乳液聚合法制备的分级碳泡沫用于超级电容器的电极材料
Hierarchical Carbon Foam Materials Prepared by Emulsion Polymerization Were Used as Electrode Materials for Supercapacitors
DOI: 10.12677/MS.2023.134038, PDF, HTML, XML, 下载: 187  浏览: 302 
作者: 吴丛须:武汉工程大学化学与环境工程学院,湖北 武汉
关键词: 乳液聚合碳泡沫化学活化超级电容器 Emulsion Polymerization Carbon Foam Chemical Activation Supercapacitor
摘要: 分级多孔材料由于在超级电容器、吸附、催化和生物医学等领域的潜在应用而备受关注。因此,本章主要是通过微乳液聚合的方法,先预碳化合成碳材料,再通过化学活化的方法实现分级碳泡沫材料的制备。研究表明,在微乳液体系中,酸性条件下合成出来的碳材料与KOH活化比为1:3时获得的分级碳泡沫表现出较大的比表面积(1133.4 m2/g)以及较高的孔体积(0.96 cm3/g)。此外,在三电极体系、6 M KOH的电解液下,HCF-HCl-2在1 A/g的电流密度下表现出最大的比电容为214.8 F/g。并且在1 A/g的电流密度下循环1000圈后仍旧保持96.6%的比容量。说明了分级多孔碳电极材料是一种有前景的储能材料。
Abstract: Hiearchical porous materials have attracted much attention due to their potential applications in the fields of supercapacitors, adsorption, catalysis and biomedicine. Therefore, the carbon materials were synthesized by microemulsion polymerization and precar-bonization in this work. Then the hierarchical carbon foam material was prepared by chemical ac-tivation. The results show that in the microemulsion system, the carbon material synthesized under acidic conditions and the carbon foam obtained with the activation ratio of 1:3 to KOH showed a larger specific surface area (1133.4 m2/g) and a higher pore volume (0.96 cm3/g). In addition, the maximum specific capacitance of HCF-HCl-2 is 214.8 F/g at 1 A/g current density in a three-electrode system with 6 M KOH electrolyte. And the specific capacity remains 96.6% after 1000 cycles at 1 A/g current density. The results show that the hiearchical porous carbon electrode material is a promising energy storage material.
文章引用:吴丛须. 乳液聚合法制备的分级碳泡沫用于超级电容器的电极材料[J]. 材料科学, 2023, 13(4): 337-344. https://doi.org/10.12677/MS.2023.134038

1. 引言

近年来,化石原料的燃烧过多以及环境污染的严重,使得可再生能源转换与存储系统成为众多研究者们研究的目标 [1] [2] 。而超级电容器(SCs)作为新一代优良的存储器件,由于其功率密度大、充电速度快、安全性强和长循环能力而备受欢迎 [3] [4] [5] 。目前,用于超级电容器的材料主要为多孔碳材料。这是因为多孔结构可以提高电化学性能。

在之前的研究中,多孔碳材料的研究主要是通过对多孔聚合物进行热解的方式得到 [6] [7] 。此方式得到的碳材料具有丰富的多孔结构,使得其比表面积较大,相对于其它不发达的孔道会增强双电层的电容量。但是材料含有大量的大孔分层结构在合成中由于生产过程有多个步骤导致这种结构非常稀缺 [8] 。在多孔碳的合成中,乳液聚合法由于粒子分散性好、可控性强、环境友好等优点成为研究重点。目前,乳液聚合法也从传统乳液聚合的方法发展为微乳液聚合、壳核乳液聚合、原位乳液聚合等聚合方法。例如,Sydulu等 [9] 通过乳液聚合方法合成了聚苯胺–多壁碳纳米管纳米复合多孔材料,通过电化学分析显示PANI-MWNT纳米复合多孔材料的比电容具有协同增效作用。Tan等 [10] 以导电聚合物聚苯胺为壳,通过原位聚合在金纳米粒子表面生长。电化学研究表明,制备的材料具有良好的电化学性能,最高比电容高达285.0 F/g,远高于原始PANI的115.0 F/g;经过4000次循环后,与原始PANI相比,纳米金@PANI 显示出更好的循环稳定性。

