拓扑超导表面态涡核内部束缚态研究
Study on Bound States inside Vortices of Topological Superconductors Surface
DOI: 10.12677/APP.2023.134018, PDF, HTML, XML, 下载: 194  浏览: 294 
作者: 邓名文:上海理工大学物理系,上海
关键词: 拓扑超导体马约拉纳零能模束缚态Topological Superconductors Majorana Zero Mode Bound State
摘要: 近年来,拓扑超导体的研究引起了人们极大的兴趣。特别是对于马约拉纳零能模(MZM)的研究,由于其在拓扑量子计算机中有着重要应用。在本文中,我们研究了一个8 × 8 Bogoliubov-de Gennes哈密顿量的系统,该系统具有粒子空穴对称性。我们介绍了该系统的拓扑相图,分析了系统表面束缚态的最低能量与角动量之间的关系。此外,我们还分析了该系统在拓扑平庸和非平庸的情况下是否存在MZM,并求解了相应的波函数。
Abstract: In recent years, the research of topological superconductor has attracted tremendous interest, especially in Majorana zero mode (MZM) due to its significance application in topological quantum computer. In this work, we study of a system with 8 × 8 Bogoliubov-de Gennes Hamiltonian, the system has particle-hole symmetry, and we introduce the phase diagrams of this system. We have analyzed the relationship between the lowest energy and angular momentum of surface bound states. In addition, we have analyzed whether the system exists MZM in the case of topo-logical trivial and non-trivial, and have solved the corresponding wave function.
文章引用:邓名文. 拓扑超导表面态涡核内部束缚态研究[J]. 应用物理, 2023, 13(4): 156-163. https://doi.org/10.12677/APP.2023.134018

1. 引言

在1937年,意大利物理学家马约拉纳提出了一种新粒子,叫做马约拉纳费米子。马约拉纳费米子是一种特殊类型的费米子,其反粒子就是它本身 [1] 。马约拉纳零能模(MZM)也遵循描述马约拉纳费米子的马约拉纳方程,但它不是一种基本粒子,而是凝聚态物理中的准粒子。MZM具有三个基本特性:第一,它服从非阿贝尔统计,在量子计算中有着潜在的应用 [2] [3] 。其次,MZM具有非平庸的拓扑特性,它等价于拓扑超导体的边缘态,并且MZM的出现伴随着非平庸的全局拓扑不变量。第三,它具有粒子–空穴对称性,准粒子呈现电中性 [4] [5] [6] [7] 。由于MZM在物理学和量子计算机的应用中具有重要的意义,因此人们在实验中对MZM的寻找付出了巨大的努力。起初,人们意识到在手性p波超导体中可能有MZM的存在 [8] [9] [10] [11] [12] ,但手性p波超导体在实验上却很难实现 [13] 。在2008年,Fu和Kane提出在拓扑绝缘体和s波超导体的界面上可能存在MZM [14] 。Fu和Kane的工作启发了很多关于在实验中寻找MZM的研究 [15] 。近年来,人们研究了许多方案来寻找MZM,包括在金属Pb上嵌入一维Fe原子链和一维Rashba半导体线的实验 [16] [17] [18] [19] [20] 。已有实验在铁基超导体中发现了MZM [21] [22] [23] ,并且在铁基超导体中也报道了手性马约拉纳边缘模的存在 [24] 。由此可见铁基超导体具有很大的研究价值,这也是本文的主要出发点。

本文的其余部分组织如下:在第2节中,我们介绍了模型的8 × 8 Bogoliubov-de Gennes哈密顿量。在第3节中,我们介绍了该系统的拓扑相图 [25] ,并分析了系统最低束缚态能量与角动量的关系 [26] [27] 。在第4节中,我们求解了系统在拓扑平庸和非平庸情况下的零能量解。最后一节是结论部分。

