of Vasculogenesis, But Not Angiogenesis, Prevents the Recurrence of Glioblastoma after Irradiation in Mice. Journal of Clinical Investigation, 120, 694-705.
[56] Fu, L.-Q., Du, W.-L., Cai, M.-H., et al. (2020) The Roles of Tumor-Associated Macrophages in Tumor Angiogenesis and Metastasis. Cellular Immunology, 353, Article ID: 104119.
https://doi.org/10.1016/j.cellimm.2020.104119
[57] Nakanishi, Y., Nakatsuji, M., Seno, H., et al. (2011) COX-2 i Inhibition Alters the Phenotype of Tumor-Associated Macrophages From M2 to M1 in ApcMin/+ Mouse Polyps. Carcinogenesis, 32, 1333-13339.
https://doi.org/10.1093/carcin/bgr128
[58] Liu, Y., Zhao, L., Li, D., et al. (2013) Microvesicle-Delivery miR-150 Promotes Tumorigenesis by up-Regulating VEGF, and the Neutralization of miR-150 Attenuate Tumor Development. Protein & Cell, 4, 932-941.
https://doi.org/10.1007/s13238-013-3092-z
[59] Huang, H. (2018) Matrix Metalloproteinase-9 (MMP-9) as a Cancer Biomarker and MMP-9 Biosensors: Recent Advances. Sensors, 18, Article No. 3249.
https://doi.org/10.3390/s18103249
[60] Li, Z., Zheng, Z., Li, C., et al. (2020) Therapeutic Drugs and Drug Deliv-ery Systems Targeting Stromal Cells for Cancer Therapy: A Review. Journal of Drug Targeting, 28, 714-726.
https://doi.org/10.1080/1061186X.2020.1744157
[61] Guo, Y., Wang, D., Song, Q., et al. (2015) Erythrocyte Membrane-Enveloped Polymeric Nanoparticles as Nanovaccine for Induction of Antitumor Immunity against Melanoma. ACS Nano, 9, 6918-6933.
https://doi.org/10.1021/acsnano.5b01042
[62] Zhao, Y., Wang, H., Yang, Y., et al. (2020) Mannose-Modified Liposome Co-Delivery of Human Papillomavirus Type 16 E7 Peptide and CpG Oligodeoxynucleotide Adjuvant En-hances Antitumor Activity against Established Large TC-1 Grafted Tumors in Mice. International Journal of Nanomedi-cine, 15, 9571-9586.
https://doi.org/10.2147/IJN.S275670
[63] Chen, C.-A., Ho, C.-M., Chang, M.-C., et al. (2010) Metronomic Chemotherapy Enhances Antitumor Effects of Cancer Vaccine by Depleting Regulatory T Lympho-cytes and Inhibiting Tumor Angiogenesis. Molecular Therapy, 18, 1233- 1243.
https://doi.org/10.1038/mt.2010.34
[64] Cao, M., Xu, Y., Youn, J.-I., et al. (2011) Kinase Inhibitor Sorafenib Modulates Immunosuppressive Cell Populations in a Murine Liver Cancer Model. Laboratory Investigation, 91, 598-608.
https://doi.org/10.1038/labinvest.2010.205