基于此,本文采用简便又经济的水包油微乳液聚合的方法制备的分层碳泡沫材料。这种方法实验过程,主要是先形成水包油乳液体系,再通过5 mL 1 M盐酸催化酚醛树脂的聚合。最后将碳化后的碳材料与氢氧化钾混合,得到分级碳泡沫材料。本文研究了两种催化剂以及两种催化剂条件下不同碳碱比对合成的材料形貌与性能的影响。通过对材料的结构表征与电化学性能分析可知,当在酸性条件下、碳碱比为1:3时合成的碳泡沫材料,它具有最大的比表面积1133.4 m2/g,孔体积0.96 cm3/g。同时在三电极体系下,HCF-HCl-2在1 A/g的电流密度下表现出214.8 F/g的比容量。

2. 实验

2.1. 材料、试剂与仪器

液态石蜡、间苯二酚、甲醛溶液、氢氧化钾、盐酸、氢氧化钠均购自上海国药。山梨醇单油酸酯(Span 80)、聚乙二醇山梨醇单油酸酯(Tween 80),来自上海麦克林生化科技有限公司。所有试剂均为分析级,购买时使用,未进一步纯化。所有工艺均使用去离子水。

2.2. 分级多孔碳材料的制备

水/油乳液制备:将5.0 g液体石蜡、1.2 g span 80、1.6 g tween 80混合在三颈瓶中,在50℃下高速搅拌20 min (记为溶液A)。然后将4.4 g间苯二酚、6.32 g甲醛和3 mL去离子水溶解在烧杯中,超声处理至完全溶解(记为溶液B)。之后,将溶液B缓慢加入溶液A中,搅拌30分钟后,将溶液混合均匀,得到水/油乳液。在制备的水/油乳液体系中加入1 M 5 mL的盐酸溶液。将该乳液体系快速固化得到前驱体材料,用去离子水和乙醇洗涤后,在60℃下干燥12 h。最后将所得前驱体装入管式炉中,以2℃/min的升温速率加热至350℃,在惰性气体氩气气氛下保持40 min,再以2℃/min的升温速率加热至850℃,在惰性气体氩气气氛下保持2 h。冷却至室温后,得到黑色固体。产品用去离子水冲洗,再在60℃下干燥12 h,得到分级碳泡沫材料(命名为HCF-HCl)。为了进行比较,在相同的合成过程中,用氢氧化钠作为催化剂并将其命名为(HCF-NaOH)。

化学活化:将0.5 g碳材料与1.5 g的氢氧化钾混合(质量比为1:3),以5℃/min的升温速率加热至800℃,在惰性气体氩气气氛下保持2 h。冷却至室温后,得到黑色固体用1 M HCl超声洗涤至中性。再在60℃下干燥12 h,得到活化后的分级碳泡沫材料(命名为HCF-HCl-2)。为了进行比较,在相同的合成过程中,分别用碳碱质量比为1:2、1:5碳化后得到的产品命名为HCF-HCl-1、HCF-HCl-3。流程图如图1所示。

Figure 1. Synthesis process of hierarchical carbon foam

图1. 分级碳泡沫的合成过程

2.3. 电极制备、测试以及比电容的计算

电化学测试是由工作电极、对电极以及参比电极组成的三电极体系中进行的。所有的电化学测试都是在辰华CHI 660E工作站完成的。工作电极是将合成出来的碳泡沫、乙炔黑以及聚四氟乙烯按照质量比为8:1:1混合在乙醇中,然后将混合物研磨成水泥状。再将其混合物均匀的涂在泡沫镍(1 × 1 cm2)上,在100℃干燥过夜得到的。再用6 M KOH浸泡12 h,最后以Pt片为对电极,饱和的甘汞电极为参比电极。用6.0 M KOH溶液为电解液进行循环伏安曲线(CV)测试、恒电流充放电(GCD)曲线测试以及交流阻抗曲线(EIS)测试来对工作电极电化学性能的评估。根据恒电流充放电测试中得到的数值以及工作电极上的碳泡沫质量,计算出比电容。计算公式如下:

