植物中的免疫系统研究进展
Research Progress of Immune System in Plants
DOI: 10.12677/HJAS.2023.134045, PDF, HTML, XML, 下载: 191  浏览: 613 
作者: 戴贤甬:浙江师范大学生命科学学院,浙江 金华
关键词: 植物免疫PTIETIPlant Immunity PTI ETI
摘要: 植物通过先天免疫反应抵抗病原体的攻击,先天免疫反应由细胞表面定位模式识别受体(PRRs)和细胞内核苷酸结合域富含亮氨酸重复序列受体(NLRs)启动,分别导致模式触发免疫(PTI)和效应子触发免疫(ETI)。尽管这两类免疫受体涉及不同的激活机制,似乎需要不同的早期信号成分,但PTI和ETI最终收敛为许多类似的下游反应,尽管幅度和动态不同。越来越多的证据表明,PRR介导的信号级联和NLR介导的信号级联之间存在复杂的相互作用,以及两者共享的共同信号成分。未来对PRR启动和NLR启动的免疫之间信号协同机制的研究将使我们更全面地了解植物免疫系统。本文综述了我们对植物先天免疫两层之间关系认识的最新进展。
Abstract: Plants resist attacks by pathogens via innate immune responses, which are initiated by cell surface-localized pattern-recognition receptors (PRRs) and intracellular nucleotide-binding domain leucine-rich repeat containing receptors (NLRs) leading to pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), respectively. Although the two classes of immune receptors involve different activation mechanisms and appear to require different early signaling components, PTI and ETI eventually converge into many similar downstream responses, albeit with distinct amplitudes and dynamics. Increasing evidence suggests the existence of intricate interactions between PRR-mediated and NLR-mediated signaling cascades as well as common signaling components shared by both. Future investigation of the mechanisms underlying signal collaboration between PRR-initiated and NLR-initiated immunity will enable a more complete understanding of the plant immune system. This review discusses recent advances in our understanding of the relationship between the two layers of plant innate immunity.
文章引用:戴贤甬. 植物中的免疫系统研究进展[J]. 农业科学, 2023, 13(4): 326-336. https://doi.org/10.12677/HJAS.2023.134045

1. 引言

植物依靠PAMP触发的免疫(PTI)和效应子触发的免疫(ETI)来检测入侵病原体并激活防御机制。目前,有越来越多的研究表明,PTI和ETI途径之间并不是相互独立的,PTI和ETI中的重要成分对于PTI和ETI都是必需的,并且PTI和ETI之间可以互相串联增强信号以实现更强的植物防御。然而,关于PTI和ETI之间相互作用的具体机制并不明确,还有待进一步的研究。

1.1. 植物的免疫系统

1.1.1. 植物的PTI与ETI

植物已经进化出了两层先天免疫系统来检测和应对各种生物的攻击 [1] [2] [3] 。通过植物细胞表面上的模式识别受体PRRs (Pattern-recognition receptors)识别病原体相关分子模式(Pathogen-associated molecular patterns, PAMPs)或损伤相关分子模式(Damage-associated molecular patterns, DAMPs)后,触发的第一层免疫,称为PTI反应 [1] 。PTI在抑制植物叶片中病原菌的入侵 [4] [5] 和维持植物叶片内生菌群的稳态方面起着突出的作用 [6] 。许多病原体,包括细菌、真菌、卵菌和线虫,为了促进入侵和增殖,将毒力相关分子,如通过细菌III型分泌系统(T3SS)分泌的效应子进入植物细胞或外质体,以抑制宿主免疫 [7] [8] 。为了对抗病原体的毒性,植物在NLRs (Intracellular nucleotide-binding domain leucine-rich repeat containing receptors)直接或间接识别效应物时,会激活第二种通常更强的免疫信号,称为ETI反应(Effector-triggered immunity) [1] 。Jones和Dangl在2006年提出了一个有影响力的“之字形”模型来描述两层植物免疫系统对不同病原体的生理信息 [1] ,然而PTI和ETI如何对免疫的定量或/和定性输出做出贡献,以及当两者都被激活时它们是如何共同工作的尚不清楚。

值得注意的是,PTI和ETI涉及两种不同类型受体的激活(PRRs和NLRs)和早期信号传导的不同步骤 [9] [10] [11] 。然而,它们也导致了许多重叠的下游输出,如活性氧(ROS)爆发、钙通量、丝裂原活化蛋白激酶(MAPK)级联、转录重编程和植物激素信号 [12] [13] [14] ,表明这两种信号级联的收敛点和交叉点。近年来,在了解PTI和ETI如何相互作用以确保强大的免疫方面也取得了很大的进展。

PTI信号在PRRs直接识别PAMPs或DAMPs时被激活,目前包括两种类型的细胞表面蛋白,RLKs (Receptor-like kinases)和RLPs (Receptor-like proteins) [15] 。这些蛋白质的细胞外部分通常含有富含亮氨酸的重复序列LRR (Leucine-rich repeats) (如FLS2, EFR, PEPRs和RLP23),植物赖氨酸基序LysM (如LYK4/5)或s-凝集素结构域(如LORE) [9] ,它们感知来自于微生物或植物的配体。RLKs含有细胞内激酶结构域,而RLPs缺乏激酶结构域,细胞内尾巴短或无尾,通常与接头蛋白SOBIR1复合物用于配体识别 [16] [17] [18] 。在配体结合后,RLKs或RLP-SOBIR1受体招募共受体如BAK1或CERK1形成受体复合体,其中发生反式磷酸化 [16] [19] [20] [21] 。激活的异聚受体复合物进一步磷酸化类受体细胞质激酶RLCKs (Receptor-like cytoplasmic kinases) [22] [23] [24] ,随后激活多种底物蛋白,导致多种生理输出,包括ROS的产生、气孔关闭、MAPK的激活和防御激素的产生 [12] [13] [14] 。例如,在拟南芥中,RLCK家族中研究最好的成员之一BIK1,当植物在充足的Ca2+条件下生长时,直接激活环核苷酸门控离子通道CNGC2/4,用于钙(Ca2+)内流 [25] ,而在PAMP处理时,激活保卫细胞中的Ca2+渗透通道OSCA1.3用于气孔关闭 [26] 。PTI中是否存在额外的钙通道(例如在叶肉细胞和/或在不同钙浓度下)将是未来研究的一个有趣的主题。同样,水稻OsRLCK185在激活OsCNGC9的Ca2+内流和MAPK信号级联以响应PAMPs方面发挥着重要作用 [27] [28] [29] 。

