大脑中动脉闭塞病因诊断的影像学研究进展
Advances in Imaging Research on Etiology Diagnosis of Middle Cerebral Artery Occlusion
DOI: 10.12677/ACM.2023.134924, PDF, HTML, XML, 下载: 150  浏览: 234 
作者: 石浩洋:滨州医学院医学影像学院,山东 烟台;张子贤:潍坊医学院医学影像学院,山东 潍坊;庞闽厦*:胜利油田中心医院医学影像会诊中心,山东 东营
关键词: 大脑中动脉闭塞多模态影像学脑卒中病因学Middle Cerebral Artery Occlusion Multimodal Imaging Stroke Etiology
摘要: 大脑中动脉闭塞是缺血性脑卒中的常见原因,而其闭塞的病因机制对不同血管内治疗方式的选择至关重要,精确的术前病因诊断有利于提高脑卒中血管再通率及减少不良功能预后的发生。本文对大脑中动脉闭塞的治疗及影像学病因评估研究进展进行综述并对未来研究方向进行展望。
Abstract: Middle cerebral artery occlusion is a common cause of ischemic stroke, and its etiological mecha-nism is vital for the selection of different endovascular therapy. Accurate preoperative etiological diagnosis is conducive to improving the vascular revascularization rate and reducing the occur-rence of adverse functional prognosis in stroke. This review focuses on the research progress in the treatment and imaging etiology evaluation of middle cerebral artery occlusion and forecasts the di-rection for future research.
文章引用:石浩洋, 张子贤, 庞闽厦. 大脑中动脉闭塞病因诊断的影像学研究进展[J]. 临床医学进展, 2023, 13(4): 6594-6600. https://doi.org/10.12677/ACM.2023.134924

1. 引言

我国居民死亡率居首的疾病是急性脑卒中 [1] ,而颅内大血管闭塞(large vessel occlusion, LVO)是急性缺血性脑卒中(acute ischemic stroke, AIS)的常见原因,以大脑中动脉闭塞(middle cerebral occlusion, MCAO)最为多见。对于急性LVO脑卒中患者来说,临床应尽快进行血管再通,恢复脑组织血供,挽救缺血半暗带,而LVO患者单纯进行静脉溶栓的血管再通率较低并且预后不佳 [2] 。近年来LVO的血管内治疗(endovas- cular therapy, EVT)取得了突破性进展,EVT血管再通时间窗可延长至16~24小时 [3] [4] ,然而其风险和获益仍与血管闭塞的病因及治疗方式的选择密切相关,由于LVO脑卒中患者发病及治疗的紧迫性,临床往往无法迅速对其病因做出判断。目前多模态影像学检查方法主要有:CT平扫(noncontrast CT, NCCT),CT灌注成像(CT perfusion, CTP),CT血管成像(CT angiography, CTA),弥散加权成像(diffusion weighted imaging, DWI),灌注加权成像(perfusion weighted imaging, PWI)等。通过术前的影像学检查可对MCAO闭塞的病因及脑组织情况进行一定的评估,从而对不同发病个体选择更有利的治疗方式。现笔者就MCAO的发病机制、临床治疗及相关多模态影像学诊断进展进行综述。

2. MCAO的临床现状

2.1. 发病情况及闭塞机制

急性MCAO主要是由于责任血管动脉粥样硬化狭窄(iracranial atherosclerotic stenosis, ICAS)原位血栓形成所导致的,另外还有心源性栓塞(cardio embolism, CE)以及颈内动脉粥样硬化斑块破裂导致的栓塞等,而非急性MCAO的病因主要是动脉粥样硬化慢性狭窄后闭塞或狭窄程度 > 90%以上。