C = I Δ t m Δ V

其中I为放电的恒定电流(A),Δt为放电的时间(s),m为活性物质的质量(g),ΔV为放电的电压范围(V)。

3. 结果与讨论

3.1. 多孔碳材料的表征分析

图2所示的SEM图像显示了制备样品的形貌。HCF的SEM图像显示出分级多孔结构。多孔结构的形成主要是以石蜡为油相作为大孔形成剂在煅烧后形成大孔,以Span 80、Tween 80为表面活性剂作为微孔、介孔形成剂在煅烧后形成微孔和介孔。在用碱活化时增大微孔的体积。这种结构不仅有大的比表面积而且能够增强超级电容器的电容性能。表明乳液聚合的方法成功合成了多孔碳材料。

Figure 2. (a) HFC-NaOH-2; (b) HFC-HCl-2 FE-SEM image

图2. (a) HCF-NaOH-2;(b) HCF-HCl-2 FE-SEM图像

拉曼结果得到的碳材料的石墨化度如图3(a)所示。与晶体缺陷或无序石墨结构有关的典型D能带和与sp2杂化石墨结构有关的典型G能带分别在1450和1600 cm−1左右 [11] 。众所周知,D带与G带的强度比(ID/IG)与缺陷程度和石墨化程度有关。HCF-NaOH-2和HCF-HCl-2的ID/IG计算值分别为1.13和1.03。随着不同催化剂催化乳液体系中酚醛树脂形成的多孔碳,HCF的ID/IG值在酸性条件下的石墨化程度更高。随后,对材料进行红外分析来确定是否成功合成酚醛树脂。如图3(b)所示,可以观察到在3000~3700 cm−1区域的吸收峰是由于羟基(-OH)的拉伸振动 [12] 。在1000~1300 cm−1范围内的特征峰对应于C-O拉伸和O-H弯曲振动。此外,位于1619 cm−1处的峰对应C=C键,可能与苯环的拉伸变形有关 [13] 。上述结果表明,我们成功制备出了酚醛树脂碳材料。为了对材料的表面性能进行研究,采用N2吸附/解吸的方法。根据IUPAC分类HCF呈现I型与IV型混合的等温线,H4滞后环(如图3(c)),根据吸附曲线表明材料具有微孔、介孔以及大孔。因此,HCF具有良好的层次孔隙结构。图3(d)为采用BJH模型估计的两个样品的最可几孔径分布曲线。发现呈现单峰,孔径都在3.9 nm左右。可以看出,HCF-HCl-2具有明显的介孔特征。如表1所示,HCF-NaOH-2和HCF-HCl-2的SSA计算值分别为968.8、1133.4 m2/g。孔体积分别为0.78、0.96 cm3/g。这都表明HCF-HCl-2具有更好的孔结构,大的表面积有助于最大限度地容纳电荷,丰富的中孔/大孔通道有利于快速离子传输,因此HCF-HCl-2有望表现出来在电化学性能测试中提供很好的电化学性能。

Figure 3. HCF-NaOH-2 and HCF-HCl-2 (a) Raman spectra; (b) infrared spectra; (c) N2 adsorption-desorption isotherm; (d) Aperture distribution curve