在NLRs直接或间接识别病原体效应物后,ETI信号被启动,ETI的激活导致抗性增强和超敏反应(Hypersensitive response, HR) [10] 。大多数植物中的NLRs包含三个结构域,一个N端可变结构域、中间核苷酸结合结构域和C端LRR结构域 [11] 。NLRs根据其N端结构域可分为三大类,包括线圈(CC)型NLRs (CNLs)、Toll/白细胞介素-1受体/抵抗蛋白(TIR)型NLRs (TNLs)和抗白粉病8样结构域(RPW8)型NLR (RNLs) [11] [30] 。它们可能在识别过程中起到“传感器”或“助手”的作用。新兴的关于辅助性NLRs的研究表明,它们在介导由传感器NLRs引发的ETI抵抗或超敏细胞死亡反应(HR)中起着重要作用 [31] [32] [33] [34] 。最近的突破包括确定了拟南芥CNL ZAR1“抗性小体”的三维结构,它采用了一种低聚态的“孔隙”结构,和来自烟草的TNLs Roq1和来自拟南芥的RPP1,它们形成了四聚体抗性小体,以及证明了TNLs在切割NAD+分子时的酶活性。这些进展为理解ETI信号转导机制提供了十分重要的机会 [35] - [40] 。与PTI早期信号的大量知识相比,NLR激活如何导致各种ETI下游事件在很大程度上仍然难以理解。有趣的是,多个RLCK蛋白如PBS1、PBL2和ZED1/ZRKs在NLR复合体中作为“诱饵”或“适配器”来启动ETI [23] [41] [42] [43] ,而BIK1在拟南芥中介导ETI相关的ROS的产生 [44] 。然而,尽管RLCK家族作为一个核心“枢纽”在PTI中唤起下游反应(如上所述),但RLCK (除BIK1外)是否广泛参与下游ETI反应仍在很大程度上未知。

1.1.2. PRR信号在ETI中的作用

尽管在PTI和ETI中有不同的配体感知和激活模式,但越来越多的证据表明这两个信号分支在功能上是相连的。例如,拟南芥中PTI共受体BAK1和BKK1对TNLs RPP2和RPP4介导的拟南芥霜霉病菌(Hyaloperonospora arabidopsidis, Hpa) Emoy2和Cala2的ETI相关病原体的限制是必需的 [45] 。最近的研究一致表明,在不同的PRR或共受体突变体,包括fls2/efrfls2/efr/cerk1bak1-5/bkk1-1bak1-5/bkk1-1/cerk1中 [44] [46] ,对携带AvrRpt2 (被CNL,RPS2识别)、AvrPphB (被CNL,RPS5识别)或AvrRps4 (被TNL,RPS4识别)的假单胞杆菌(Pseudomonas syrangae pv. Tomato DC3000, PST DC3000)的ETI相关抗性受到影响。有争议的地方在于,在这些研究中观察到的ETI相关的病原体生长限制实际上代表了“PTI + ETI”,因为无毒病原体同时携带PAMPs和效应子。为了清晰地解剖PTI和ETI之间的关系,一项使用PAMP单独处理、效应子单独转基因表达或两者同时进行的严谨研究表明,PRR信号通路对于ETI相关反应确实起到了至关重要的作用 [44] [46] 。

HR是ETI的标志性反应。研究表明,在PRR/共受体突变体,包括fls2,pepr1/2,fls2/efr/cerk1和bak1-5/bkk1-1/cerk1中,AvrRpt2激活RPS2后HR发育受损 [44] [47] 。同样,由PAMP或非致病性菌株(P. fluorescencePst DC3000 hrcC)激活PRR信号可以促进由同源NLRs识别的效应因子(即AvrRps4、ATR4、AvrRpt2、AvrRpm1和AvrPphB)诱导表达介导的HR [44] [46] 。值得注意的是,TNL介导的HR似乎特别依赖PRR信号,因为转基因表达AvrRps4和AvrRpp4 (不含PRR信号)分别激活RPS4和RPP4 NLRs不会导致宏观HR [48] 。有趣的是,Hatsugai等人在拟南芥中发现了一个ETI信号传导区,命名为EMPIS (ETI-Mediating and PTI-Inhibited Sector ),它被PRR信号抑制 [48] 。这种类型的PTI-ETI串联在拟南芥四重突变体dde2/ein2/pad4/sid2 (deps)中被发现,该突变体缺乏包括茉莉酮酸、乙烯、PAD4和水杨酸盐在内的多个信号区,在该突变体中,AvrRpt2触发和AvrRpm1触发的HR被PAMP处理所抑制 [48] 。PTI、防御激素和ETI之间可能存在复杂的相互作用,这是在不同植物背景下发现的不同PTI-ETI串联模式的潜在可能。除了HR,其他的ETI反应,如ROS的产生和MAPK级联的激活也由PRR信号调节,这支持了一个普遍的概念,即PTI共同调节多个ETI反应,但程度不同,且以NLR类型特定的方式。

1.1.3. ETI对PTI的调控

PTI和ETI之间的影响是相互的。最近的研究表明,PTI成分的上调是ETI的一个重要特征。多个NLRs的激活(即RPM1、RPS2、RPS5、RPS4和RPP4)以PTI独立的方式触发多个PRR信号组分的转录和蛋白质积累,包括BAK1、SOBIR1、BIK1/PBLs、RBOHD和MPK3 [44] [46] 。同样,N蛋白(一种TNL,在烟草中赋予对烟草花叶病毒的抗性)的激活导致WIPK (拟南芥MPK3的同源物)的从头合成 [49] 。此外,通过RRS1/RPS4激活ETI,其介导拟南芥对真菌病原体炭疽病(Colletotrichum higginsianum)的抗性 [50] ,增强了真菌PAMP几丁质引发的ROS产生和细胞死亡 [46] 。这表明不同效应子触发的ETI可以增强由多个PAMPs触发的PTI反应。

ETI增强PRR信号成分的具体机制尚不清楚。虽然外源SA处理可导致PRRs、MPK3和RBOHD在拟南芥和马铃薯中积累 [51] [52] [53] [54] ,但ETI过程中PRR信号成分的上调与ICS1 (SID2)无关,ICS1是参与SA生物合成的关键酶 [44] 。因此,SA本身似乎并不是导致PTI组分ETI上调的原因。奇怪的是,转录和翻译在PTI期间相关性很差 [55] ,但在ETI期间相关性很好 [56] [57] 。在激活后不久,PTI通过蛋白翻转或失活进行负调控,以防止免疫反应延长 [9] 。因此,PTI组分的ETI增强可能涉及转录和翻译机制,这仍有待进一步探索。

