|
[1]
|
Li, X., Ramadori, P., Pfister, D., Seehawer, M., Zender, L. and Heikenwalder, M. (2021) The Immunological and Meta-bolic Landscape in Primary and Metastatic Liver Cancer. Nature Reviews Cancer, 21, 541-557. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Siegel, R.L., Miller, K.D. and Jemal, A. (2019) Cancer Statistics, 2019. CA, 69, 7-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Bruix, J. and Sherman, M. (2011) Management of Hepatocellular Carci-noma: An Update. Hepatology, 53, 1020-1022. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Tsuchiya, N., Sawada, Y., Endo, I., et al. (2015) Biomarkers for the Early Diagnosis of Hepatocellular Carcinoma. World Journal of Gastroenterology, 21, 10573-10583. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Everhart, J.E. and Ruhl, C.E. (2009) Burden of Digestive Diseases in the United States Part III: Liver, Biliary Tract, and Pancreas. Gastroenterology, 136, 1134-1144. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Mao, B., Ma, J., Duan, S., Xia, Y., Tao, Y. and Zhang, L. (2021) Preoperative Classification of Primary and Metastatic Liver Cancer via Machine Learning-Based Ultrasound Radiomics. European Radiology, 31, 4576-486. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Chen, B., Garmire, L., Calvisi, D.F., Chua, M.-S., Kelley, R.K. and Chen, X. (2020) Harnessing Big ‘Omics’ Data and AI for Drug Discovery in Hepatocellular Carcinoma. Nature Re-views Gastroenterology & Hepatology, 17, 238-251. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ji, G.W., Zhu, F.P., Xu, Q., et al. (2019) Machine-Learning Analysis of Contrast-Enhanced CT Radiomics Predicts Recurrence of Hepatocellular Carcinoma after Resection: A Mul-ti-Institutional Study. EBioMedicine, 50, 156-165. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yu, Y., Li, Y., Zhang, Z., et al. (2020) A Bibliometric Analysis Using VOSViewer of Publications on COVID-19. Annals of Translational Medicine, 8, 816-826. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ozsoy, Z. and Demir, E. (2018) The Evolution of Bariatric Surgery Publications and Global Productivity: A Bibliometric Analysis. Obesity Surgery, 28, 1117-1129. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Murakami, Y., Yasuda, T., Saigo, K., Urashima, T., Toyoda, H., Okanoue, T. and Shimotohno, K. (2006) Comprehensive Analysis of microRNA Expression Patterns in Hepatocellular Carcinoma and Non-Tumorous Tissues. Oncogene, 25, 2537-2545. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Li, X., Chen, H., Qi, X., et al. (2018) H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation from CT Volumes. IEEE Transactions on Medical Imaging, 37, 2663-2674. [Google Scholar] [CrossRef]
|
|
[13]
|
Chen, X., Yan, C.C., Zhang, X., et al. (2017) Long Non-Coding RNAs and Complex Diseases: from experimental results to computational models. Briefings in Bioinformatics, 18, 558-576. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA, 68, 394-424. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Gillies, R.J., Kinahan, P.E. and Hricak, H. (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278, 563-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Yasaka, K., Akai, H., Abe, O. and Kiryu, S. (2018) Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-Enhanced CT: A Prelimi-nary Study. Radiology, 286, 887-896. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Torkamani, A., Andersen, K.G., Steinhubl, S.R. and Topol, E.J. (2017) High-Definition Medicine. Cell, 170, 828-843. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Patel, S.K., George, B. and Rai, V. (2020) Artificial Intelligence to Decode Cancer Mechanism: Beyond Patient Stratification for Precision Oncology. Frontiers in Pharmacology, 11, Arti-cle 1177.
|
|
[19]
|
Chaudhary, K., Poirion, O.B., Lu, L. and Garmire, L.X. (2018) Deep Learning-Based Multi-Omics Inte-gration Robustly Predicts Survival in Liver Cancer. Clinical Cancer Research, 24, 1248-1259. [Google Scholar] [CrossRef]
|
|
[20]
|
Li, J., Wei, L., Zhang, X., et al. (2021) DISMIR: Deep Learning-Based Noninvasive Cancer Detection by Integrating DNA Sequence and Methylation Information of Individual Cell-Free DNA Reads. Briefings in Bioinformatics, 22, 1-19. [Google Scholar] [CrossRef]
|
|
[21]
|
Schmauch, B., Herent, P., Jehanno, P., et al. (2019) Diagnosis of Focal Liver Lesions from Ultrasound Using Deep Learning. Diagnostic and Interventional Imaging, 100, 227-233. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Yang, Q., Wei, J., Hao, X., et al. (2020) Improving B-Mode Ultra-sound Diagnostic Performance for Focal Liver Lesions Using Deep Learning: A Multicentre Study. EBioMedicine, 56, Article ID: 102777. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Mokrane, F.Z., Lu, L., Vavasseur, A., et al. (2020) Radiomics Machine-Learning Signature for Diagnosis of Hepatocellular Carcinoma in Cirrhotic Patients with Indeterminate Liver Nodules. European Radiology, 30, 558-570. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Bobo, M.F., Bao, S., Huo, Y., et al. (2018) Fully Convolutional Neural Networks Improve Abdominal Organ Segmentation [J]. Proceedings of SPIE—The International Society for Op-tical Engineering, 10574-10586.
|
|
[25]
|
Hamm, C.A., Wang, C.J., Savic, L.J., et al. (2019) Deep Learning for Liver Tu-mor Diagnosis Part I: Development of a Convolutional Neural Network Classifier for Multi-Phasic MRI. European Ra-diology, 29, 3338-3347. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhen, S.H., Cheng, M., Tao, Y.B., et al. (2020) Deep Learning for Accurate Diagnosis of Liver Tumor Based on Magnetic Resonance Imaging and Clinical Data. Frontiers in Oncology, 10, Article 680. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Saillard, C., Schmauch, B., Laifa, O., et al. (2020) Predicting Surviv-al after Hepatocellular Carcinoma Resection Using Deep Learning on Histological Slides. Hepatology, 72, 2000-2013. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Saito, A., Toyoda, H., Kobayashi, M., et al. (2021) Prediction of Early Re-currence of Hepatocellular Carcinoma after Resection Using Digital Pathology Images Assessed by Machine Learning. Modern Pathology, 34, 417-425. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Oezdemir, I., Wessner, C.E., Shaw, C., et al. (2020) Tumor Vascular Networks Depicted in Contrast-Enhanced Ultrasound Images as a Predictor for Transarterial Chemoemboliza-tion Treatment Response. Ultrasound in Medicine & Biology, 46, 2276-2286. [Google Scholar] [CrossRef] [PubMed]
|