超早产儿呼吸支持研究进展
Research Progress on Respiratory Support for Extremely Preterm Infants
DOI: 10.12677/ACM.2023.135987, PDF, HTML, XML, 下载: 167  浏览: 340 
作者: 刘万娇:重庆医科大学附属儿童医院新生儿科,重庆;李 芳*:重庆市妇幼保健院,重庆医科大学附属妇女儿童医院,重庆
关键词: 超早产儿呼吸管理综述Extremely Preterm Infants Respiratory Management Review
摘要: 早产是全球婴儿死亡和发病的主要原因,其中超早产儿常合并母孕期高危因素,出生时各器官发育不成熟,即使存活的超早产儿在住院期间也可能会存在一些严重并发症影响其生存质量,是新生儿重症监护病房的救治重点。本文就超早产儿呼吸管理策略进行综述,为优化超早产儿早期干预提供依据。
Abstract: Preterm birth is the leading cause of infant mortality and morbidity worldwide, among which ex-tremely preterm infants (EPI) are often combined with maternal high-risk factors during pregnancy, and the organs are immature at birth; even surviving extremely preterm infants may have some severe complications during hospitalization that affect their quality of life, which is the focus of treatment in neonatal intensive care units (NICU). This article reviews the respiratory management strategies of extremely preterm infants to provide a basis for optimizing early intervention in ex-tremely preterm infants.
文章引用:刘万娇, 李芳. 超早产儿呼吸支持研究进展[J]. 临床医学进展, 2023, 13(5): 7056-7068. https://doi.org/10.12677/ACM.2023.135987

1. 简介

世界卫生组织(World Health Organization, WHO)定义超早产儿(extremely preterm infants, EPI)为胎龄(gestational age, GA) 28周之前出生的早产儿,而NICHD新生儿研究网(Neonatal Research Network, NRN)定义为胎龄29周出生的早产儿,尽管定义存在细微差异,但这一群体不成比例地影响着早产儿的发病率和死亡率。近几年随着围产期呼吸管理技术的不断优化,这一高危人群的存活率逐步提高,仍有部分超早产儿在住院期间死亡。绝大多数超早产儿出生后早期需要无创或有创通气支持,如何降低这一人群病死率及并发症,提高生存率仍然是重要挑战。本文将从及时适当地使用产前使用类固醇激素、产房护理、生后无创呼吸支持、早期给予肺表面活性物质,咖啡因治疗,以及尽可能避免插管和机械通气等肺保护管理策略在超早产儿呼吸支持中的应用进行综述。

2. 产前糖皮质激素(Antenatal Corticosteroids, ACS)

ACS潜在的长期不良后果必须与其促进胎儿成熟和预防严重疾病的好处进行权衡:有无呼吸窘迫综合征(respiratory distress syndrome, RDS)、脑室内出血(intraventricular hemorrhage, IVH)、坏死性小肠结肠炎(necrotizing enterocolitis, NEC)和支气管肺发育不良(bronchopulmonary dysplasia, BPD)发生。根据ACOG (The American College of Obstetricians and Gynecologists)指南,ACS被推荐用于GA 24 0/7至33 6/7周的先兆早产孕妇,GA23 0/7~23 6/7有分娩风险需要复苏的,以及34 0/7~36 6/7周7天内有早产风险且此前未经过ACS治疗的孕妇 [1] [2] 。2022年欧洲NRDS管理指南推荐,所有GA < 34周有早产迹象或高风险孕产妇给予一个疗程ACS,理想情况下至少在分娩前24小时完成(A1)。如果第一疗程ACS后已经1~2周,且在妊娠32周前再次有早产迹象,可重复ACS剂量(A2) [3] 。一项前瞻性队列研究表明,胎龄22~28周超早产儿产前激素治疗与较低的出院前死亡率相关,且不增加BPD及其他主要肺部不良结局的发生率,同时能改善超早产儿RDS和其他严重发病率,但该研究缺乏干预组与对照组胎儿的队列研究及分娩前住院数据 [4] 。2020年meta分析表明ACS可降低新生儿死亡率,但在降低RDS、NEC、IVH-PVL、BPD及早产儿慢性肺部疾病等发生率上无明显优势 [5] ,后者与之前的meta分析结果相矛盾 [6] [7] 。另一项Meta分析纳入了9项观察性研究中的GA < 25周超早产儿,结果表明,ACS暴露后BPD的发生率更高,但这很可能是使用ACS的死亡率以及BPD和死亡的综合结局显著下降的结果 [8] 。一些予以ACS而持续妊娠到足月的高危儿在一定程度上暴露于激素的潜在有害影响,但部分队列研究发现的不良影响也可能是妊娠并发症或与ACS无关的情况 [9] 。ACS可能与长期疾病相关,包括认知和神经精神疾病、慢性肺病、高血压、糖尿病、冠心病和早死的风险 [10] 。但最新的一项meta分析表明与未暴露在ACS相比,超早产儿接受单疗程ACS与神经发育障碍风险显著降低有关(OR 0.69, 95% CI 0.57~0.84]; I2 = 0%) [11] 。是否重复ACS剂量仍在讨论中。重复ACS剂量观察到的有益效果可能是呼吸窘迫的早期治疗要求。如之前使用ACS已满7天或14天且在接下来7天有早产风险,可在妊娠34 + 0周前进行ACS拯救疗程,能有效降低早产儿呼吸支持和PS需求 [12] 。在多次重复剂量的ACS后,增加感染风险,抑制母婴垂体–肾上腺功能,远期内CP的风险增加 [13] 。Cochrane一项meta分析表明多剂量与单疗程ACS相比增加了出生体重减轻的风险,但调整胎龄后出生体重或出院时无差异 [14] 。最常见的ACS给药方案包括倍他米松和地塞米松。一项Cochrane系统评价发现与倍他米松相比,地塞米松与较低的脑室内出血(IVH)率有关(RR0.44, 95% CI 0.21~0.92),两组围产期死亡率(R 1.28, 95% CI 0.46~3.52)、RDS (RR 1.06, 95% CI 0.88~1.27)相似;这项纳入的一项试验中,地塞米松组有1名患儿18月时被记录存在神经感觉障碍 [15] 。ACS的最佳药物、剂量和给药时间有待确定。目前在评估ACS治疗婴儿呼吸益处、潜在的母婴即时不良反应和长期不良反应(如神经发育及功能)之间的平衡上,还没有足够的数据得出确切结论。随着生存能力限制的继续降低,ACS的作用和依据也可能发生变化。