1.2. PTI和ETI的免疫反应重叠

1.2.1. ROS产生

ROS作为关键的防御和信号分子,在PTI和ETI中都被诱导产生。虽然PTI诱导快速和短暂的ROS爆发,但ETI与双相ROS爆发相关,第二个峰值通常比第一个峰值更强,更持久 [58] [59] [60] [61] 。ROS在PTI中的产生机制已被广泛研究。多种PTI相关蛋白激酶,包括BIK1/PBLs、CPKs、SIK1和CRK2,直接磷酸化RBOHD,触发拟南芥细胞外ROS的产生 [30] [62] [63] [64] [65] 。RBOHD在RPS2启动和RPM1启动的ETI过程中也介导ROS的产生,RBOHD在Ser343和Ser347残基上的磷酸化对PTI和ETI中的ROS产生都很重要 [44] [66] [67] 。最近的两项研究发现中,令人惊讶的是,第二次ROS爆发(在ETI期间)需要植物经过PAMP处理 [44] [46] 。这表明,ETI相关ROS的第二阶段依赖于PRR信号。此外,在ETI过程中,PRR信号是RBOHD最大磷酸化所必需的,而NLR信号则上调了RBOHD的水平 [44] [46] ,强调了PRR和NLR信号的双重要求,以确保ETI过程中强大的ROS生成。RBOHD转录物和蛋白质在ETI过程中是如何上调的尚不清楚,而在本氏烟(Nicotiana benthamiana)中的相关研究显示这可能涉及MAPK-WRKY模块 [68] 。除了RBOH介导的ROS外,ROS也可以在感染期间通过膜上或叶绿体内的过氧化物酶在细胞外产生 [69] [70] [71] 。研究PTI和ETI在这些过程中是否表现出类似的协调将是十分有意义的。

1.2.2. Ca2 +涌入

PRR信号的激活导致Ca2+快速和短暂地内流进入植物细胞,而Ca2+内流对许多后续的免疫反应十分重要,包括ROS的产生和气孔免疫 [26] [72] 。另一方面,NLR信号传导诱导较慢但更持久的Ca2+内流 [73] 。先前的研究表明,两个独立的拟南芥突变体dnd1dnd2(defense, no death),其中两个钙通道CNGC2和CNGC4 [74] [75] [76] 发生突变,显示出组成性的SA升高,细菌抗性增强,有趣的是,AvrRpt2/RPS2介导的HR在很大程度上减弱。将SA代谢相关基因NahG引入dnd2突变体中,消除了组成性升高的SA和增强的抗性,但仅对HR表型产生微弱影响,进一步表明CNGC2和CNGC4参与了ETI相关的HR [77] 。此外,拟南芥中的CNGC11和CNGC12在ETI对一种致病霜霉菌(Hyaloperonospora parasitica) Emwa1的抗性中发挥了重要作用 [78] 。然而,Ca2+内流在ETI中是如何被调节的尚不清楚。最近对CNL型ZAR1抗病小体体的研究揭示了一种漏斗状结构 [36] ,并表明膜上的ZAR1复合物可能存在通道活性 [3] 。鉴于CNGC2/4和CNGC11/12在HR和ETI抗性中的作用,这些蛋白是否参与CNL介导的Ca2+内流值得进一步研究。最近确定的TNL抗病小体结构表明CNLs和TNLs的激活机制既有相似之处,也有差异 [37] [38] 。此外,一些CNLs和TNLs不在膜上定位,因此不太可能作为引导Ca2+直接涌入的通道。这些NLRs是否通过下游的“成孔”成分(例如“CNL型”辅助性NLRs,鉴于辅助性NLRs和ZAR1之间的相似性 [37] )或其他钙释放机制(例如TNLs的NAD+/NADP+降解产物)触发Ca2+内流是未来值得探索的领域 [79] 。未来的研究预计将揭示ETI相关Ca2+特征的基础及其与PTI中涉及的Ca2+通道的关系。

1.2.3. MAPK激活

MAPK级联的快速激活是PRR信号通路的一个众所周知的特征 [80] 。NLR信号通路的激活会触发更慢但更持久的MAPK激活 [71] [81] 。虽然在PTI过程中,RLCK家族激酶在PAMP感知后直接磷酸化MAPKKKs,但NLR信号通路如何激活MAPK级联仍有待阐明 [82] 。有趣的是,作为TNLs的RRS1/RPS4和RPP4在没有PRR信号的情况下,在表达AvrRps4或AvrRpp4的转基因拟南芥中不能触发MAPK的激活 [46] [83] ,这表明TNL相关的MAPK磷酸化信号是通过PTI途径实现的。同样,诱导过表达EDS1/PAD4也不能激活MAPKs [84] 。然而,RPS2、RPS5和RPM1等CNLs对MAPK级联的激活似乎与PRR信号无关 [44] ,表明PRRs和CNLs可能通过不同的机制激活MAPK级联 [44] [45] [46] 。PRR信号通路和CNL信号通路是否汇聚以激活MAPKs仍有待研究。

1.2.4. 转录重新编程

许多研究使用了不同的病原菌系统,比较研究了接种有毒病原体和无毒病原体的植物的表达谱 [85] - [90] 。结果支持了一种流行的观点,即兼容和不兼容的相互作用在宿主基因表达中引发了大量重叠的变化,而不兼容的相互作用通常与更快、更强的反应相关 [89] [90] [91] [92] 。尽管这些转录组研究很有成效,但由于野生型病原体含有大量干扰PTI和ETI分支的效应因子,因此不能轻易解开PTI-ETI之间的关系 [7] 。为了避免这种并发反应,最近的研究利用天然或工程假单胞菌菌株(P. fluorescence菌株Pf0-1或Pst DC3000 D36E,不含内源性效应基因),提供单一的无毒效应物(例如AvrRpt2或AvrRps4)来检测PTI和ETI期间的免疫基因转录 [44] [93] 。研究发现,与PTI诱导菌相比,接种ETI诱导菌在拟南芥Col-0中诱导了一个全局范围内相似但更强的表达模式,这与之前的研究一致。有趣的是,在拟南芥PRR/共受体bak1-5/bkk1-1/cerk1三突变体中,由D36E传递的AvrRpt2诱导的RPS2信号通路也在全局上修复了PTI相关基因的表达缺陷 [44] 。然而,在同一突变体中,ETI抗性和HR在很大程度上受到损害,这表明PTI相关基因的转录激活不足以触发正常的ETI反应。

同样,对有条件表达ETI诱导效应子 [48] [83] 或大麦NLR的N端CC结构域MLA (Mildew resistance locus A) [94] 的转基因植物的转录组分析也显示PTI和ETI的基因表达模式高度相似。同样的研究还发现,拟南芥中的钙调素结合转录激活因子3 (Calmodulin-binding transcription activator 3,CAMTA3)在PTI介导和ETI介导的转录调控中都起着重要作用,因为CAMTA3结合位点富集在上调的PTI和ETI基因的启动子中 [94] 。