图3. HCF-NaOH-2和HCF-HCl-2 (a) 拉曼光谱;(b) 红外谱图;(c) N2吸附–解吸等温线;(d) 孔径分布曲线

Table 1. Pore structure parameters of HCF-NaOH-2 and HCF-HCl-2

表1. HCF-NaOH-2和HCF-HCl-2的孔隙结构参数

3.2. 电化学性能测试分析

高比表面积、大孔体积以及相互连通的多孔结构同时影响了样品的电化学性能。因此,在6 M KOH电解质的三电极体系中进行了进一步的电化学表征研究。如图4(a)所示,氢氧化钠催化形成的碳材料以及不同活化比的分级碳泡沫材料在扫描速率为20 mV/s时,循环伏安(CV)曲线呈准矩形,表现为典型的双层电行为 [14] 。当碳碱比为1:3时,矩形包围的面积最大。表明在此比例下比电容最高。图4(b)为在1 A/g的电流密度下的充放电曲线,GCD曲线呈对称三角形,表明其具有良好的速率能力。通过公式计算材料的比电容分别为12.5 F/g、130.3 F/g、150.5 F/g、73.1 F/g。表明在活化比例为1:3时呈现最高的比电容。与CV曲线得到的结果一致。图4(c),图4(d)为盐酸催化形成的碳材料以及不同活化比的分级碳泡沫材料的CV、GCD曲线。同理,计算材料的比电容分别为35 F/g、162.7 F/g、214.9 F/g、144.7 F/g。因此,在酸性条件下、碳碱比为1:3时乳液聚合合成的碳泡沫具有较好的电化学性能。同时表明了用氢氧化钾活化能提高电化学性能。这与前面孔隙结构测试结果一致。电化学性能的提高是由于活化能够增大微孔体积。而微孔能够促进双电层电容的形成,从而提高电化学性能 [15] [16] 。

Figure 4. (a), (c) shows the CV curves of carbon materials obtained by different catalysts and carbon foam materials obtained by different carbon base ratios at sweep speed of 20 mV/s. (b), (d) is the GCD curve of carbon materials obtained by different catalysts and carbon foam materials obtained by different carbon base ratios when the current density is 1 A/g

图4. (a),(c)为不同催化剂得到的碳材料以及不同碳碱比得到的碳泡沫材料在扫速为20 mV/s时的CV曲线;(b),(d)为不同催化剂得到的碳材料以及不同碳碱比得到的碳泡沫材料在电流密度为1 A/g时的GCD曲线

为了对HCF-HCl-2进一步研究,对材料在不同扫速以及不同电流密度进行电化学测试(如图5(a),图5(b))。图5(a)显示了HCF-HCl-2在20 ~ 200 mV/s范围内不同扫描速率下的CV曲线。即使在扫描速率为200 mV/s的情况下,矩形形状也能保持不变,表明具有优异的速率性能 [17] 。图5(b)显示了HCF-HCl-2在电流密度为0.5~10 A/g时的GCD曲线。HCF-HCl-2在电流密度为0.5 A/g、1.0 A/g、2.0 A/g、5.0 A/g和10 A/g时的比电容分别为220 F/g、214.9 F/g、206.8 F/g、194.2 F/g、185 F/g。可以看出,HCF-HCl-2在10 A/g的电流密度下仍然保持着185 F/g的比电容。这表明其具有良好的倍率能力。通过电化学阻抗谱(EIS)测试进一步研究了多孔碳的电化学性能。从图5(c) 可以看出,HCF-HCl-2的半圆图比HCF-NaOH-2半圆图要小得多,说明HCF-HCl-2的电荷转移电阻更低。HCF-HCl-2在低频区斜率几乎接近90˚,因为其丰富的多孔结构可以为离子在电极表面提供有效通道 [18] 。因此,HCF-HCl-2具有较好的电化学性能。此外,还测试了HCF-HCl-2在1 A/g下的循环稳定性。如图5(d)所示,在1000圈循环后比电容保留率达到96.6%。说明HCF-HCl-2在长期循环过程中具有良好的稳定性,并且在三维多孔结构中具有良好的离子扩散性。

Figure 5. (a) CV curves at different sweep speeds of HCF-HCl-2; (b) GCD curves at different current densities of HCF-HCl-2; (c) Nyquist diagrams of HCF-NaOH-2 and HCF-HCl-2; (d) The charge-discharge cycle stability test of HCF-HCl-2 at current density is 1 A/g