3. 产房处理

标准化的待产复苏可有效提高早产儿的存活率,如保暖、通气、供养、监护仪器、复苏团队等。欧洲RDS指南推荐,超早产儿应使用塑料袋或薄膜严密包裹,并置于远红外辐射保温台。生后有自主呼吸但无需正压通气早产儿,延迟脐带结扎(DCC)至少60 s,并在生后10 min内采集脐动脉或脐静脉进行血液检测。使用T组合复苏而不是复苏囊,超早产儿首选30%的初始吸入氧分数(FiO2)进行复苏,在避免低氧血症和引起氧化应激之间取得最佳平衡。并根据血氧调整供氧浓度,使SpO2在5分钟内达到80%~85% (心率 > 100/min),可显著改善预后。有自主呼吸早产儿启动CPAP而不是插管可减少肺损伤和BPD [16] 。生后持续肺充气并不能降低纠正胎龄36周BPD或死亡的发生率 [17] 。对通过面罩或鼻塞进行正压通气无反应者予以气管插管 [3] 。

4. 肺表面活性物质(Surfactant Therapy, PS)

肺表面活动物质通过降低肺泡表面张力和防止肺泡塌陷来改善肺顺应性,增加功能容量,可有效改善氧合,减少生后激素及机械通气需求 [18] 。早年的Cochrane综述表明气管内PS可改善早产儿死亡率,气漏以及慢性肺疾病 [19] 。然而研究中进行PS替代治疗的患儿相对成熟,且ACS暴露率低,且是在插管时给药的。尽管如此,无论是否在IMV、CPAP或NIV支持下,仍然有理由证实PS在超早产儿RDS患者的肺保护作用。为了避免PS治疗延迟的潜在危害,2022年欧洲RDS管理共识指出如果GA < 30周早产儿需要插管来稳定,应给予PS治疗。所有需要治疗的RDS患儿生后尽早予动物源性PS治疗。挽救性PS治疗应在病程早期给予,推荐原则:CPAP下(呼气终末正压PEEP ≥ 6 cmH2O) FiO2 > 0.30或肺部超声提示需要PS的情况恶化的RDS患儿 [3] 。如果持续存在RDS证据(持续高氧并排除其他因素)可给予第二剂PS,有时给予第三剂。3剂PS足够超早产儿支撑自身生成足量PS,如PS治疗4次病情仍未改善需要考虑其他因素。目前国内常用的PS制剂为猪肺磷脂和牛肺表面活性物质,具体PS用法见表1。PS给药方法如INSURE (插管、表面活性物质和拔管),微创技术(LISA或MIST,直视或喉镜下经喂养管或特殊细导管注入PS),及非侵入性技术(雾化吸入) [20] [21] [22] 。通常选择气管内给药,对于无创通气下(NCPAP)有自主呼吸者优选微创PS给药,以减少插管需求,特别是GA < 28周早产儿。喉罩下PS给药可用于体重 > 1000 g的较成熟儿。2021年Cochrane对16项研究的Meta分析比较了LISA与INSURE或LISA与继续无创呼吸支持的结局,结果显示LISA与降低死亡或纠正胎龄36周时BPD的综合风险、减少前72小时内插管次数及主要并发症发生率等有关 [23] 。2022年一项来自德国的回顾性多中心队列研究比较了胎龄22 + 0~26 + 6周的超早产儿是否接受LISA的短期结局,结果显示LISA与超早产儿全因死亡率、BPD或死亡的不良结局降低有关。吸入布地奈德联合PS治疗可提高非BPD患儿的生存率 [24] 。PS治疗后需密切关注有无过度通气、氧中毒、肺水肿、气漏、肺出血等。