1.2.5. PTI和ETI的其他可能会聚点

除了上述免疫调节因子外,其他植物成分也在PTI和ETI中发挥双重作用,提示这两种途径存在额外的汇聚点。例如,两个拟南芥受体样激酶,ANXUR1 (ANX1)和ANX2,与BAK1和BIK1相互作用,干扰配体诱导的PRR复合体的形成,与RPS2相互作用,促进RPS2降解,从而负调控PTI和ETI [95] 。同样,水稻OsRac1与PRR共受体OsCERK1和NLR Pit相互作用形成不同的复合物,并正向转导PTI和ETI信号 [96] 。OsRac1在PTI和ETI过程中是否受到相似或不同的调控,以及OsRac1在两种不同配合物中的时空协调将是未来研究的热点。miR472-RDR6 (RNA-dependent RNA polymerase 6,RNA依赖RNA聚合酶6)基因沉默通路通过对编码CNL蛋白的mRNA亚群的转录后调控,负调控拟南芥中的PTI和ETI,尽管对PTI的影响可能是间接的 [97] [98] 。有趣的是,最近的研究表明,辅助NLRs ADR1/NRG1、EDS1、PAD4和SAG101这些此前被认为是ETI的关键成分的辅助NLRs,对于拟南芥中经过微生物PAMPs处理后充分激活的PTI反应是必不可少的 [99] [100] ,。因此,辅助NLRs和EDS1/PAD4/SAG101可能是PTI和ETI的额外交叉点。这些成分如何被PRRs和NLRs交叉调节的细节仍有待确定。此外,PTI通路的关键组分,如BAK1和MPK4等,它们受到NLRs的保护 [101] [102] [103] ,这表明PTI和ETI在不同情况下存在串联。

2. 总结

长期以来,人们一直认为ETI是一种“加速和放大的PTI反应” [1] 。而事实上,最近的研究为PRR介导的和NLR介导的免疫信号之间的复杂串扰提供了实验证据,并开始解开PTI和ETI之间越来越多的联系点。这些结果表明似乎PTI是对抗病原体(以及大量共生微生物)的主要防御机制。强毒性病原体利用效应物抑制PTI是其发病机制之一。NLR信号通路上调PRR信号的关键成分,补偿病原体或植物内源性负反馈对PTI成分的衰减 [9] [46] 。在这个改进的模型中,ETI不是一个单独的免疫途径,而是一个依赖于PTI机制有效运作的放大模块。这其中还有许多未解的问题。重要的是,目前尚不清楚NLR信号通路在机制上如何会聚到PRR信号通路。解决这一问题对于理解PTI和ETI对许多免疫输出的共同调节至关重要,如先前的研究所示 [68] [94] [95] [96] [97] 。同样,研究主要在拟南芥中发现的PTI和ETI之间的关系是否广泛适用于其他宿主–病原体系统也很重要。最后,对PTI-ETI关系的进一步了解是否能激发通过操纵PTI成分来提高ETI的创新策略,并为现代农业中高效和广谱的疾病控制奠定基础,仍有待观察。