2. 模型哈密顿量

我们采用Nambu基 Ψ N = ( ψ 1 q , ψ 1 q , ψ 2 q , ψ 2 q , ψ 1 q , ψ 1 q , ψ 2 q , ψ 2 q ) T 来研究问题,这里的1和2是层指标,分别表示顶部和底部的表面状态,↑和↓分别表示自旋向上和自旋向下的伪自旋状态, q 代表动量。在动量空间中,该系统的8 × 8 Bogoliubov-de Gennes哈密顿量如下所示:

h ( q ) = ( h ˜ 0 ( q ) 4 × 4 Δ ˜ 4 × 4 Δ ˜ 4 × 4 h ˜ 0 ( q ) 4 × 4 ) (1)

h ˜ 0 ( q ) 4 × 4 = q σ χ z μ σ 0 χ 0 + t σ 0 χ x + λ σ z χ 0 = ( λ μ q x i q y t 0 q x + i q y λ μ 0 t t 0 λ μ q x + i q y 0 t q x i q y λ μ ) (2)

Δ ˜ 4 × 4 = σ y χ z s σ y χ x t σ x χ y = ( 0 Δ 0 Δ s Δ t Δ 0 Δ s Δ t 0 0 Δ s + Δ t 0 Δ Δ s + Δ t 0 Δ 0 ) (3)

这里的 λ 表示Zeeman项, μ 表示化学势,t是底部和顶部表面态的耦合常数, Δ 是表面内的自旋单态配对强度。 Δ s Δ t 分别是表面间的自旋单态和自旋三重态配对强度。并且我们将费米速度 ν F 设成1。二维动量为 q = ( q x , q y ) ,这里的 σ i χ i 以及 τ i ( i = x , y , z ) 是Pauli矩阵,分别作用在自旋空间和表面空间以及粒子空穴空间。哈密顿量(1)式具有粒子空穴对称性,即: C h ( q ) C 1 = h ( q ) ,其中 C = σ 0 χ 0 τ x Κ ,这里的 τ i 是作用在粒子空穴空间的Pauli矩阵,K代表复共轭算符。(1)式还具有转置对称性,即: Ρ h ( q ) Ρ 1 = h ( q ) ,其中 Ρ Δ s = 0 Ρ = σ 0 χ x τ z 。当Zeeman项 λ = 0 时,(1)式还具有时间反演对称性,即: Τ h ( q ) Τ 1 = h * ( q ) ,其中 Τ Δ t = 0 Τ = i σ y χ 0 τ 0 Κ ,表示时间反演算符。除此之外,哈密顿量(1)式还有着关于xy平面的镜像对称性,即: Μ h ( q ) Μ 1 = h ( q ) ,其中 Μ Δ s = 0 Μ = i σ z χ x τ 0

3. 拓扑相图和表面束缚态

3.1. 拓扑相图

对于正常态的哈密顿量 h ˜ 0 ( q ) 4 × 4 ,同样有关于xy平面的镜像对称性 Μ 1 ,即: Μ 1 h ˜ 0 ( q ) 4 × 4 Μ 1 1 = h ˜ 0 ( q ) 4 × 4 ,并且满足:

Μ 1 = i σ z χ x , Μ 1 2 = 1 (4)

镜像对称性 Μ 1 能被一般化为BdG哈密顿量形式,定义如下:

Μ 1 ± = ( Μ 1 0 0 ± Μ 1 * ) (5)

我们用下面的幺正变换来对角化 Μ 1

U = 1 2 ( 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 ) (6)

即:

U Μ 1 U 1 = d i a g ( i , i , i , i , i , i , i , i ) (7)

哈密顿量(1)式变为:

U h ( q ) U 1 = ( t λ + μ Δ + Δ t 0 q x + i q y 0 0 0 Δ s Δ + Δ t t λ μ q x + i q y 0 0 0 Δ s 0 0 q x i q y t + λ μ Δ Δ t 0 Δ s 0 0 q x i q y 0 Δ Δ t t + λ + μ Δ s 0 0 0 0 0 0 Δ s t + λ μ Δ + Δ t 0 q x i q y 0 0 Δ s 0 Δ + Δ t t + λ + μ q x i q y 0 0 Δ s 0 0 0 q x + i q y t λ + μ Δ Δ t Δ s 0 0 0 q x + i q y 0 Δ Δ t t λ μ ) (8)