5. 咖啡因(Caffeine)

枸橼酸咖啡因在结构上与甲基黄嘌呤有关,咖啡因可刺激呼吸中枢,增加膈肌收缩力,增加分钟通气量,并具有利尿和抗炎作用 [25] ,即可用于预防和治疗早产儿呼吸暂停(AOP),还可拔管前给药,减少再插管和延长机械通气需要 [26] 。一项大型多中心RCT:咖啡因治疗早产儿呼吸暂停(CAP)试验随访了极低出生体重儿在生后10天进行咖啡因治疗的结局,证实了早产儿长期服用咖啡因的安全性,表明早期咖啡因治疗降低PDA手术风险,可提前一周停止正压通气和氧疗,并降低BPD发生率 [27] 。对该试验随访18~21个月时无神经发育障碍的生存率改善 [28] ,随访5年无残疾生存率不再与咖啡因治疗显著相关,但运动总功能有明显改善 [29] 。根据NICE (National Institute for Health and Care Excellence)指南,建议所有胎龄 ≤ 30周早产儿尽早常规使用咖啡因 [30] 。对于需要IMV的高危早产儿或使用NIV的早产儿,可考虑尽早服用咖啡因。美国食品药品监督管理局批准咖啡因治疗AOP后,推荐剂量为20 mg/kg柠檬酸咖啡因,随后每日维持剂量为5~10 mg/kg/天 [31] 。美国一项回顾性队列研究比较了3天内及3天后使用咖啡因治疗超早产儿的结局,结果表明生后3天内咖啡因与降低死亡或BPD、需要干预的PDA发生率和缩短机械通气时长有关 [32] 。一项试点随机对照试验比较了胎龄 < 29周早产儿分别在日龄2小时内(早期)和12小时(常规)静脉注射20 mg/kg的枸橼酸咖啡因或安慰剂,结果显示早期使用咖啡因可改善血压和全身血流量,心率、左室输出量和每搏量无明显影响 [33] 。荷兰一项RCT纳入了30个胎龄24~30周早产儿,纠正胎龄后,与NICU接受咖啡因治疗相比,产房内接受咖啡因早产儿分钟通气量、潮气量和最大潮气量上升速度明显增加 [34] 。

咖啡因对不成熟大脑既有利又有害,似乎与研究物种、接受剂量、治疗时神经发育阶段和治疗时间有关。咖啡因可诱导短暂但显著的脑氧合减少,同时增加氧提取,这可能与脑代谢增加和/或脑血流量减少有关 [35] 。动物研究表明,在怀孕和哺乳期间暴露于咖啡因的小鼠后代存在有害的长期神经发育障碍,包括皮质神经元兴奋性增加,癫痫发作易感性增加,导致暴露后代神经发育不良 [36] 。丹麦国家出生队列研究(DNBCS)结果显示,母孕期暴露于较高的咖啡因儿童11岁时行为障碍增加 [37] 。一项针对RCT的二次分析利用振幅整合脑电图表明早期大剂量咖啡因治疗与癫痫发作发生率增加相关 [38] 。国内一项随机对照研究利用脑磁共振成像表明早期给予咖啡因可改善早产儿脑白质发育,但对早产相关的短期并发症无显著影响 [39] 。较高的咖啡因剂量与降低拔管后呼吸暂停发生率较低和失败相关,并且可能降低BPD的发生率 [40] 。对于超早产儿来说,咖啡因的剂量仍然难以确认,一项药物代谢动力学模拟研究表明出生体重较低的极早产儿可能需要更高的基于体重的咖啡因剂量(如10 mg/kg/天维持剂量)来进一步预防支气管肺发育不良,因为他们的体重调整清除率较高,半衰期较短 [41] 。使用咖啡因治疗还应关注一些副作用,包括易激惹、钠钙排泄增加、高血压、高血糖、喂养不耐受和心动过速,但使用咖啡并不会增加发生坏死性小肠结肠炎(NEC)的风险 [42] 。停用咖啡因的最适时间仍不确定,大多数在矫正胎龄32~34周停止,此时中枢性呼吸暂停发生率显著降低。但对于超早产儿,呼吸暂停和低氧血症可能持续时间更长,患有BPD者尤甚,建议在治疗期间无呼吸暂停发展5~7天后可停用,并在停用后监测患儿呼吸情况5~7天 [43] 。

Table 1. Drugs related to respiratory support

表1. 呼吸支持相关药物

6. 无创通气(Non-Invasive Ventilation, NIV)