参考文献

[1] Jones, J.D.G. and Dangl, J.L. (2006) The Plant Immune System. Nature, 444, 323-329.
https://doi.org/10.1038/nature05286
[2] Boller, T. and Yang, S. (2009) Innate Immunity in Plants: An Arms Race between Pattern Recognition Receptors in Plants and Effectors in Microbial Pathogens. Science, 324, 742-744.
https://doi.org/10.1126/science.1171647
[3] Zhou, J.-M. and Zhang, Y. (2020) Plant Immunity: Danger Percep-tion and Signaling. Cell, 181, 978-989.
https://doi.org/10.1016/j.cell.2020.04.028
[4] Zipfel, C., Robatzek, S., Navarro, L., et al. (2004) Bacterial Disease Resistance in Arabidopsis through Flagellin Perception. Nature, 428, 764-767.
https://doi.org/10.1038/nature02485
[5] Melotto, M., Underwood, W., Koczan, J., Nomura, K. and He, S.Y. (2006) Plant Stomata Function in Innate Immunity against Bacterial Invasion. Cell, 126, 969-80.
https://doi.org/10.1016/j.cell.2006.06.054
[6] Chen, T., Nomura, K., Wang, X., et al. (2020) A Plant Genetic Network for Preventing Dysbiosis in the Phyllosphere. Nature, 580, 653-657.
https://doi.org/10.1038/s41586-020-2185-0
[7] Xin, X.-F., Kvitko, B. and He, S.Y. (2018) Pseudomonas syrin-gae: What It Takes to Be a Pathogen. Nature Reviews Microbiology, 16, 316-328.
https://doi.org/10.1038/nrmicro.2018.17
[8] Rocafort, M., Fudal, I. and Mesarich, C.H. (2020) Apoplastic Effec-tor Proteins of Plant-Associated Fungi and Oomycetes. Current Opinion in Plant Biology, 56, 9-19.
https://doi.org/10.1016/j.pbi.2020.02.004
[9] Couto, D. and Zipfel, C. (2016) Regulation of Pattern Recognition Receptor Signalling in Plants. Nature Reviews Immunology, 16, 537-552.
https://doi.org/10.1038/nri.2016.77
[10] Cui, H., Tsuda, K. and Parker, J.E. (2015) Effector-Triggered Immunity: From Pathogen Perception to Robust Defense. Annual Review of Plant Biology, 66, 487-511.
https://doi.org/10.1146/annurev-arplant-050213-040012
[11] Jones, J.D.G., Vance, R.E. and Dangl, J.L. (2016) Intracellular Innate Immune Surveillance Devices in Plants and Animals. Science, 354, eaaf6395.
https://doi.org/10.1126/science.aaf6395
[12] Tsuda, K. and Katagiri, F. (2010) Comparing Signaling Mechanisms Engaged in Pattern-Triggered and Effector-Triggered Immunity. Current Opinion in Plant Biology, 13, 459-465.
https://doi.org/10.1016/j.pbi.2010.04.006
[13] Thulasi Devendrakumar, K., Li, X. and Zhang, Y. (2018) MAP Ki-nase Signalling: Interplays between Plant PAMP- and Effector-Triggered Immunity. Cellular and Molecular Life Scienc-es, 75, 2981-2989.
https://doi.org/10.1007/s00018-018-2839-3
[14] Peng, Y., van Wersch, R. and Zhang, Y. (2017) Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity. Molecular Plant-Microbe Interac-tions, 31, 403-409.
https://doi.org/10.1094/MPMI-06-17-0145-CR
[15] Boutrot, F. and Zipfel, C. (2017) Function, Discovery, and Exploitation of Plant Pattern Recognition Receptors for Broad-Spectrum Disease Resistance. Annual Review of Phyto-pathology, 55, 257-286.
https://doi.org/10.1146/annurev-phyto-080614-120106
[16] Albert, I., Böhm, H., Albert, M., et al. (2015) An RLP23-SOBIR1-BAK1 Complex Mediates NLP-Triggered Immunity. Nature Plants, 1, Article No. 15140.
https://doi.org/10.1038/nplants.2015.140
[17] Liebrand, T.W.H., van den Berg, G.C.M., Zhang, Z., et al. (2013) Receptor-Like Kinase SOBIR1/EVR Interacts with Receptor-Like Proteins in Plant Immunity against Fungal Infection. Proceedings of the National Academy of Sciences of the United States of America, 110, 10010-10015.
https://doi.org/10.1073/pnas.1220015110
[18] Zhang, W., Fraiture, M., Kolb, D., et al. (2013) Arabidopsis RECEPTOR-LIKE PROTEIN30 and Receptor-Like Kinase SUPPRESSOR OF BIR1-1/EVERSHED Mediate Innate Immunity to Necrotrophic Fungi. The Plant Cell, 25, 4227-4241.
https://doi.org/10.1105/tpc.113.117010
[19] Chinchilla, D., Zipfel, C., Robatzek, S., et al. (2007) A Flagel-lin-Induced Complex of the Receptor FLS2 and BAK1 Initiates Plant Defence. Nature, 448, 497-500.
https://doi.org/10.1038/nature05999
[20] Cao, Y., Liang, Y., Tanaka, K., et al. (2014) The Kinase LYK5 Is a Major Chitin Receptor in Arabidopsis and Forms a Chitin-Induced Complex with Related Kinase CERK1. elife, 3, e03766.
https://doi.org/10.7554/eLife.03766
[21] Sun, Y., Li, L., Macho, A.P., et al. (2013) Structural Basis for Flg22-Induced Activation of the Arabidopsis FLS2-BAK1 Immune Complex. Science, 342, 624-628.
https://doi.org/10.1126/science.1243825
[22] Lu, D.P., Wu, S.J., Gao, X.Q., et al. (2010) A Receptor-Like Cyto-plasmic Kinase, BIK1, Associates with a Flagellin Receptor Complex to Initiate Plant Innate Immunity. Proceedings of the National Academy of Sciences of the United States of America, 107, 496-501.
https://doi.org/10.1073/pnas.0909705107
[23] Zhang, J., Li, W., Xiang, T., et al. (2010) Receptor-Like Cytoplas-mic Kinases Integrate Signaling from Multiple Plant Immune Receptors and Are Targeted by a Pseudomonas syringae Effector. Cell Host & Microbe, 7, 290-301.
https://doi.org/10.1016/j.chom.2010.03.007
[24] Liang, X. and Zhou, J.-M. (2018) Receptor-Like Cytoplasmic Ki-nases: Central Players in Plant Receptor Kinase-Mediated Signaling. Annual Review of Plant Biology, 69, 267-299.
https://doi.org/10.1146/annurev-arplant-042817-040540
[25] Tian, W., Hou, C., Ren, Z., et al. (2019) A Calmodu-lin-Gated Calcium Channel Links Pathogen Patterns to Plant Immunity. Nature, 572, 131-135.
https://doi.org/10.1038/s41586-019-1413-y
[26] Thor, K., Jiang, S., Michard, E., et al. (2020) The Calci-um-Permeable Channel OSCA1.3 Regulates Plant Stomatal Immunity. Nature, 585, 569-573.
https://doi.org/10.1038/s41586-020-2702-1
[27] Wang, J., Liu, X.I., Zhang, A.N., et al. (2019) A Cyclic Nucleo-tide-Gated Channel Mediates Cytoplasmic Calcium Elevation and Disease Resistance in Rice. Cell Research, 29, 820-831.
https://doi.org/10.1038/s41422-019-0219-7
[28] Wang, C., Wang, G., Zhang, C., et al. (2017) Os-CERK1-Mediated Chitin Perception and Immune Signaling Requires Receptor-Like Cytoplasmic Kinase 185 to Activate an MAPK Cascade in Rice. Molecular Plant, 10, 619-633.
https://doi.org/10.1016/j.molp.2017.01.006