Δ s = 0 时,哈密顿量(8)式可以块对角化为 h 1 h 2

h 1 ( q ) = ( t λ + μ Δ + Δ t 0 q x + i q y Δ + Δ t t λ μ q x + i q y 0 0 q x i q y t + λ μ Δ Δ t q x i q y 0 Δ Δ t t + λ + μ ) (9)

h 2 ( q ) = ( t + λ μ Δ + Δ t 0 q x i q y Δ + Δ t t + λ + μ q x i q y 0 0 q x + i q y t λ + μ Δ Δ t q x + i q y 0 Δ Δ t t λ μ ) (10)

拓扑相边界是由 Γ 点处的能隙所决定的,哈密顿量 h 1 h 2 Γ 点处的能隙分别如下:

G 1 κ η = κ ( t + λ ) + η ( Δ + Δ t ) 2 + μ 2 (11)

G 2 κ η = κ ( t λ ) + η ( Δ Δ t ) 2 + μ 2 (12)

其中 κ , η = ± 。当 G 1 κ η = 0 G 2 κ η = 0 时,我们得到的拓扑相图如下,

(a) (b)

Figure 1. Topological phase diagrams of (a) h 1 , (b) h 2 in the Δ t - μ plane, we adopt this parameters: λ = 0 , Δ s = 0 , Δ = 1 , t = 0.5

图1. h 1 h 2 的拓扑相图图(a),(b) 在 Δ t - μ 坐标系中,我们采用这些参数: λ = 0 Δ s = 0 Δ = 1 t = 0.5

这里的N是陈数,当 N = 0 时系统是拓扑平庸的,当 N = ± 1 时系统是拓扑非平庸的。哈密顿量(1)的拓扑相图是 h 1 h 2 的相图之和,所以由图1可得到哈密顿量(1)的拓扑相图如下:

Figure 2. Topological phase diagrams of h in the Δ t - μ plane, we adopt this parameters: λ = 0 , Δ s = 0 , Δ = 1 , t = 0.5

图2. h的拓扑相图在 Δ t - μ 坐标系中,我们采用这些参数: λ = 0 Δ s = 0 Δ = 1 t = 0.5

在接下来的讨论中,我们将利用图2来选取参数 μ Δ t

3.2. 表面束缚态

在本章节中,我们将研究表面束缚态最低能量与角动量的关系。我们将在实空间中处理该问题,为

了计算方便我们将采用极坐标系 ( r , θ ) ,配对项可以写成 Δ ( r ) = Δ e i θ tanh ( r / ξ 0 ) , Δ t ( r ) = Δ t e i θ Δ s ( r ) = Δ s e i θ ,其中 ξ 0 是相干长度,在下面的计算中我们取 ξ 0 = 1 。动量算符 q ± = q x ± i q y 可以被写成:

q + = e i θ [ i r + 1 r θ ] , q = e i θ [ i r 1 r θ ] (13)

并且满足:

q + ( e i n θ J n ( α r ) ) = i α e i ( n + 1 ) θ J n + 1 ( α r ) (14)

q ( e i n θ J n ( α r ) ) = i α e i ( n 1 ) θ J n 1 ( α r ) (15)

上式的n取整数代表角动量, J n ( r ) 是第一类Bessel函数。能量本征方程如下:

h ( r , θ ) Ψ N = E Ψ N (16)

这里的 h ( r , θ ) 是哈密顿量(1)式在实空间的形式,本征态 Ψ N = ( u i ( n , r , θ ) , v i ( n , r , θ ) ) T 其中 i = 1 , 2 , 3 , 4 u i ( n , r , θ ) 代表电子波函数, v i ( n , r , θ ) 代表空穴波函数,且都可以写成下列形式:

u i ( n , r , θ ) = e i ( n 1 ) θ ( u 1 ( n 1 , r ) , u 2 ( n , r ) e i θ , u 3 ( n 1 , r ) , u 4 ( n , r ) e i θ ) (17)

v i ( n , r , θ ) = e i ( n 1 ) θ ( v 1 ( n + 1 , r ) e 2 i θ , v 2 ( n , r ) e i θ , v 3 ( n + 1 , r ) e 2 i θ , v 4 ( n , r ) e i θ ) (18)