多种生物标志物介导了ICSA相关性脑卒中的发生过程。最近研究发现环状RNAs能够诊断缺血性脑卒中及其预后的生物标志物 [5] 。较高的血浆脂联素水平可以降低颅内ICAS的风险 [6] ,并可以作为ICAS患者的独立预测因子。He [7] 等通过一项回顾性研究发现,与无ICAS的患者相比,ICAS脑卒中患者血清转甲状腺素水平明显下降(226.3 ± 56.5 vs 251.0 ± 54.9 mg/L, P < 0.05)。另有一项回顾性研究发现,基底节区扩大的血管周围腔隙(enlarged perivascular spaces in the basal ganglia, BG-EPVS)数目增加与动脉粥样硬化性MCAO有显著相关性并且在患侧的BG-EPVS数目高于健侧 [8] 。对于心源性脑卒中来说,Zhang等 [9] 研究发现血清LRG1水平可作为其独立危险因素并可预测患者的发病及预后水平,血清LRG1水平与患者病情严重程度呈正相关且LRG1水平较高者预后不佳。

2.2. 临床治疗方式

对于大LVO导致的脑卒中患者采取EVT已成为临床共识 [10] 。当前的血管内治疗方式主要包括:支架取栓技术、血栓抽吸技术、动脉溶栓术以及血管成形术和支架置入术,而对于不同原因或不同位置MCAO患者应采取哪一种治疗方式是当前临床热点。以往EVT更多的是用于栓塞性MCAO患者,而对于ICAS相关性MCAO患者进行支架取栓后血管再通率较低,常发生血管再闭塞,而反复的支架取栓常常导致血管痉挛和损伤 [11] ,而最近一项荟萃分析 [12] 显示,ICAS性MCAO患者的EVT治疗也表现出了良好的有效性及安全性。对于此类患者,应直接取栓还是桥接取栓或者在取栓后是否行血管成形或支架置入目前尚无定论。

对于不同位置的MCAO,《中国急性缺血性卒中早期血管内介入诊疗指南(2022版)》推荐对于MCA M1段闭塞应行EVT,而MCA M2段闭塞的EVT效果如何目前仍不明确。最近多项研究表明,对MCA M2段闭塞患者行EVT有良好的安全性,多数患者再灌注成功率较高并与MCA M1段闭塞的治疗效果相当 [13] [14] [15] ,另有研究表明不同的EVT手术方式(支架取栓术和直接抽吸术)治疗MCA M2段闭塞患者的有效性及术后90d预后并无明显差异 [16] ,因此在评估患者状况和相关获益风险后可考虑对大脑中动脉M2段闭塞的患者行EVT治疗。

3. 多模态影像学的诊断现状

多模态影像学评估的目的是对急性大动脉闭塞性脑卒中患者血管内治疗前进行筛查,可提供脑卒中患者脑组织、闭塞血管及侧支循环的相关信息,评估患者的风险及获益,对临床治疗方式的选择具有指导意义。

3.1. 对脑组织状态的评估

MCAO脑卒中患者EVT的目的是挽救缺血半暗带(ischemic penumbra, IP),恢复组织血供,因此对于处在不同时间窗内的患者,梗死核心及缺血半暗带的评估至关重要,相关的灌注成像指标包括脑血容量(CBV)、脑血流量(CBF)、平均通过时间(MTT)、峰值时间(TTP)和组织残留函数达最大值的时间(Tmax)等。目前灌注成像中所使用的参数阈值是固定的,而脑卒中发作后缺血核心阈值可随时间变化。Laredo等 [17] 通过一项回顾性研究发现,在4.5小时后实现再通患者的CT灌注成像评估最终梗死体积预测值更加准确,并且与患者90d临床预后结果具有良好的相关性。朱杰等 [18] 研究发现全脑动态(dCTA)联合CTP评估单侧MCAO患者脑组织血流灌注状态展现出良好的效能,相对CBF (rCBF)可作为评估预后的最佳指标。Deuchar等 [19] 使用一种全氟化碳(PFC)增强型格拉斯哥氧浓度依赖性(GOLD) MRI代谢成像技术对急性缺血性脑卒中的缺血半暗带进行了识别,并且在扫描过程中发现高氧-PFC能够减慢脑组织缺血损伤的进展,然而此项研究是基于大鼠脑卒中模型的构建,能否实现临床转化有待进一步的研究。基于体素内不相干运动磁共振成像(IVIM-MRI),Zhu等 [20] 纳入了14例MCA M1段及6例ICA闭塞的患者,勾画出梗死核心、缺血半暗带及正常脑组织,结果发现IVIM fD*值与PWI CBF数值之间具有良好的一致性,故IVIM可通过对脑组织毛细血管网微血流状态的评估对缺血半暗带进行识别,这将对血管内治疗前的评估提供更多的指导意义。