[29] Yamada, K., Yamaguchi, K., Yoshimura, S., Terauchi, A. and Kawasaki, T. (2017) Conservation of Chitin-Induced MAPK Signaling Pathways in Rice and Arabidopsis. Plant and Cell Physiology, 58, 993-1002.
https://doi.org/10.1093/pcp/pcx042
[30] Jubic, L.M., Saile, S., Furzer, O.J., El Kasmi, F. and Dangl, J.L. (2019) Help Wanted: Helper NLRs and Plant Immune Responses. Current Opinion in Plant Biology, 50, 82-94.
https://doi.org/10.1016/j.pbi.2019.03.013
[31] Qi, T., Seong, K., Thomazella, D.P.T., et al. (2018) NRG1 Func-tions Downstream of EDS1 to Regulate TIR-NLR-Mediated Plant Immunity in Nicotiana benthamiana. Proceedings of the National Academy of Sciences of the United States of America, 115, E10979-E10987.
https://doi.org/10.1073/pnas.1814856115
[32] Castel, B., Ngou, P.-M., Cevik, V., et al. (2019) Diverse NLR Im-mune Receptors Activate Defence via the RPW8-NLR NRG1. New Phytologist, 222, 966-980.
https://doi.org/10.1111/nph.15659
[33] Wu, Z., Li, M., Dong, O.X., et al. (2019) Differential Regulation of TNL-Mediated Immune Signaling by Redundant Helper CNLs. New Phytologist, 222, 938-953.
https://doi.org/10.1111/nph.15665
[34] Saile, S.C., Jacob, P., Castel, B., et al. (2020) Two Unequally Redundant “Helper” Immune Receptor Families Mediate Arabidopsis thaliana Intracellular “Sensor” Immune Receptor Functions. PLOS Biology, 18, e3000783.
https://doi.org/10.1371/journal.pbio.3000783
[35] Wang, J., Wang, J., Hu, M., et al. (2019) Ligand-Triggered Al-losteric ADP Release Primes a Plant NLR Complex. Science, 364, eaav5868.
https://doi.org/10.1126/science.aav5868
[36] Wang, J., Hu, M., Wang, J., et al. (2019) Reconstitution and Structure of a Plant NLR Resistosome Conferring Immunity. Science, 364, eaav5870.
https://doi.org/10.1126/science.aav5870
[37] Ma, S., Lapin, D., Liu, L., et al. (2020) Direct Pathogen-Induced As-sembly of an NLR Immune Receptor Complex to form a Holoenzyme. Science, 370, eabe3069.
https://doi.org/10.1126/science.abe3069
[38] Martin, R., Qi, T., Zhang, H., et al. (2020) Structure of the Activated ROQ1 Resistosome Directly Recognizing the Pathogen Effector XopQ. Science, 370, eabd9993.
https://doi.org/10.1126/science.abd9993
[39] Horsefield, S., Burdett, H., Zhang, X., et al. (2019) NAD+ Cleavage Activity by Animal and Plant TIR Domains in Cell Death Pathways. Science, 365, 793-799.
https://doi.org/10.1126/science.aax1911
[40] Wan, L., Essuman, K., Anderson, R.G., et al. (2019) TIR Domains of Plant Immune Receptors Are NAD+-Cleaving enzymes That Promote Cell Death. Science, 365, 799-803.
https://doi.org/10.1126/science.aax1771
[41] Shao, F., Golstein, C., Ade, J., et al. (2003) Cleavage of Arabidopsis PBS1 by a Bacterial Type III Effector. Science, 301, 1230-1233.
https://doi.org/10.1126/science.1085671
[42] Wang, G., Roux, B., Feng, F., et al. (2015) The Decoy Substrate of a Pathogen Effector and a Pseudokinase Specify Pathogen-Induced Modified-Self Recognition and Immunity in Plants. Cell Host & Microbe, 18, 285-295.
https://doi.org/10.1016/j.chom.2015.08.004
[43] Bastedo, D.P., Khan, M., Martel, A., et al. (2019) Perturbations of the ZED1 Pseudokinase Activate Plant Immunity. PLOS Pathogens, 15, e1007900.
https://doi.org/10.1371/journal.ppat.1007900
[44] Yuan, M., Jiang, Z., Bi, G., et al. (2021) Pattern-Recognition Receptors Are Required for NLR-Mediated Plant Immunity. Nature, 592, 105-109.
https://doi.org/10.1038/s41586-021-03316-6
[45] Roux, M., Schwessinger, B., Albrecht, C., et al. (2011) The Ar-abidopsis Leucine-Rich Repeat Receptor-Like Kinases BAK1/SERK3 and BKK1/SERK4 Are Required for Innate Im-munity to Hemibiotrophic and Biotrophic Pathogens. The Plant Cell, 23, 2440-2455.
https://doi.org/10.1105/tpc.111.084301
[46] Ngou, B.P.M., Ahn, H.-K., Ding, P. and Jones, J.D.G. (2021) Mutual Potentiation of Plant Immunity by Cell-Surface and Intracellular Receptors. Nature, 592, 110-115.
https://doi.org/10.1038/s41586-021-03315-7
[47] Ma, Y., Walker, R.K., Zhao, Y. and Berkowitz, G.A. (2012) Linking Ligand Perception by PEPR Pattern Recognition Receptors to Cytosolic Ca2+ Elevation and Downstream Im-mune Signaling in Plants. Proceedings of the National Academy of Sciences of the United States of America, 109, 19852-19857.
https://doi.org/10.1073/pnas.1205448109
[48] Hatsugai, N., Igarashi, D., Mase, K., et al. (2017) A Plant Effector-Triggered Immunity Signaling Sector Is Inhibited by Pattern-Triggered Immunity. The EMBO Journal, 36, 2758-2769.
https://doi.org/10.15252/embj.201796529
[49] Zhang, S. and Klessig, D.F. (1998) Resistance Gene N-Mediated de Novo Synthesis and Activation of a Tobacco Mitogen-Activated Protein Kinase by Tobacco Mosaic Virus Infection. Proceedings of the National Academy of Sciences of the United States of America, 95, 7433-7438.
https://doi.org/10.1073/pnas.95.13.7433
[50] Narusaka, M., Shirasu, K., Noutoshi, Y., et al. (2009) RRS1 and RPS4 Provide a Dual Resistance-Gene System against Fungal and Bacterial Pathogens. The Plant Journal, 60, 218-226.
https://doi.org/10.1111/j.1365-313X.2009.03949.x
[51] Tateda, C., Zhang, Z., Shrestha, J., et al. (2014) Salicylic Acid Regulates Arabidopsis Microbial Pattern Receptor Kinase Levels and Signaling. The Plant Cell, 26, 4171-4187.
https://doi.org/10.1105/tpc.114.131938
[52] Beckers, G.J.M., Jaskiewicz, M., Liu, Y., et al. (2009) Mito-gen-Activated Protein Kinases 3 and 6 Are Required for Full Priming of Stress Responses in Arabidopsis thaliana. The Plant Cell, 21, 944-953.
https://doi.org/10.1105/tpc.108.062158
[53] Lukan, T., Pompe-Novak, M., Baebler, Š., et al. (2020) Precision Transcriptomics of Viral Foci Reveals the Spatial Regulation of Immune-Signaling Genes and Identifies RBOHD as an Important Player in the Incompatible Interaction Between Potato Virus Y and Potato. The Plant Journal, 104, 645-661.
https://doi.org/10.1111/tpj.14953
[54] Pogany, M., von Rad, U., Grun, S., et al. (2009) Dual Roles of Reactive Oxygen Species and NADPH Oxidase RBOHD in an Arabidopsis-Alternaria Pathosystem. Plant Physiology, 151, 1459-1475.
https://doi.org/10.1104/pp.109.141994
[55] Xu, G.Y., Greene, G.H., Yoo, H.J., et al. (2017) Global Translational Reprogramming Is a Fundamental Layer of Immune Regulation in Plants. Nature, 545, 487-490.