目前有六种无创通气模式,包括持续气道正压通气(nasal continuous positive airway pressure, NCPAP)、经鼻间歇正压通气(nasal intermittentpositive pressure ventilation, NIPPV),双水平气道正压通气(bilevel positive airway pressure, BiPAP)、高流量鼻导管给氧(high flow nasal cannula oxygen therapy, HFNC),经鼻高频振荡通气(nasal high frequency oscillatory ventilation, nHFOV)或经鼻高频喷射通气(nasal high frequency jet ventilation, NHFJV)和无创神经调节辅助通气(invasive neurally adjusted ventilatory assist, NIV-NAVA)。其中前四种常用于超早产儿,后两种在这类人群中还需要进一步研究,使用之前常需要进一步评估。NIV可与早期的、抢救的表面活性物质治疗结合使用。来自发达国家对超早产儿呼吸支持的问卷调查显示,对于25~28周超早产儿,使用NCPAP/NIPPV的比例较高。美国SUPPOR多中心研究推荐有自主呼吸超早产儿复苏中首选NCPAP,避免肺泡塌陷并减少IMV需求,该研究显示同时给予PS,NCPAP与1小时内插管相比在死亡和BPD发生上相似 [44] 。NCPAP和机械通气的meta分析结果显示,NCPAP在减少死亡或BPD方面有少量但显著的益处 [45] 。大型随机对照研究(RCTs)已证明,通过常规使用NCPAP避免有创机械通气(IMV)是安全的,并可预防肺损伤高风险的极未成熟新生儿(胎龄25~30周)发生BPD [46] 。欧洲指南推荐,对于所有有RDS风险的早产儿,如GA < 30周而不需要插管稳定,应从出生时开始实施CPAP或(NIPPV) (A1)。提供CPAP的界面应选择短的双鼻塞或鼻罩,起始压力约为6~8 cmH2O (A2)3。尽管更多地使用CPAP进行初始呼吸支持,但存活超过12小时的人中超过85%暴露于IMV [47] 。GA < 29周早产儿NCPAP失败与死亡率、BPD、死亡或BPD增加以及坏死性小肠结肠炎(NEC)相关 [48] 。复苏时和表面活性剂给药后较高的FiO2 (FiO2 > 0.30)是NIV失败的独立危险因素 [49] 。是否推荐常规使用CPAP的这些研究混杂了减轻BPD负担和因NIV失败造成治疗拖延的两个高危儿亚群?NCPAP失败的高发生率是否会影响我们对其在超早产儿中治疗效果的判断?纳入更小胎龄的早产儿进行高质量研究是必要的。与NCPAP相比,NIPPV能更有效地减少拔管失败的发生率和48 h~1周内再次插管的需要,但对BPD和死亡率无明显影响 [50] 。在最近的一项系统综述中,Ferguson等人得出结论,NIPPV在预防拔管失败方面优于NCPAP [51] 。各模式的总结见表2。来自瑞士的Sven M. Schulzke等人以NICU视角,总结了超早产儿呼吸支持的选择,见表3 [52] 。

Table 2. Comparison of non-invasive ventilation modes

表2. 无创通气模式对比

Table 3. Respiratory support options for preterm infants

表3. RDS早产儿呼吸支持选择

1尽可能避免机械通气,需要机械通气的早产儿可给予气管内表面活性剂(如,poractant alfa 200 mg/kg)。

2需要表面活性剂的早产儿,考虑延迟拔管,LISA(微创表面活性剂给药),或插管–表面活性剂–拔管技术(INSURE)。

7. 机械通气

进行呼吸机辅助支持的目标是进行充分气体交换并最大程度减少肺损伤,特别是呼吸机诱发的肺损伤(ventilator-induced lung injury, VILI)和BPD。VILI的原因可能是通气压力过大(气压伤)、肺组织过度拉伸(容积伤)、肺泡腔的周期性塌陷(肺不张),以及高FiO2。有创机械通气(IMV)和补氧是BPD发生的两个主要危险因素。早产程度是有创机械通气需求的主要预测因素,胎龄越小,需要有创机械通气的可能性越高,尤其是超早产婴儿(胎龄 < 28周)。有关早产儿机械通气的要点见表4。超早产儿支气管肺发育不良BPD发生率约40%,与长期的肺功能受损和不良的神经后果有关 [47] [55] 。一项队列研究显示,平均气道压(MAP)可作为需要长期正压通气的超早高危儿接受气管插管高风险的临床指标 [56] 。机械通气时时,SIPPV是主流的初始模式选择(84%),但多数选择压力控制模式(PLV)而非容量目标(VTV),可能与在资源有限的环境中,PLV更为普及、费用更低且更易于使用有关。对于呼吸机控制与限制类型,推荐容量目标通气,可降低死亡率及机械通气时间,减少PCO2波动,降低颅内出血、气胸、BPD的发生 [57] 。有创通气作为无创呼吸支持的挽救治疗,应尽量缩短MV时间。持续有创通气2周后可考虑小剂量地塞米松以促进拔管。高频振荡通气(HFOV)作为一种肺保护性通气策略,以超生理频率,通过使用持续扩张压力(CDP)以小潮气量快速输送到最佳充气肺,促进气体交换(见表5)。HFOV以提供非常强大的二氧化碳清除能力这一优势成为研究热点。与CMV相比,Meta分析显示HFOV组BPD略有降低,但代价是更高的漏气率和更多的短期神经不良事件的发生 [58] 。欧洲RDS管理指南推荐:肺保护性模式如VTV或HFOV应是需要机械通气RDS患儿的首选(A1)。HFOV与VTV相结合的通气模式是呼吸机通过近端压力不断输送设定的高频潮气量。为了维持目标潮气量,当增加频率时,呼吸机产生的近端压力也会增加,但传递到肺的远端压力波动较小。与HFOV相比,HFOV-VG可保持潮气量和二氧化碳弥散系数(DCO2)稳定,减少容量伤、气压伤以及高低碳酸血症发生率,可使VILI最小化,减轻脑白质损伤 [59] [60] 。目前相关研究有限,这一策略的安全性和有效性还需循证医学支持。