3.2. 对血管闭塞状况的评估

当前对于血管闭塞位置及程度主要的影像学评估方法是CTA和MRA,在多时相CTA (mCTA)中早期动脉闭塞或狭窄处远端的动脉不显影或显影不佳,但在延迟期可见显影并且密度常高于对侧同级血管的现象被称为延迟血管征,在前循环闭塞的患者中,此征象可快速提示同侧动脉闭塞特别是远端动脉闭塞 [21] ,而此征象的形成机制有待进一步的研究。对于需行机械取栓的急性LVO患者,血栓的位置可能发生变化,Tetsuhiro等 [22] 研究发现血栓位置可移动到术前MRA显示闭塞部位的远端,这种现象在MCA M1段闭塞中更多见。FLAIR高信号血管征(FVH)是指在MRI FLAIR序列中大脑半球上沿脑沟、裂分布的点、线状高信号影,近端FVH的出现可作为MCA闭塞的影像学预测因子并为临床EVT术前提供指导意义 [23] 。

3.3. 对血管闭塞病因的诊断

MCAO的病因主要是ICAS和CE。有多项研究表明,MCA近端主干闭塞主要与颅内ICAS相关,而CE更多的是导致MCA远端分支处闭塞 [24] ,Baek等 [11] 还发现术前CTA显示的血管分支处闭塞与EVT支架取栓术的成功显著相关。基于mCTA动脉密度比值(HU比值),Chien等 [25] 发现HU2比值(闭塞端分别距远端和近端2 mm处密度比值) < 0.6能够更好的预测栓塞性闭塞和EVT再通率,故通过术前CTA和MRA可以对血管闭塞的位置、机制进行初步预测。任国勇等 [26] 研究发现ICAS性MCAO患者中磁敏感血管征(susceptibility vessel sign, SVS)阴性率显著增高,SVS可基于血栓的病理类型不同从而对MCAO闭塞机制进行预测 [27] ,为MCAO病因的术前评估提供了更多的价值。而目前基于CT和MRI灌注成像不同模式对于闭塞病因机制的术前诊断尚无更多的研究。

3.4. 对侧支循环的评估

侧支循环是指当血管狭窄或闭塞导致血流受阻后,该处原有的吻合支血管扩张形成旁路,恢复血流循环代偿,其主要包括Willis环、眼动脉及软脑膜侧支、新生毛细血管共三级循环途径。有研究表明,在MCA闭塞的患者中,良好的软脑膜侧支与前颞叶动脉有关而与Willis环无关 [28] ,并且Willis环变异(不完全型)与其EVT术后功能预后也无相关性 [29] [30] 。有研究表明 [31] 通过术前CTA检查发现完全的软脑膜侧支与动脉粥样硬化性MCAO独立相关,故可以通过软脑膜侧支术前预测MCAO的病因。目前评估侧支循环的常用方法是CTA,然而最近有研究表明基于CTP的低灌注强度比(hypoperfusion intensity ratio, HIR)在定量评估侧支循环方面具有更准确的效能,HIR > 0.45更可能提示患者侧支循环不良 [32] ,基于CTP和动态磁敏感对比增强(dynamic susceptibility contrast, DSC)灌注成像的灌注侧支指数(perfusion collateral indes, PCI)在侧支循环和功能预后的评估方面也具有良好的潜力 [33] [34] ,在于这些指标可以定量评估侧支循环,降低了诊断者的主观影响,缩短了卒中–再通时间。