图5. (a) HCF-HCl-2在不同扫速下的CV曲线;(b) HCF-HCl-2在不同电流密度下的GCD曲线;(c) HCF-NaOH-2和HCF-HCl-2的奈奎斯特图;(d) 电流密度为1 A/g时,HCF-HCl-2的充放电循环稳定性测试

4. 结论

综上所述,通过乳液聚合、炭化和化学活化等简单工艺制备了分级碳泡沫。不同的催化剂对合成的碳材料在比表面积和多孔结构的调节中起着关键作用。在酸性条件下、碳碱比为1:3时合成的碳泡沫作为超级电容器的电极材料,表现出优异的电化学性能。HCF-HCl-2在电流密度为1 A/g下的比电容为214.8 F/g。并且在1000次循环后,比电容保持96.6%。这为分级多孔碳的合成提供了方法。

参考文献

[1] Wang, J. and Kaskel, S. (2012) KOH Activation of Carbon-Based Materials for Energy Storage. Journal of Materials Chemistry, 22, 23710-23725.
https://doi.org/10.1039/c2jm34066f
[2] Zhang, Y., Qu, T., Xiang, K., et al. (2018) In Situ Formation/Carbonization of Quinone-Amine Polymers towards Hierarchical Porous Carbon Foam with High Faradaic Activity for Energy Storage. Journal of Materials Chemistry A, 6, 2353-2359.
https://doi.org/10.1039/C7TA09644E
[3] Raza, W., Ali, F., Raza, N., et al. (2018) Recent Advancements in Su-percapacitor Technology. Nano Energy, 52, 441-473.
https://doi.org/10.1016/j.nanoen.2018.08.013
[4] Liu, Y., Chang, X., Wang, M., et al. (2021) Hierarchical CuCo2O4/CuO Nanoflowers Crosslinked with Carbon Nanotubes as an Advanced Electrode for Supercapacitors. Journal of Alloys and Compounds, 871, Article ID: 159555.
https://doi.org/10.1016/j.jallcom.2021.159555
[5] Xin, X., Wang, Z., Jia, R., et al. (2020) Dual Nitrogen Sources Co-Doped Mesoporous Carbon with Ultrahigh Rate Capability for High-Performance Supercapacitors. Journal of Alloys and Compounds, 822, Article ID: 153627.
https://doi.org/10.1016/j.jallcom.2019.153627
[6] Zhao, Y., Zhao, Z., Zhu, Z., et al. (2021) Preparation of N-Doped Porous Carbons via High Internal Phase Emulsion Template. Progress in Natural Science: Materials Interna-tional, 31, 270-278.
https://doi.org/10.1016/j.pnsc.2021.01.006
[7] Zhu, D., Wang, Y., Lu, W., et al. (2017) A Novel Synthesis of Hierarchical Porous Carbons from Interpenetrating Polymer Networks for High Performance Supercapacitor Electrodes. Carbon, 111, 667-674.
https://doi.org/10.1016/j.carbon.2016.10.016
[8] Liu, C., Wang, J., Li, J., et al. (2016) Synthesis of N-Doped Hollow-Structured Mesoporous Carbon Nanospheres for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 8, 7194-7204.
https://doi.org/10.1021/acsami.6b02404
[9] Sydulu Singu, B., Srinivasan, P. and Yoon, K.R. (2016) Emulsion Polymerization Method for Polyaniline-Multiwalled Carbon Nanotube Nanocomposites as Supercapacitor Materials. Journal of Solid State Electrochemistry, 20, 3447-3457.
https://doi.org/10.1007/s10008-016-3309-1
[10] Tan, Y., Zhang, Y., Kong, L., et al. (2017) Nano-Au@ PANI Core-Shell Nanoparticles via In-Situ Polymerization as Electrode for Supercapacitor. Journal of Alloys and Compounds, 722, 1-7.
https://doi.org/10.1007/s10008-016-3309-1
[11] Cheng, J.X., Lu, Z.J., Zhao, X.F., et al. (2021) Green Needle Coke-Derived Porous Carbon for High-Performance Symmetric Supercapacitor. Journal of Power Sources, 49, Article ID: 229770.
https://doi.org/10.1016/j.jpowsour.2021.229770