Table 4. Review on mechanical ventilation in preterm infants

表41. 早产儿机械通气要点

1VILI:呼吸机相关性肺损伤;MV:机械通风;nCPAP:经鼻持续气道正压;VTV:容量目标通气;Tv:潮气量;PEEP:呼气末正压;FiO2:吸入氧浓度分数;HFOV:高频振荡通气;HFJV:高频射流通风;CMV:常规机械通气;RR:呼吸频率;MAP:平均气道压力;PaCO2:动脉二氧化碳分压;SpO2:外周血氧饱和度;HFV:高频通气;SIMV + PS:同步间歇指令通风 + 压力支持;ACV:辅助控制通风;PLV:压力限制通风;ETT:气管插管;Ti:吸气时间;PIP:吸气峰压。

Table 5. Review on high-frequency oscillatory ventilation

表5. 高频振荡通气要点

8. 结论

超早产儿早期呼吸管理实践的进步有助于降低病死率及严重并发症。产前糖皮质激素和标准化产房护理是必要的,预防性或补救性使用肺表面活性物质是安全和有效的。优化选择无创呼吸支持,避免机械通气,以预防VILI和BPD。无创通气失败需要快速识别和改进治疗。在大多数情况下,微创肺表面活性物质联合无创通气支持并补充咖啡因治疗被认为是新生儿呼吸窘迫的首选策略。