https://doi.org/10.1038/nature22371
[56] Meteignier, L.-V., El Oirdi, M., Cohen, M., et al. (2017) Translatome Analysis of an NB-LRR Immune Response Identifies Important Contributors to Plant Immunity in Arabidopsis. Journal of Experimental Botany, 68, 2333-2344.
https://doi.org/10.1093/jxb/erx078
[57] Yoo, H., Greene, G.H., Yuan, M., et al. (2020) Translational Regulation of Metabolic Dynamics during Effector-Triggered Immunity. Molecular Plant, 13, 88-98.
https://doi.org/10.1016/j.molp.2019.09.009
[58] Levine, A., Tenhaken, R., Dixon, R. and Lamb, C. (1994) H2O2 from the Oxidative Burst Orchestrates the Plant Hypersensitive Disease Resistance Response. Cell, 79, 583-593.
https://doi.org/10.1016/0092-8674(94)90544-4
[59] Chandra, S., Martin, G.B. and Low, P.S. (1996) The Pto Ki-nase Mediates a Signaling Pathway Leading to the Oxidative Burst in Tomato. Proceedings of the National Academy of Sciences of the United States of America, 93, 13393-13397.
https://doi.org/10.1073/pnas.93.23.13393
[60] Draper, J. (1997) Salicylate, Superoxide Synthesis and Cell Suicide in Plant Defence. Trends in Plant Science, 2, 162-165.
https://doi.org/10.1016/S1360-1385(97)01030-3
[61] Chai, H.B. and Doke, N. (1987) Activation of the Potential of Potato Leaf Tissue to React Hypersensitively to Phytophthora infestans by Cytospore Germination Fluid and the Enhancement of This Potential by Calcium Ions. Physiological and Molecular Plant Pathology, 30, 27-37.
https://doi.org/10.1016/0885-5765(87)90080-4
[62] Lee, D., Lal, N.K., Lin, Z.-J.D., et al. (2020) Regulation of Reactive Oxygen Species during Plant Immunity through Phosphorylation and Ubiq-uitination of RBOHD. Nature Communications, 11, Article No. 1838.
https://doi.org/10.1038/s41467-020-15601-5
[63] Dubiella, U., Seybold, H., Durian, G., et al. (2013) Calci-um-Dependent Protein Kinase/NADPH Oxidase Activation Circuit Is Required for Rapid Defense Signal Propagation. Proceedings of the National Academy of Sciences of the United States of America, 110, 8744-8749.
https://doi.org/10.1073/pnas.1221294110
[64] Zhang, M., Chiang, Y.-H., Toruno, T.Y., et al. (2018) The MAP4 Kinase SIK1 Ensures Robust Extracellular ROS Burst and Antibacterial Immunity in Plants. Cell Host & Microbe, 24, 379-391.
https://doi.org/10.1016/j.chom.2018.08.007
[65] Kimura, S., Hunter, K., Vaahtera, L., et al. (2020) CRK2 and C-Terminal Phosphorylation of NADPH Oxidase RBOHD Regulate Reactive Oxygen Species Production in Arabidop-sis. The Plant Cell, 32, 1063-1080.
https://doi.org/10.1105/tpc.19.00525
[66] Kadota, Y., Liebrand, T.W.H., Goto, Y., et al. (2019) Quantitative Phosphoproteomic Analysis Reveals Common Regulatory Mechanisms between Effector- and PAMP-Triggered Immun-ity in Plants. New Phytologist, 221, 2160-2175.
https://doi.org/10.1111/nph.15523
[67] Torres, M.A., Dangl, J.L. and Jones, J.D.G. (2002) Arabidopsis gp91phox Homologues AtrbohD and AtrbohF Are Required for Accumulation of Reactive Oxygen Intermediates in the Plant De-fense Response. Proceedings of the National Academy of Sciences of the United States of America, 99, 517-522.
https://doi.org/10.1073/pnas.012452499
[68] Adachi, H., Nakano, T., Miyagawa, N., et al. (2015) WRKY Tran-scription Factors Phosphorylated by MAPK Regulate a Plant Immune NADPH Oxidase in Nicotiana benthamiana. The Plant Cell, 27, 2645-2663.
https://doi.org/10.1105/tpc.15.00213
[69] Shang-Guan, K., Wang, M., Htwe, N.M.P.S., et al. (2018) Lipopoly-saccharides Trigger Two Successive Bursts of Reactive Oxygen Species at Distinct Cellular Locations. Plant Physiology, 176, 2543-2556.
https://doi.org/10.1104/pp.17.01637
[70] De Torres Zabala, M., Littlejohn, G., Jayaraman, S., et al. (2015) Chloro-plasts Play a Central Role in Plant Defence and Are Targeted by Pathogen Effectors. Nature Plants, 1, Article No. 15074.
https://doi.org/10.1038/nplants.2015.74
[71] Su, J.B., Yang, L.Y., Zhu, Q.K., et al. (2018) Active Photosynthetic Inhibition Mediated by MPK3/MPK6 Is Critical to Effector-Triggered Immunity. PLOS Biology, 16, e2004122.
https://doi.org/10.1371/journal.pbio.2004122
[72] Ogasawara, Y., Kaya, H., Hiraoka, G., et al. (2008) Synergistic Activation of the Arabidopsis NADPH Oxidase AtrbohD by Ca2+ and Phosphorylation. Journal of Biological Chemistry, 283, 8885-8892.
https://doi.org/10.1074/jbc.M708106200
[73] Grant, M., Brown, I., Adams, S., et al. (2000) The RPM1 Plant Dis-ease Resistance Gene Facilitates a Rapid and Sustained Increase in Cytosolic Calcium That Is Necessary for the Oxidative Burst and Hypersensitive Cell Death. The Plant Journal, 23, 441-450.
https://doi.org/10.1046/j.1365-313x.2000.00804.x
[74] Yu, I.-C., Parker, J. and Bent, A.F. (1998) Gene-for-Gene Disease Resistance without the Hypersensitive Response in Arabidopsis dnd1 Mutant. Proceedings of the National Academy of Sciences of the United States of America, 95, 7819-7824.
https://doi.org/10.1073/pnas.95.13.7819
[75] Balagué, C., Lin, B., Alcon, C., et al. (2003) HLM1, an Essential Signaling Component in the Hypersensitive Response, Is a Member of the Cyclic Nucleotide-Gated Channel Ion Channel Family. The Plant Cell, 15, 365-379.
https://doi.org/10.1105/tpc.006999
[76] Clough, S.J., Fengler, K.A., Yu, I.-C., et al. (2000) The Arabidopsis dnd1 “Defense, No Death” Gene Encodes a Mutated Cyclic Nucleotide-Gated Ion Channel. Proceedings of the National Academy of Sciences of the United States of America, 97, 9323-9328.
https://doi.org/10.1073/pnas.150005697
[77] Jurkowski, G.I., Smith Jr., R.K., Yu, I.-C., et al. (2004) Arabidopsis DND2, a Second Cyclic Nucleotide-Gated Ion Channel Gene for Which Mutation Causes the “Defense, No Death” Phe-notype. Molecular Plant-Microbe Interactions, 17, 511-520.
https://doi.org/10.1094/MPMI.2004.17.5.511
[78] Yoshioka, K., Moeder, W., Kang, H.G., et al. (2006) The Chi-meric Arabidopsis CYCLIC NUCLEOTIDE-GATED ION CHANNEL11/12 Activates Multiple Pathogen Resistance Responses. The Plant Cell, 18, 747-763.
https://doi.org/10.1105/tpc.105.038786
[79] Wu, Y., Kuzma, J., Maréchal, E., et al. (1997) Abscisic Acid Signaling through Cyclic ADP-Ribose in Plants. Science, 278, 2126-2130.