我们固定角动量n,然后在每个子空间去求解能量本征方程(16),将波函数分量 u i ( n , r ) v i ( n , r ) ,( i = 1 , 2 , 3 , 4 )投影到半径为R的圆盘上,并用归一化的Bessel函数表示,那么 u i ( n , r ) v i ( n , r ) 可以展开成下列形式:

u i ( n , r ) = k = 1 N c i , k , n φ ( n , r , α k ) (19)

v i ( n , r ) = k = 1 N c i , k , n φ ( n , r , α k ) (20)

这里的 φ ( n , r , α k ) = 2 R J n + 1 ( α k ) J n ( α k r R ) ,其中 α k J n ( r ) 的第k个零点, c i , k , n c i , k , n 是展开系数。通过这样做我们把求解能量本征方程(16)的问题变成了一个求解 8 N × 8 N 的矩阵本征值问题,然后我们能得到能量本征值 E n ,通过数值计算,最低本征能量 E n 与角动量n的关系如下:

(a) (b)

Figure 3. Numerical calculate results (a) and (b). (a) We adopted topological non-trivial parameters as: λ = 0 , Δ s = 0 , Δ = 1 , t = 0.5 , μ = 0.45 , Δ t = 1 . (b) We adopted topological trivial parameters as: λ = 0 , Δ s = 0 , Δ = 1 , t = 0.5 , μ = 0 , Δ t = 0

图3. 数值计算结果(a)和(b)。图(a)我们采用的是拓扑非平庸的参数: λ = 0 Δ s = 0 Δ = 1 t = 0.5 μ = 0.45 Δ t = 1 。图(b)我们采用的是拓扑平庸的参数: λ = 0 Δ s = 0 Δ = 1 t = 0.5 μ = 0 Δ t = 0

4. MZM

图3(a)中我们注意到:当 n = 0 E = 0 ,也就是说存在MZM。而图3(b)中,我们注意到:当 n = 0 E 0 ,即不存在MZM。为了更详细的讨论,接下来我们将求解波函数 u i ( n , r ) v i ( n , r ) 。当 E = 0 时,方程(16)可化为8个微分方程构成的方程组,我们采用数值求解计算来处理该问题,得到的波函数如下:

(a) (b)(c) (d)

Figure 4. The wave function | u 1 | 2 , | u 2 | 2 , | u 3 | 2 , | u 4 | 2 , we adopted topological non-trivial parameters as: λ = 0 , Δ s = 0 , Δ = 1 , t = 0.5 , μ = 0.45 , Δ t = 1 . Note that all wave functions are not normalized. And | v 1 | 2 , | v 2 | 2 , | v 3 | 2 , | v 4 | 2 we can obtain by particle-hole symmetry

图4. 波函数 | u 1 | 2 | u 2 | 2 | u 3 | 2 | u 4 | 2 的图像,我们采用拓扑非平庸的参数: λ = 0 Δ s = 0 Δ = 1 t = 0.5 μ = 0.45 Δ t = 1 。需要注意的是这里的波函数并未归一化,并且 | v 1 | 2 | v 2 | 2 | v 3 | 2 | v 4 | 2 我们可以通过粒子空穴对称性得到

(a) (b)(c) (d)

Figure 5. The wave function | u 1 | 2 , | u 2 | 2 , | u 3 | 2 , | u 4 | 2 , we adopted topological trivial parameters as: λ = 0 , Δ s = 0 , Δ = 1 , t = 0.5 , μ = 0 , Δ t = 0 . Note that all wave functions are not normalized. And | v 1 | 2 , | v 2 | 2 , | v 3 | 2 , | v 4 | 2 we can obtain by particle-hole symmetry

图5. 波函数 | u 1 | 2 | u 2 | 2 | u 3 | 2 | u 4 | 2 的图像,我们采用拓扑平庸的参数: λ = 0 Δ s = 0 Δ = 1 t = 0.5 μ = 0 Δ t = 0 。需要注意的是这里的波函数并未归一化,并且 | v 1 | 2 | v 2 | 2 | v 3 | 2 | v 4 | 2 我们可以通过粒子空穴对称性得到