利益冲突

作者声明不存在利益冲突。

参考文献

[1] NIH Consensus Development Panel on the Effect of Corticosteroids for Fetal Maturation on Perinatal Outcomes (1995) Effect of Corticosteroids for Fetal Maturation on Perinatal Outcomes. JAMA, 273, 413-418.
https://doi.org/10.1001/jama.273.5.413
[2] Committee on Obstetric Practice (2017) Committee Opinion No. 713: Antenatal Corticosteroid Therapy for Fetal Maturation. Obstetrics & Gynecology, 130, e102-e109.
https://doi.org/10.1097/AOG.0000000000002237
[3] Sweet, D.G., Carnielli, V.P., Greisen, G., Hallman, M., Klebermass-Schrehof, K., et al. (2023) European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update. Neonatology, 120, 3-23.
https://doi.org/10.1159/000528914
[4] Travers, C.P., Carlo, W.A., McDonald, S.A., et al. (2018) Mortality and Pulmonary Outcomes of Extremely Preterm Infants Exposed to Antenatal Corticosteroids. American Journal of Obstet-rics & Gynecology, 218, 130.e1-130.e13.
[5] Blankenship, S.A., Brown, K.E., Simon, L.E., Stout, M.J. and Tuuli, M.G. (2020) Antenatal Corticosteroids in Preterm Small-for-Gestational Age Infants: A Systematic Review and Me-ta-Analysis. American Journal of Obstetrics & Gynecology MFM, 2, Article ID: 100215.
https://doi.org/10.1016/j.ajogmf.2020.100215
[6] McGoldrick, E., Stewart, F., Parker, R. and Dalziel, S.R. (2020) Antenatal Corticosteroids for Accelerating Fetal Lung Maturation for Women at Risk of Preterm Birth. Cochrane Data-base of Systematic Reviews, No. 12, CD004454.
https://doi.org/10.1002/14651858.CD004454.pub4
[7] Roberts, D., Brown, J., Medley, N. and Dalziel, S.R. (2017) Antenatal Corticosteroids for Accelerating Fetal Lung Maturation for Women at Risk of Preterm Birth. Cochrane Database of Systematic Reviews, 3, CD004454.
https://doi.org/10.1002/14651858.CD004454.pub3
[8] Deshmukh, M. and Patole, S. (2018) Antenatal Cortico-steroids in Impending Preterm Deliveries before 25 Weeks’ Gestation. ADC Fetal & Neonatal Edition, 103, F173-F176.
https://doi.org/10.1136/archdischild-2017-313840
[9] Hallman, M., Ronkainen, E., Saarela, T.V. and Marttila, R.H. (2022) Management Practices during Perinatal Respiratory Transition of Very Premature Infants. Frontiers in Pedi-atrics, 10, Article ID: 862038.
https://doi.org/10.3389/fped.2022.862038
[10] Seckl, J.R. (2004) Prenatal Glucocorticoids and Long-Term Pro-gramming. European Journal of Endocrinology, Supplement, 151, U49-U62.
https://doi.org/10.1530/eje.0.151u049
[11] Ninan, K., Liyanage, S.K., Murphy, K.E., Asztalos, E.V. and McDonald, S.D. (2022) Evaluation of Long-Term Outcomes Associated with Preterm Exposure to Antenatal Corticosteroids: A Systematic Review and Meta-Analysis. JAMA Pediatrics, 176, e220483.
https://doi.org/10.1001/jamapediatrics.2022.0483
[12] American College of Obstetricians and Gynecologists Com-mittee on Obstetric Practice (2017) Committee Opinion No. 713: Antenatal Corticosteroid Therapy for Fetal Maturation. Obstetrics & Gynecology, 130, e102-e109.
https://doi.org/10.1097/AOG.0000000000002237
[13] Wapner, R.J., Sorokin, Y., Mele, L., Johnson, F., Dudley, D.J., Spong, C.Y., et al. (2007) Long-Term Outcomes after Repeat Doses of Antenatal Corticosteroids. The New Eng-land Journal of Medicine, 357, 1190-1198.
https://doi.org/10.1056/NEJMoa071453
[14] Crowther, C.A., McKinlay, C.J., Middleton, P. and Harding, J.E. (2015) Repeat Doses of Prenatal Corticosteroids for Women at Risk of Preterm Birth for Improving Neonatal Health Outcomes. Cochrane Database of Systematic Reviews, 7, CD003935.
https://doi.org/10.1002/14651858.CD003935.pub4
[15] Brownfoot, F.C., Gagliardi, D.I., Bain, E., Middleton, P. and Crowther, C.A. (2013) Different Corticosteroids and Regimens for Accelerating Fetal Lung Maturation for Women at Risk of Preterm Birth. Cochrane Database of Systematic Reviews, No. 8, CD006764.
https://doi.org/10.1002/14651858.CD006764.pub3
[16] Subramaniam, P., Ho, J.J. and Davis, P.G. (2021) Prophylactic or Very Early Initiation of Continuous Positive Airway Pressure (CPAP) for Preterm Infants. Cochrane Database of Systematic Reviews, 10, CD001243.
https://doi.org/10.1002/14651858.CD001243.pub4
[17] Kirpalani, H., Ratcliffe, S.J., Keszler, M., Davis, P.G., et al. (2019) Effect of Sustained Inflations vs Intermittent Positive Pressure Ventilation on Bronchopulmonary Dysplasia or Death among Extremely Preterm Infants: The SAIL Randomized Clinical Trial. JAMA, 321, 1165-1175.
https://doi.org/10.1001/jama.2019.1660