4. 多模态影像学的临床应用现状

目前多模态CT因其快速而高分辨率成像的优势而成为了首要检查方式。NCCT可快速评估有无脑出血、肿瘤等颅内病变,与使用CTP和PWI行EVT术前评估的前循环近端闭塞的晚期时间窗患者相比,使用NCCT评估的临床预后结果无显著差异 [35] ,NCCT在取栓前的评估仍起着关键作用 [36] 。基于CT和MRI的灌注成像可定量评估梗死核心和缺血半暗带,已有研究证实了人工智能和机器学习方法可用于自动定量识别梗死核心和分割缺血半暗带 [37] [38] 。目前数字减影血管造影(DSA)仍是诊断血管闭塞的金标准,但由于其有创、操作复杂而不用于血管闭塞的术前诊断,CTA和MRA仍是目前主要的术前评估方法。有研究发现通过MRI定位像扫描可对颅内血管闭塞进行评估 [39] ,此方法缩短了患者的检查时间,然而其准确性仍需大样本前瞻性的研究来证实。

5. 小结与展望

多模态影像学的飞速发展正推动脑卒中的EVT由“时间窗”向“组织窗”转变,梗死核心的发展会降低患者功能独立性 [40] ,因此对于大脑中动脉闭塞患者应尽快明确血管闭塞的病因,尽早开通血管以减少不良预后的发生。术前多模态影像学检查可对不同时间窗内的患者进行选择,评估脑组织状态,这对于临床早期诊断、及时干预及改善预后有着重要的指导意义,然而对于血管闭塞病因机制的评估仍需进一步的研究,梗死核心阈值及组织状态预测目前尚无统一标准。随着影像技术的进步和人工智能的发展,多模态影像学的诊断准确性及可靠性还需要更多的研究论证,这也将有利于脑卒中临床精准治疗的进步。