[12] Baghayeri, M., Alinezhad, H., Fayazi, M., et al. (2019) Re-cycled LiMn2O4 from the Spent Lithium Ion Batteries as Cathode Material for Sodium Ion Batteries: Electrochemical Properties, Structural Evolution and Electrode Kinetics. Electrochimica Acta, 320, 80-88.
https://doi.org/10.1016/j.electacta.2019.04.180
[13] Pol, V.G., Shrestha, L.K. and Ariga, K. (2014) Tunable, Func-tional Carbon Spheres Derived from Rapid Synthesis of Resorcinol-Formaldehyde Resins. ACS Applied Materials & In-terfaces, 6, 10649-10655.
https://doi.org/10.1021/am502324m
[14] Liu, S., Xu, Y., Wu, J. and Huang, J. (2021) Celery-Derived Porous Carbon Materials for Superior Performance Supercapacitors. Nanoscale Advances, 3, 5363-5372.
https://doi.org/10.1039/D1NA00342A
[15] Wickramaratne, N.P., Xu, J., Wang, M., et al. (2014) Nitrogen En-riched Porous Carbon Spheres: Attractive Materials for Supercapacitor Electrodes and CO2 Adsorption. Chemistry of Materials, 26, 2820-2828.
https://doi.org/10.1021/cm5001895
[16] Zhang, P., Liu, M. and Liu, S. (2020) N-Doped Honeycomb-Like Hierar-chical Porous Carbon Foams for Supercapacitor Applications with Different PC/RF Mass Ratios. Journal of Materials Science: Materials in Electronics, 31, 3519-3528.
https://doi.org/10.1007/s10854-020-02900-2
[17] Liu, B., Yang, M., Chen, H., et al. (2018) Graphene-Like Porous Carbon Nanosheets Derived from Salvia Splendens for High-Rate Performance Supercapacitors. Journal of Power Sources, 397, 1-10.
https://doi.org/10.1016/j.jpowsour.2018.06.100
[18] Ji, Y., Deng, Y., Wu, H. and Tong, Z. (2019) In Situ Prepara-tion of P, O Co-Doped Carbon Spheres for High-Energy Density Supercapacitor. Journal of Applied Electrochemistry, 49, 599-607.
https://doi.org/10.1007/s10800-019-01308-z
[19] Wang, J. and Kaskel, S. (2012) KOH Activation of Carbon-Based Materials for Energy Storage. Journal of Materials Chemistry, 22, 23710-23725.
https://doi.org/10.1039/c2jm34066f
[20] Zhang, Y., Qu, T., Xiang, K., et al. (2018) In Situ Formation/Carbonization of Quinone-Amine Polymers towards Hierarchical Porous Carbon Foam with High Faradaic Activity for Energy Storage. Journal of Materials Chemistry A, 6, 2353-2359.
https://doi.org/10.1039/C7TA09644E
[21] Raza, W., Ali, F., Raza, N., et al. (2018) Recent Advancements in Su-percapacitor Technology. Nano Energy, 52, 441-473.
https://doi.org/10.1016/j.nanoen.2018.08.013
[22] Liu, Y., Chang, X., Wang, M., et al. (2021) Hierarchical CuCo2O4/CuO Nanoflowers Crosslinked with Carbon Nanotubes as an Advanced Electrode for Supercapacitors. Journal of Alloys and Compounds, 871, Article ID: 159555.
https://doi.org/10.1016/j.jallcom.2021.159555
[23] Xin, X., Wang, Z., Jia, R., et al. (2020) Dual Nitrogen Sources Co-Doped Mesoporous Carbon with Ultrahigh Rate Capability for High-Performance Supercapacitors. Journal of Alloys and Compounds, 822, Article ID: 153627.
https://doi.org/10.1016/j.jallcom.2019.153627
[24] Zhao, Y., Zhao, Z., Zhu, Z., et al. (2021) Preparation of N-Doped Porous Carbons via High Internal Phase Emulsion Template. Progress in Natural Science: Materials Interna-tional, 31, 270-278.