5. 结论

在本文中,我们研究了一个具有8 × 8 Bogoliubov-de Gennes 哈密顿量的系统,通过数值计算得到了最低束缚态能量与角动量的关系,并且我们还求解了零能态的波函数。由图3(a)和图4我们可以确定MZM存在于涡核附近,由图3(b)和图5我们可以确定在拓扑非平庸时,涡核附近不存在MZM,并且在远离涡核的地方波函数极度发散。因此,我们可以确定在拓扑非平庸的情况下,涡核附近存在MZM,平庸的情况则没有,并且最低束缚态能量与角动量成线性关系。

参考文献

[1] Majorana, E. (1937) Teoria simmetrica dell’elettrone e del positrone. Il Nuovo Cimento (1924-1942), 14, 171-184.
https://doi.org/10.1007/BF02961314
[2] Elliott, S.R. and Franz, M. (2015) Colloquium: Majorana Fermions in Nuclear, Particle, and Solid-State Physics. Reviews of Modern Physics, 87, 137.
https://doi.org/10.1103/RevModPhys.87.137
[3] Nayak, C., Simon, S.H., Stern, A., Freedman, M. and Das Sarma, S. (2015) Non-Abelian Anyons and Topological Quantum Computation. Reviews of Modern Physics, 80, 1083.
https://doi.org/10.1103/RevModPhys.80.1083
[4] Kitaev, A.Y. (1997) Quantum Computations: Algo-rithms and Error Correction. Russian Mathematical Surveys, 52, 1191.
https://doi.org/10.1070/RM1997v052n06ABEH002155
[5] Kitaev, A.Y. (2003) Fault-Tolerant Quantum Computation by Anyons. Annals of Physics, 303, 2-30.
https://doi.org/10.1016/S0003-4916(02)00018-0
[6] Kitaev, A.Y. (2006) Anyons in an Exactly Solved Model and Beyond. Annals of Physics, 321, 2-111.
https://doi.org/10.1016/j.aop.2005.10.005
[7] Aasen, D., Hell, M., Mishmash, R.V., Higginbotham, A., et al. (2016) Milestones toward Majorana-Based Quantum Computing. Physical Review X, 6, Article ID: 031016.
https://doi.org/10.1103/PhysRevX.6.031016
[8] Read, N. and Green, D. (2000) Paired States of Fermions in Two Dimensions with Breaking of Parity and Time-Reversal Symmetries and the Fractional Quantum Hall Effect. Physical Review B, 61, Article ID: 10267.
https://doi.org/10.1103/PhysRevB.61.10267
[9] Ivanov, D.A. (2001) Non-Abelian Statistics of Half-Quantum Vortices in p-Wave Superconductors. Physical Review Letters, 86, 268.
https://doi.org/10.1103/PhysRevLett.86.268
[10] Volovik, G.E. (1999) Fermion Zero Modes on Vortices in Chiral Superconductors. JETP Letters, 70, 609-614.
https://doi.org/10.1134/1.568223
[11] Senthil, T. and Fisher, M.P.A. (2000) Quasiparticle Localization in Superconductors with Spin-Orbit Scattering. Physical Review B, 61, 9690.
https://doi.org/10.1103/PhysRevB.61.9690
[12] Stone, M. and Roy, R. (2004) Edge Modes, Edge Currents, and Gauge Invariance in px + ipy Superfluids and Superconductors. Physical Review B, 69, Article ID: 184511.
https://doi.org/10.1103/PhysRevB.69.184511
[13] Mackenzie, A.P., Scaffidi, T., Hicks, C.W. and Maeno, Y. (2017) Even Odder after Twenty-Three Years: The Superconducting Order Parameter Puzzle of Sr2RuO4. NPJ Quantum Information, 2, 40.
https://doi.org/10.1038/s41535-017-0045-4
[14] Fu, L. and Kane, C.L. (2008) Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator. Physical Review Letters, 100, Article ID: 096407.
https://doi.org/10.1103/PhysRevLett.100.096407
[15] Beenakker, C.W.J. (2013) Search for Ma-jorana Fermions in Superconductors. Annual Review of Condensed Matter Physics, 4, 113-136.