NOTES

*通讯作者。

参考文献

[1] Ma, Q., Li, R., Wang, L., et al. (2021) Temporal Trend and Attributable Risk Factors of Stroke Burden in China, 1990-2019: An Analysis for the Global Burden of Disease Study 2019. The Lancet Public Health, 6, e897-e906.
https://doi.org/10.1016/S2468-2667(21)00228-0
[2] Strbian, D., Mustanoja, S., Pekkola, J., et al. (2015) Intrave-nous Alteplase versus Rescue Endovascular Procedure in Patients with Proximal Middle Cerebral Artery Occlusion. In-ternational Journal of Stroke, 10, 188-193.
https://doi.org/10.1111/j.1747-4949.2012.00918.x
[3] Jovin, T.G., Saver, J.L., Ribo, M., et al. (2017) Diffu-sion-Weighted Imaging or Computerized Tomography Perfusion Assessment with Clinical Mismatch in the Triage of Wake Up and Late Presenting Strokes Undergoing Neurointervention with Trevo (DAWN) Trial Methods. International Journal of Stroke, 12, 641-652.
https://doi.org/10.1177/1747493017710341
[4] Albers, G.W., Lansberg, M.G., Kemp, S., et al. (2017) A Multi-center Randomized Controlled Trial of Endovascular Therapy Following Imaging Evaluation for Ischemic Stroke (DEFUSE 3). International Journal of Stroke, 12, 896-905.
https://doi.org/10.1177/1747493017701147
[5] Li, L., Si, X., Ruan, J., et al. (2022) Circular Rna Hsa_Circ_0003574 as a Biomarker for Prediction and Diagnosis of Ischemic Stroke Caused by Intracranial Atheroscle-rotic Stenosis. Frontiers in Pharmacology, 13, Article 961866.
https://doi.org/10.3389/fphar.2022.961866
[6] Wang, F.-H., Meng, L.-Y., Yu, T.-Y., et al. (2022) Associations of Abdominal Visceral Fat Content and Plasma Adiponectin Level with Intracranial Atherosclerotic Stenosis: A Cross-Sectional Study. Frontiers in Neurology, 13, Article 893401.
https://doi.org/10.3389/fneur.2022.893401
[7] He, J., Zhu, J., Zhang, W., et al. (2022) Association between Se-rum Transthyretin and Intracranial Atherosclerosis in Patients with Acute Ischemic Stroke. Frontiers in Neurology, 13, Article 944413.
https://doi.org/10.3389/fneur.2022.944413
[8] Du, H., Chen, C., Ye, C., et al. (2020) Association between Steno-Occlusive Middle Cerebral Artery and Basal Ganglia Perivascular Spaces. Frontiers in Neurology, 11, Article 293.
https://doi.org/10.3389/fneur.2020.00293
[9] Zhang, M., Wang, Y., Wang, J., et al. (2021) Serum LRG1 as a Novel Biomarker for Cardioembolic Stroke. Clinica Chimica Acta, 519, 83-91.
https://doi.org/10.1016/j.cca.2021.04.002
[10] Powers, W.J., Rabinstein, A.A., Ackerson, T., et al. (2019) Guide-lines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Associa-tion/American Stroke Association. Stroke, 50, e344-e418.
https://doi.org/10.1161/STR.0000000000000211
[11] Baek, J.-H., Kim, B.M., Yoo, J., et al. (2017) Predictive Value of Computed Tomography Angiography-Determined Occlusion Type in Stent Retriever Thrombectomy. Stroke, 48, 2746-2752.
https://doi.org/10.1161/STROKEAHA.117.018096
[12] Li, H., Zhang, Y., Zhang, L., et al. (2020) Endovascular Treatment of Acute Ischemic Stroke Due to Intracranial Atherosclerotic Large Vessel Occlusion: A Systematic Review. Clinical Neuroradiology, 30, 777-787.
https://doi.org/10.1007/s00062-019-00839-4
[13] Findakly, S., Maingard, J., Phan, K., et al. (2020) Endovascular Clot Retrieval for M2 Segment Middle Cerebral Artery Occlusion: A Systematic Review and Meta-Analysis. Internal Medicine Journal, 50, 530-541.
https://doi.org/10.1111/imj.14333