https://doi.org/10.1016/j.pnsc.2021.01.006
[25] Zhu, D., Wang, Y., Lu, W., et al. (2017) A Novel Synthesis of Hierarchical Porous Carbons from Interpenetrating Polymer Networks for High Performance Supercapacitor Electrodes. Carbon, 111, 667-674.
https://doi.org/10.1016/j.carbon.2016.10.016
[26] Liu, C., Wang, J., Li, J., et al. (2016) Synthesis of N-Doped Hollow-Structured Mesoporous Carbon Nanospheres for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 8, 7194-7204.
https://doi.org/10.1021/acsami.6b02404
[27] Sydulu Singu, B., Srinivasan, P. and Yoon, K.R. (2016) Emulsion Polymerization Method for Polyaniline-Multiwalled Carbon Nanotube Nanocomposites as Supercapacitor Materials. Journal of Solid State Electrochemistry, 20, 3447-3457.
https://doi.org/10.1007/s10008-016-3309-1
[28] Tan, Y., Zhang, Y., Kong, L., et al. (2017) Nano-Au@ PANI Core-Shell Nanoparticles via In-Situ Polymerization as Electrode for Supercapacitor. Journal of Alloys and Compounds, 722, 1-7.
https://doi.org/10.1007/s10008-016-3309-1
[29] Cheng, J.X., Lu, Z.J., Zhao, X.F., et al. (2021) Green Needle Coke-Derived Porous Carbon for High-Performance Symmetric Supercapacitor. Journal of Power Sources, 49, Article ID: 229770.
https://doi.org/10.1016/j.jpowsour.2021.229770
[30] Baghayeri, M., Alinezhad, H., Fayazi, M., et al. (2019) Re-cycled LiMn2O4 from the Spent Lithium Ion Batteries as Cathode Material for Sodium Ion Batteries: Electrochemical Properties, Structural Evolution and Electrode Kinetics. Electrochimica Acta, 320, 80-88.
https://doi.org/10.1016/j.electacta.2019.04.180
[31] Pol, V.G., Shrestha, L.K. and Ariga, K. (2014) Tunable, Func-tional Carbon Spheres Derived from Rapid Synthesis of Resorcinol-Formaldehyde Resins. ACS Applied Materials & In-terfaces, 6, 10649-10655.
https://doi.org/10.1021/am502324m
[32] Liu, S., Xu, Y., Wu, J. and Huang, J. (2021) Celery-Derived Porous Carbon Materials for Superior Performance Supercapacitors. Nanoscale Advances, 3, 5363-5372.
https://doi.org/10.1039/D1NA00342A
[33] Wickramaratne, N.P., Xu, J., Wang, M., et al. (2014) Nitrogen En-riched Porous Carbon Spheres: Attractive Materials for Supercapacitor Electrodes and CO2 Adsorption. Chemistry of Materials, 26, 2820-2828.
https://doi.org/10.1021/cm5001895
[34] Zhang, P., Liu, M. and Liu, S. (2020) N-Doped Honeycomb-Like Hierar-chical Porous Carbon Foams for Supercapacitor Applications with Different PC/RF Mass Ratios. Journal of Materials Science: Materials in Electronics, 31, 3519-3528.
https://doi.org/10.1007/s10854-020-02900-2
[35] Liu, B., Yang, M., Chen, H., et al. (2018) Graphene-Like Porous Carbon Nanosheets Derived from Salvia Splendens for High-Rate Performance Supercapacitors. Journal of Power Sources, 397, 1-10.
https://doi.org/10.1016/j.jpowsour.2018.06.100
[36] Ji, Y., Deng, Y., Wu, H. and Tong, Z. (2019) In Situ Preparation of P, O Co-Doped Carbon Spheres for High-Energy Density Supercapacitor. Journal of Applied Electrochemistry, 49, 599-607.
https://doi.org/10.1007/s10800-019-01308-z