https://doi.org/10.1146/annurev-conmatphys-030212-184337
[16] Mourik, V., Zuo, K., Frolov, S.M., et al. (2012) Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices. Science, 336, 1003-1007.
https://doi.org/10.1126/science.1222360
[17] Deng, M.T., Yu, C.L., Huang, G.Y., et al. (2012) Anomalous Zero-Bias Conductance Peak in a Nb-InSb Nanowire-Nb Hybrid Device. Nano Letters, 12, 6414-6419.
https://doi.org/10.1021/nl303758w
[18] Finck, A.D.K., Van Harlingen, D.J., Mohseni, P.K., Jung, K. and Li, X. (2013) Anomalous Modulation of a Zero-Bias Peakin a Hybrid Nanowire-Superconductor Device. Physical Review Letters, 110, Article ID: 126406.
https://doi.org/10.1103/PhysRevLett.110.126406
[19] Lee, E.J.H., Jiang, X., Houzet, M., et al. (2014) Spin-Resolved Andreev Levels and Parity Crossings in Hybrid Superconductor-Semiconductor Nanostructures. Nature Nanotechnology, 9, 79-84.
https://doi.org/10.1038/nnano.2013.267
[20] Nadj-Perge, S., Drozdov, I.K., Li, J., et al. (2014) Observation of Majorana Fermions in Ferromagnetic Atomic Chains on a Superconductor. Sci-ence, 346, 602-607.
https://doi.org/10.1126/science.1259327
[21] Kong, L.Y., Zhu, S.Y., Papaj, M., Chen, H., Cao, L., Isobe, H., Xing, Y.Q., Liu, W.Y., Wang, D.F., Fan, P., Sun, Y.J., Du, S.X., Schneeloch, J., Zhong, R., Gu, G., Fu, L., Gao, H.J. and Ding, H. (2019) Half-Integer Level Shift of Vortex Bound States in an Iron-Based Super-conductor. Nature Physics, 15, 1181.
https://doi.org/10.1038/s41567-019-0630-5
[22] Chen, C., Liu, Q., Zhang, T.Z., Li, D., Shen, P.P., Dong, X.L., Zhao, Z.X., Zhang, T. and Feng, D.L. (2019) Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li0.84Fe0.16)OHFeSe. Chinese Physics Letters, 36, Article ID: 057403.
https://doi.org/10.1088/0256-307X/36/5/057403
[23] Liu, W.Y., Gao, L., Zhu, S.Y., Kong, L.Y., Wang, G.W., Papaj, M., Zhang, P., Liu, Y.B., Chen, H., Li, G., Yang, F.Z., Kondo, T., Du, S.X., Cao, G.H., Shin, S., Fu, L., Yin, Z.P., Gao, H.J. and Ding, H. (2020) A New Majorana Platform in an Fe-As Bilayer Su-perconductor. Nature Communications, 11, Article No. 5688.
https://doi.org/10.1038/s41467-020-19487-1
[24] Wang, Z.Y., Rodriguez, J.O., Jiao, L., Howard, S., Graham, M., Gu, G.D., Hughes, T.L., Morr, D.K. and Madhavan, V. (2020) Evidence for Dispersing 1D Majorana Channels in an Iron-Based Superconductor. Science, 367, 104-108.
https://doi.org/10.1126/science.aaw8419
[25] Zhao, W.H., Ding, L.L., Zhou, B.W., et al. (2021) Phase Dia-grams of Superconducting Topological Surface States. Condensed Matter Physics, 24, 43701.
https://doi.org/10.5488/CMP.24.43701
[26] Gygi, F. and Schl, M. (1991) Self-Consistent Electronic Structure of a Vortex Line in a Type-II Superconductor. Physical Review B, 43, 7609-7621.
https://doi.org/10.1103/PhysRevB.43.7609
[27] Hu, L.-H., Wu, X.X., Liu, C.-X. and Zhang, R.-X. (2021) Competing Vortex Topologies in Iron-Based Superconductors. Physical Review Letters, 129, Article ID: 277001.
https://doi.org/10.1103/PhysRevLett.129.277001