[18] Jobe, A.H. (1993) Pulmonary Surfactant Therapy. The New England Journal of Medicine, 328, 861-868.
https://doi.org/10.1056/NEJM199303253281208
[19] Soll, R.F. (2000) Synthetic Surfactant for Respiratory Dis-tress Syndrome in Preterm Infants. Cochrane Database of Systematic Reviews, 1998, CD001149.
https://doi.org/10.1002/14651858.CD001149
[20] Jena, S.R., Bains, H.S., Pandita, A., Verma, A., Gupta, V., Kal-lem, V.R., et al. (2019) Surfactant Therapy in Premature Babies: SurE or InSurE. Pediatric Pulmonology, 54, 1747-1752.
https://doi.org/10.1002/ppul.24479
[21] Pandita, A. and Panza, R. (2020) Sure or Insure. Pediatric Pulmonology, 55, 18-19.
https://doi.org/10.1002/ppul.24573
[22] Kribs, A., Roll, C., Göpel, W., Wieg, C., Groneck, P., Laux, R., et al. (2015) Nonintubated Surfactant Application vs Conventional Therapy in Extremely Preterm Infants: A Randomized Clinical Trial. JAMA Pediatrics, 169, 723-730.
https://doi.org/10.1001/jamapediatrics.2015.0504
[23] Abdel-Latif, M.E., Davis, P.G., Wheeler, K.I., de Paoli, A.G. and Dargaville, P.A. (2021) Surfactant Therapy via Thin Catheter in Preterm Infants with or at Risk of Respiratory Dis-tress Syndrome. Cochrane Database of Systematic Reviews, 5, CD011672.
https://doi.org/10.1002/14651858.CD011672.pub2
[24] Sweet, D.G., Carnielli, V., Greisen, G., Hallman, M., Ozek, E., Te Pas, A., et al. (2019) European Consensus Guidelines on the Management of Respiratory Distress Syn-drome—2019 Update. Neonatology, 115, 432-450.
https://doi.org/10.1159/000499361
[25] Köroğlu, O.A., MacFarlane, P.M., Balan, K.V., et al. (2014) An-ti-Inflammatory Effect of Caffeine Is Associated with Improved Lung Function after Lipopolysaccharide-Induced Amni-onitis. Neonatology, 106, 235-240.
https://doi.org/10.1159/000363217
[26] Chavez, L. and Bancalari, E. (2022) Caffeine: Some of the Evidence behind Its Use and Abuse in the Preterm Infant. Neonatology, 119, 428-432.
https://doi.org/10.1159/000525267
[27] Schmidt, B., Roberts, R.S., Davis, P., Doyle, L.W., Barrington, K.J., Ohlsson, A., et al. (2006) Caffeine Therapy for Apnea of Prematurity. The New England Journal of Medicine, 354, 2112-2121.
https://doi.org/10.1056/NEJMoa054065
[28] Schmidt, B., Roberts, R.S., Davis, P., Doyle, L.W., Barrington, K.J., Ohlsson, A., et al. (2007) Long-Term Effects of Caffeine Therapy for Apnea of Prematurity. The New England Journal of Medicine, 357, 1893-1902.
https://doi.org/10.1056/NEJMoa073679
[29] Schmidt, B. anderson, P.J., Doyle, L.W., Dewey, D., Grunau, R.E., Asztalos, E.V., et al. (2012) Survival without Disability to Age 5 Years after Neonatal Caffeine Therapy for Apnea of Prematurity. JAMA, 307, 275-282.
https://doi.org/10.1001/jama.2011.2024
[30] National Guideline Alliance (UK) (2019) Specialist Neonatal Respira-tory Care for Babies Born Preterm. National Institute for Health and Care Excellence (UK), London.
https://www.nice.org.uk/guidance/ng124
[31] Abu-Shaweesh, J.M. and Martin, R.J. (2017) Caffeine Use in the Neonatal Intensive Care Unit. Seminars in Fetal and Neonatal Medicine, 22, 342-347.
https://doi.org/10.1001/jama.2011.2024
[32] Patel, R.M., Leong, T., Carlton, D.P. and Vyas-Read, S. (2013) Early Caffeine Therapy and Clinical Outcomes in Extremely Preterm Infants. Journal of Perinatology, 33, 134-140.
https://doi.org/10.1038/jp.2012.52
[33] Katheria, A.C., Sauberan, J.B., Akotia, D., et al. (2015) A Pilot Random-ized Controlled Trial of Early versus Routine Caffeine in Extremely Premature Infants. American Journal of Perinatology, 32, 879-886.
https://doi.org/10.1055/s-0034-1543981
[34] Dekker, J., Hooper, S.B., van Vonderen, J.J., et al. (2017) Caffeine to Improve Breathing Effort of Preterm Infants at Birth: A Randomized Controlled Trial. Pediatric Research, 82, 290-296.
https://doi.org/10.1038/pr.2017.45
[35] Dix, L.M.L., van Bel, F., Baerts, W. and Lemmers, P.M.A. (2018) Effects of Caffeine on the Preterm Brain: An Observational Study. Early Human Development, 120, 17-20.
https://doi.org/10.1016/j.earlhumdev.2018.03.008
[36] Silva, C.G., Métin, C., Fazeli, W., et al. (2013) Adenosine Receptor Antagonists Including Caffeine Alter Fetal Brain Development in Mice. Science Translational Medicine, 5, 197ra104.
https://doi.org/10.1126/scitranslmed.3006258
[37] Hvolgaard, M.S., Obel, C., Olsen, J., Niclasen, J.,et al. (2017) Maternal Caffeine Consumption during Pregnancy and Behavioral Disorders in 11-Year-Old Offspring: A Danish National Birth Cohort Study. The Journal of Pediatrics, 189, 120-127.e1.