[14] Ivan, V.L., Rubbert, C., Caspers, J., et al. (2020) Mechanical Thrombecto-my in Acute Middle Cerebral Artery M2 Segment Occlusion with Regard to Vessel Involvement. Neurological Sciences, 41, 3165-3173.
https://doi.org/10.1007/s10072-020-04430-5
[15] Nakano, T., Shigeta, K., Ota, T., et al. (2020) Efficacy and Safety of Mechanical Thrombectomy for Occlusion of the Second Segment of the Middle Cerebral Artery: Retrospective Analy-sis of the Tama-REgistry of Acute Endovascular Thrombectomy (TREAT). Clinical Neuroradiology, 30, 481-487.
https://doi.org/10.1007/s00062-019-00810-3
[16] 郭章宝, 许项前, 谌敏, 等. 急性大脑中动脉M2段闭塞致缺血性卒中支架取栓术与直接抽吸取栓术对比分析[J]. 中国现代神经疾病杂志, 2022, 22(9): 810-816.
[17] Laredo, C., Renu, A., Tudela, R., et al. (2020) The Accuracy of Ischemic Core Perfusion Thresholds Varies According to Time to Recanalization in Stroke Patients Treated with Mechanical Thrombectomy: A Comprehensive Whole-Brain Computed Tomography Perfusion Study. Journal of Cerebral Blood Flow & Metabolism, 40, 966-977.
https://doi.org/10.1177/0271678X19855885
[18] 朱杰, 王浩, 胡文娟, 等. 一站式动态CTA结合CTP评估单侧大脑中动脉闭塞患者预后的价值[J]. 放射学实践, 2021, 36(9): 1074-1080.
https://doi.org/10.13609/j.cnki.1000-0313.2021.09.001
[19] Deuchar, G.A., Brennan, D., Holmes, W.M., et al. (2018) Perfluorocarbon Enhanced Glasgow Oxygen Level Dependent (GOLD) Magnetic Resonance Metabolic Imaging Identifies the Penumbra Following Acute Ischemic Stroke. Theranostics, 8, 1706-1722.
https://doi.org/10.7150/thno.21685
[20] Zhu, G., Federau, C., Wintermark, M., et al. (2020) Comparison of MRI IVIM and MR Perfusion Imaging in Acute Ischemic Stroke due to Large Vessel Occlusion. International Journal of Stroke, 15, 332-342.
https://doi.org/10.1177/1747493019873515
[21] Byrne, D., Sugrue, G., Stanley, E., et al. (2017) Improved Detec-tion of Anterior Circulation Occlusions: The “Delayed Vessel Sign” on Multiphase CT Angiography. American Journal of Neuroradiology, 38, 1911-1916.
https://doi.org/10.3174/ajnr.A5317
[22] Higashida, T., Kanazawa, R., Uchida, T., et al. (2021) Difference of Thrombus Location between Initial Noninvasive Vascular Image and First DSA Findings in Mechanical Thrombectomy for Intracranial Large Vessel Occlusion: Post Hoc Analysis of the SKIP Study. Neurologia Medico-Chirurgica, 61, 640-646.
https://doi.org/10.2176/nmc.oa.2021-0137
[23] Shin, D.H., Han, S.K., Lee, J.H., et al. (2021) Proximal Hy-per-Intense Vessel Sign on Initial FLAIR MRI in Hyper- Acute Middle Cerebral Artery Ischemic Stroke: A Retrospec-tive Observational Study. Acta Radiologica, 62, 922-931.
https://doi.org/10.1177/0284185120946718
[24] Kim, Y.S., Kim, B.J., Noh, K.C., et al. (2019) Distal versus Proximal Middle Cerebral Artery Occlusion: Different Mechanisms. Cerebrovascular Diseases, 47, 238-244.
https://doi.org/10.1159/000500947
[25] Chien, C., Lin, C.-J., Chang, F.-C., et al. (2021) Quantitative CT Angi-ography Predicts Large Artery Occlusion Types and Successful Thrombectomy in Acute Ischemic Stroke. Journal of the Chinese Medical Association, 84, 61-67.
https://doi.org/10.1097/JCMA.0000000000000434
[26] 任国勇, 孙博, 张龙兴, 等. 磁敏感血管征阴性在预测大动脉粥样硬化性急性大脑中动脉闭塞中的应用价值[J]. 中华神经医学杂志, 2020, 19(8): 775-779.
[27] 许开喜, 丰广魁, 顾宝东, 等. 磁敏感征和不对称静脉征对急性大脑中动脉闭塞患者诊断价值[J]. 临床放射学杂志, 2020, 39(1): 26-31.
https://doi.org/10.13437/j.cnki.jcr.2020.01.005
[28] Millesi, K., Mutzenbach, J S., Kill-er-Oberpfalzer, M., et al. (2019) Influence of the Circle of Willis on Leptomeningeal Collateral Flow in Anterior Circula-tion Occlusive Stroke: Friend or Foe? Journal of the Neurological Sciences, 396, 69-75.
