#### 期刊菜单

Research on Machine Tool Speed Optimization Methods under High Removal Rate Processes
DOI: 10.12677/DSC.2023.122012, PDF , HTML, XML, 下载: 103  浏览: 150  科研立项经费支持

Abstract: As China’s industrial development continues, the industrial structure and technological level are constantly upgrading, and the demand for precision processing of complex parts is increasing. CNC machine tools have the advantages of high machining accuracy and short processing time, and are essential machining equipment in modern equipment manufacturing industry. In this article, the cutting force disturbance under the high material removal rate condition is taken as the limiting condition, and a speed planning algorithm suitable for high material removal rate processes of CNC machine tools is proposed. Through the S-shaped surface machining experiment, the results show that the speed planning algorithm proposed in this article can effectively improve processing efficiency and can to some extent improve processing accuracy.

1. 研究背景

2020年国内的制造业产出已经占到全世界的四分之一，但大多数制造业产品在全球价值链中所处的位置不高 [1] 。在过去几十年中主要依靠低成本劳动力和大规模生产来保持竞争力，而缺乏自主创新和高端技术。这导致了许多中国制造业企业只能从事低附加值的生产和加工业务，而难以在全球价值链中向上游和高端方向发展。现有阶段的国内的数控机床产业呈现出大而不强的发展格局，其中低端数控机床保有量巨大，高端数控机床自研率极低大部分依赖国外进口。

2. 速度规划算法

Figure 1. Relationship between tool motion path and each axis motion of five axis CNC lathe

$\left\{\begin{array}{l}{e}_{p}={P}_{r}-{P}_{a}\\ {e}_{0}={O}_{r}-{O}_{a}\end{array}$ (1)

$e\left(s\right)={\Phi }_{r}\left(s\right){T}_{r}\left(s\right)+{\Phi }_{e}\left(s\right){T}_{d}\left(s\right)$ (2)

$e\left(s\right)\approx {\Phi }_{e}\left(s\right){T}_{d}\left(s\right)$ (3)

$e\left(s\right)={\Phi }_{e}\left(s\right){\Phi }_{d}\left(s\right){J}_{p}^{\text{T}}F$ (4)

$\left\{\begin{array}{l}‖{J}_{p}{e}_{xyzac}‖<{\epsilon }_{p,\mathrm{lim}}\\ ‖{J}_{0}{e}_{ac}‖<2\mathrm{sin}\left({\epsilon }_{0,\mathrm{lim}}/2\right)\end{array}$ (5)

3. 结果分析

Figure 2. Machining curve of S-shaped parts

Table 1. Comparison of cutting methods

4. 全文总结

 [1] 尹伟华. 中国制造业产品全球价值链的分解分析——基于世界投入产出表视角[J]. 世界经济研究, 2016, 263(1): 66-75. [2] Bi, Q.Z., Wang, Y.H., Zhu, L.M. and Ding, H. (2010) An Algorithm to Generate Compact Dual NURBS Tool Path with Equal Distance for 5-Axis NC Machining. Third International Conference on Intelligent Robotics and Applications, ICIRA 2010, Shanghai, 10-12 November 2010, 553-564. [3] Farouki, R.T. (2008) Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable. https://doi.org/10.1007/978-3-540-73398-0 [4] Altintas, Y., Kersting, P., Biermann, D., et al. (2014) Virtual Process Systems for Part Machining Operations. CIRP Annals, 63, 585-605. https://doi.org/10.1016/j.cirp.2014.05.007 [5] Erdim, H., Lazoglu, I. and Ozturk, B. (2006) Feedrate Scheduling Strategies for Free-Form Surfaces. International Journal of Machine Tools and Manufacture, 46, 747-757. https://doi.org/10.1016/j.ijmachtools.2005.07.036 [6] Tomizuka, M. (1987) Zero Phase Error Tracking Algorithm for Digital Control. Journal of Dynamic Systems Measurements & Control, 109, 349-354. https://doi.org/10.1115/1.3143822 [7] Feng, H. and Poo, A.N. (2012) Improving Contouring Accuracy by Using Generalized Cross-Coupled Control. International Journal of Machine Tools & Manufacture, 63, 49-57. https://doi.org/10.1016/j.ijmachtools.2012.07.012