https://doi.org/10.1126/science.278.5346.2126
[80] Asai, T., Tena, G., Plotnikova, J., et al. (2002) MAP Kinase Signalling Cascade in Arabidopsis Innate Immunity. Nature, 415, 977-983.
https://doi.org/10.1038/415977a
[81] Tsuda, K., Mine, A., Bethke, G., et al. (2013) Dual Regulation of Gene Ex-pression Mediated by Extended MAPK Activation and Salicylic Acid Contributes to Robust Innate Immunity in Ara-bidopsis thaliana. PLOS Genetics, 9, e1004015.
https://doi.org/10.1371/journal.pgen.1004015
[82] Yamada, K., Yamaguchi, K., Shirakawa, T., et al. (2016) The Arabidopsis CERK1-Associated Kinase PBL27 Connects Chitin Perception to MAPK Activation. The EMBO Journal, 35, 2468-2483.
https://doi.org/10.15252/embj.201694248
[83] Ngou, B.P.M., Ahn, H.-K., Ding, P., et al. (2020) Estradi-ol-Inducible AvrRps4 Expression Reveals Distinct Properties of TIR-NLR-Mediated Effector-Triggered Immunity. Journal of Experimental Botany, 71, 2186-2197.
https://doi.org/10.1093/jxb/erz571
[84] Cui, H.T., Gobbato, E., Kracher, B., et al. (2017) A Core Function of EDS1 with PAD4 Is to Protect the Salicylic Acid Defense Sector in Arabidopsis Immunity. New Phytologist, 213, 1802-1817.
https://doi.org/10.1111/nph.14302
[85] Tao, Y., Xie, Z., Chen, W., et al. (2003) Quantitative Nature of Arabidopsis Responses during Compatible and Incompatible Interactions with the Bacterial Pathogen Pseudomonas syringae. The Plant Cell, 15, 317-330.
https://doi.org/10.1105/tpc.007591
[86] Bozsó, Z., Ott, P.G., Kaman-Toth, E., et al. (2016) Overlapping Yet Re-sponse-Specific Transcriptome Alterations Characterize the Nature of Tobacco-Pseudomonas syringae Interactions. Frontiers in Plant Science, 7, Article 251.
https://doi.org/10.3389/fpls.2016.00251
[87] Jain, P., Singh, P.K., Kapoor, R., et al. (2017) Understanding Host-Pathogen Interactions with Expression Profiling of NILs Carrying Rice-Blast Resistance Pi9 Gene. Frontiers in Plant Science, 8, Article 93.
https://doi.org/10.3389/fpls.2017.00093
[88] Wang, X.J., Liu, W., Chen, X.M., et al. (2010) Differential Gene Ex-pression in Incompatible Interaction between Wheat and Stripe Rust Fungus Revealed by cDNA-AFLP and Comparison to Compatible Interaction. BMC Plant Biology, 10, Article No. 9.
https://doi.org/10.1186/1471-2229-10-9
[89] Rinaldi, C., Kohler, A., Frey, P., et al. (2007) Transcript Profiling of Poplar Leaves upon Infection with Compatible and Incompatible Strains of the Foliar Rust Melampsora larici-populina. Plant Physiology, 144, 347-366.
https://doi.org/10.1104/pp.106.094987
[90] Mine, A., Seyfferth, C., Kracher, B., et al. (2018) The Defense Phyto-hormone Signaling Network Enables Rapid, High-Amplitude Transcriptional Reprogramming during Effector-Triggered Immunity. The Plant Cell, 30, 1199-1219.
https://doi.org/10.1105/tpc.17.00970
[91] Duan, Y., Duan, S., Armstrong, M.R., et al. (2020) Comparative Tran-scriptome Profiling Reveals Compatible and Incompatible Patterns of Potato toward Phytophthora infestans. G3: Genes|Genomes|Genetics, 10, 623-634.
https://doi.org/10.1534/g3.119.400818
[92] Lin, F., Zhao, M.X., Baumann, D.D., et al. (2014) Molecular Re-sponse to the Pathogen Phytophthora sojae among Ten Soybean near Isogenic Lines Revealed by Comparative Tran-scriptomics. BMC Genomics, 15, Article No. 18.
https://doi.org/10.1186/1471-2164-15-18
[93] Ding, P., Ngou, B.P.M., Furzer, O.J., et al. (2020) High-Resolution Expression Profiling of Selected Gene Sets during Plant Immune Activation. Plant Biotechnology Journal, 18, 1610-1619.
https://doi.org/10.1111/pbi.13327
[94] Jacob, F., Kracher, B., Mine, A., et al. (2018) A Domi-nant-Interfering camta3 Mutation Compromises Primary Transcriptional Outputs Mediated by Both Cell Surface and In-tracellular Immune Receptors in Arabidopsis thaliana. New Phytologist, 217, 1667-1680.
https://doi.org/10.1111/nph.14943
[95] Mang, H., Feng, B., Hu, Z., et al. (2017) Differential Regulation of Two-Tiered Plant Immunity and Sexual Reproduction by ANXUR Receptor-Like Kinases. The Plant Cell, 29, 3140-3156.
https://doi.org/10.1105/tpc.17.00464
[96] Akamatsu, A., Fujiwara, M., Hamada, S., et al. (2021) The Small GTPase OsRac1 Forms Two Distinct Immune Receptor Complexes Containing the PRR OsCERK1 and the NLR Pit. Plant and Cell Physiology, 62, 1662-1675.
https://doi.org/10.1093/pcp/pcab121
[97] Boccara, M., Sarazin, A., Thiébeauld, O., et al. (2014) The Arabidopsis miR472-RDR6 Silencing Pathway Modulates PAMP- and Effector-Triggered Immunity through the Post-transcriptional Control of Disease Resistance Genes. PLOS Pathogens, 10, e1003883.
https://doi.org/10.1371/journal.ppat.1003883
[98] Jiang, C., Fan, Z., Li, Z., et al. (2020) Bacillus cereus AR156 Triggers Induced Systemic Resistance against Pseudomonas syringae pv. tomato DC3000 by Suppressing miR472 and Activating CNLs-Mediated Basal Immunity in Arabidopsis. Molecular Plant Pathology, 21, 854-870.
https://doi.org/10.1111/mpp.12935
[99] Tian, H., Chen, S., Wu, Z., et al. (2020) Activation of TIR Signaling Is Required for Pattern-Triggered Immunity. BioRxiv.
https://doi.org/10.1101/2020.12.27.424494
[100] Pruitt, R.N., Zhang, L., Saile, S.C., et al. (2020) Arabidopsis Cell Surface LRR Immune Receptor Signaling through the EDS1-PAD4-ADR1 Node. BioRxiv.
https://doi.org/10.1101/2020.11.23.391516
[101] Wu, Y., Gao, Y., Zhan, Y., et al. (2020) Loss of the Common Immune Coreceptor BAK1 Leads to NLR-Dependent Cell Death. Proceedings of the National Academy of Sciences of the United States of America, 117, 27044-27053.
https://doi.org/10.1073/pnas.1915339117
[102] Zhang, Z., Wu, Y., Gao, M., et al. (2012) Disruption of PAMP-Induced MAP Kinase Cascade by a Pseudomonas syringae Effector Activates Plant Immunity Mediated by the NB-LRR Protein SUMM2. Cell Host & Microbe, 11, 253-263.
https://doi.org/10.1016/j.chom.2012.01.015
[103] Takagi, M., Hamano, K., Takagi, H., et al. (2019) Disruption of the MAMP-Induced MEKK1-MKK1/MKK2-MPK4 Pathway Activates the TNL Immune Receptor SMN1/RPS6. Plant and Cell Physiology, 60, 778-787.
https://doi.org/10.1093/pcp/pcy243