https://doi.org/10.1016/j.jns.2018.11.002
[29] Seifert-Held, T., Eberhard, K., Christensen, S., et al. (2021) Circle of Willis Variants Are Not Associated with Thrombectomy Outcomes. Stroke and Vascular Neurology, 6, 310-313.
https://doi.org/10.1136/svn-2020-000491
[30] Westphal, L.P., Lohaus, N., Winklhofer, S., et al. (2021) Circle of Willis Variants and Their Association with Outcome in Patients with Middle Cerebral Artery-M1-Occlusion Stroke. Eu-ropean Journal of Neurology, 28, 3682-3691.
https://doi.org/10.1111/ene.15013
[31] Baek, J.-H., Kim, B.M., Kim, J.W., et al. (2020) Utility of Leptomeningeal Collaterals in Predicting Intracranial Atherosclerosis-Related Large Vessel Occlusion in Endovascular Treatment. Journal of Clinical Medicine, 9, Article No. 2784.
https://doi.org/10.3390/jcm9092784
[32] Lyndon, D., van den Broek, M., Niu, B., et al. (2021) Hypoperfusion Intensity Ratio Correlates with CTA Collateral Status in Large-Vessel Occlusion Acute Ischemic Stroke. American Journal of Neuroradiology, 42, 1380-1386.
https://doi.org/10.3174/ajnr.A7181
[33] Seiler, A., Lauer, A., Deichmann, R., et al. (2020) Signal Variance-Based Collateral Index in DSC Perfusion: A Novel Method to Assess Leptomeningeal Collateralization in Acute Ischaemic Stroke. Journal of Cerebral Blood Flow & Metabolism, 40, 574-587.
https://doi.org/10.1177/0271678X19831024
[34] Nael, K., Sakai, Y., Larson, J., et al. (2022) CT Perfusion Collat-eral Index in Assessment of Collaterals in Acute Ischemic Stroke with Delayed Presentation: Comparison to Single Phase CTA. Journal of Neuroradiology, 49, 198-204.
https://doi.org/10.1016/j.neurad.2021.11.002
[35] Nguyen, T.N., Abdalkader, M., Nagel, S., et al. (2022) Noncon-trast Computed Tomography vs Computed Tomography Perfusion or Magnetic Resonance Imaging Selection in Late Presentation of Stroke with Large-Vessel Occlusion. JAMA Neurology, 79, 22-31.
https://doi.org/10.1001/jamaneurol.2021.4082
[36] Siegler, J.E., Messe, S.R., Sucharew, H., et al. (2020) Noncon-trast CT versus Perfusion-Based Core Estimation in Large Vessel Occlusion: The Blood Pressure after Endovascular Stroke Therapy Study. Journal of Neuroimaging, 30, 219-226.
https://doi.org/10.1111/jon.12682
[37] Kuo, D.-P., Kuo, P.-C., Chen, Y.-C., et al. (2020) Machine Learning-Based Segmentation of Ischemic Penumbra by Using Diffusion Tensor Metrics in a Rat Model. Journal of Biomedical Science, 27, Article No. 80.
https://doi.org/10.1186/s12929-020-00672-9
[38] Sheth, S.A., Lopez-Rivera, V., Barman, A., et al. (2019) Ma-chine Learning-Enabled Automated Determination of Acute Ischemic Core from Computed Tomography Angiography. Stroke, 50, 3093-3100.
https://doi.org/10.1161/STROKEAHA.119.026189
[39] Yamashita, S., Sato, M., Yamazaki, T., Yasuda, S. and Kato, N. (2021) Identifying Cerebral Large Vessel Occlusion in Acute Ischemic Stroke by MRI Positioning Scanning. Neurologia Medico-Chirurgica, 61, 521-527.
https://doi.org/10.2176/nmc.oa.2021-0028
[40] Campbell, B.C.V., Majoie, C., Albers, G.W., et al. (2019) Penum-bral Imaging and Functional Outcome in Patients with Anterior Circulation Ischaemic Stroke Treated with Endovascular Thrombectomy versus Medical Therapy: A Meta-Analysis of Individual Patient-Level Data. The Lancet Neurology, 18, 46-55.
https://doi.org/10.1016/S1474-4422(18)30314-4