https://doi.org/10.1016/j.jpeds.2017.06.051
[38] Vesoulis, Z.A., McPherson, C., Neil, J.J., Mathur, A.M. and In-der, T.E. (2016) Early High-Dose Caffeine Increases Seizure Burden in Extremely Preterm Neonates: A Preliminary Study. Journal of Caffeine Research, 6, 101-107.
https://doi.org/10.1089/jcr.2016.0012
[39] Liu, S.S., Zhang, X.L., Liu, Y.C., Yuan, X., et al. (2020) Early Applica-tion of Caffeine Improves White Matter Development in Very Preterm Infants. Respiratory Physiology & Neurobiology, 281, Article ID: 103495.
https://doi.org/10.1016/j.resp.2020.103495
[40] Patel, R.M., Zimmerman, K., Carlton, D.P., et al. (2017) Early Caffeine Prophylaxis and Risk of Failure of Initial Continuous Positive Airway Pressure in Very Low Birth Weight In-fants. The Journal of Pediatrics, 190, 108-111.e1.
https://doi.org/10.1016/j.jpeds.2017.07.006
[41] Lim, S.Y., May, C.B., Johnson, P.N., et al. (2023) Caffeine Dos-ing in Premature Neonates: Impact of Birth Weight on a Pharmacokinetic Simulation Study. Pediatric Research, 93, 696-700.
https://doi.org/10.1038/s41390-022-02172-y
[42] Puia-Dumitrescu, M., Smith, P.B., Zhao, J., et al. (2019) Dosing and Safety of Off-Label Use of Caffeine Citrate in Premature Infants. The Journal of Pediatrics, 211, 27-32.e1.
https://doi.org/10.1016/j.jpeds.2019.04.028
[43] Eichenwald, E.C. (2016) Committee on Fetus and Newborn, American Academy of Pediatrics. Apnea of Prematurity. Pediatrics, 137, e20153757.
https://doi.org/10.1542/peds.2015-3757
[44] Support Study Group of the Eunice Kennedy Shriver NICHD Neo-natal Research Network, et al. (2010) Early CPAP versus Surfactant in Extremely Preterm Infants. The New England Journal of Medicine, 362, 1970-1979.
https://doi.org/10.1056/NEJMoa0911783
[45] Fischer, H.S. and Bührer, C. (2013) Avoiding Endotracheal Ventila-tion to Prevent Bronchopulmonary Dysplasia: A Meta-Analysis. Pediatrics, 132, e1351-e1361.
https://doi.org/10.1542/peds.2013-1880
[46] Wright, C.J., Polin, R.A. and Kirpalani, H. (2016) Continuous Posi-tive Airway Pressure to Prevent Neonatal Lung Injury: How Did We Get Here, and How Do We Improve? The Journal of Pediatrics, 173, 17-24.e12.
https://doi.org/10.1016/j.jpeds.2016.02.059
[47] Stoll, B.J., Hansen, N.I., Bell, E.F., et al. (2015) Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993-2012. JAMA, 314, 1039-1051.
https://doi.org/10.1001/jama.2015.10244
[48] Dargaville, P.A., Gerber, A., Johansson, S., et al. (2016) Incidence and Outcome of CPAP Failure in Preterm Infants. Pediatrics, 138, e20153985.
https://doi.org/10.1542/peds.2015-3985
[49] Fernandez-Gonzalez, S.M., Sucasas Alonso, A., Ogando Martinez, A. and Avila-Alvarez, A. (2022) Incidence, Predictors and Outcomes of Noninvasive Ventilation Failure in Very Preterm Infants. Children (Basel), 9, 426.
https://doi.org/10.3390/children9030426
[50] Lemyre, B., Davis, P.G., De Paoli, A.G. and Kirpalani, H. (2017) Nasal Intermittent Positive Pressure Ventilation (NIPPV) versus Nasal Continuous Positive Airway Pressure (NCPAP) for Preterm Neonates after Extubation. Cochrane Database of Systematic Reviews, 2, CD003212.
https://doi.org/10.1002/14651858.CD003212.pub3
[51] Ferguson, K.N., Roberts, C.T., Manley, B.J. and Davis, P.G. (2017) Interventions to Improve Rates of Successful Extubation in Preterm Infants. A Systematic Review and Me-ta-Analysis. JAMA Pediatrics, 171, 165-174.
https://doi.org/10.1001/jamapediatrics.2016.3015
[52] Schulzke, S.M. and Stoecklin, B. (2022) Update on Ventila-tory Management of Extremely Preterm Infants—A Neonatal Intensive Care Unit Perspective. Pediatric Anesthesia, 32, 363-371.
https://doi.org/10.1111/pan.14369
[53] Kostekci, Y.E., Okulu, E., Bakirarar, B., et al. (2022) Nasal Con-tinuous Positive Airway Pressure vs. Nasal Intermittent Positive Pressure Ventilation as Initial Treatment after Birth in Extremely Preterm Infants. Frontiers in Pediatrics, 10, Article ID: 870125.
https://doi.org/10.3389/fped.2022.870125
[54] Li, J., Li, X., Huang, X. and Zhang, Z. (2019) Noninvasive High-Frequency Oscillatory Ventilation as Respiratory Support in Preterm Infants: A Meta-Analysis of Randomized Controlled Trials. Respiratory Research, 20, 58.
https://doi.org/10.1186/s12931-019-1023-0
[55] Cheong, J.L.Y. and Doyle, L.W. (2018) An Update on Pulmonary and Neurodevelopmental Outcomes of Bronchopulmonary Dysplasia. Seminars in Perinatology, 42, 478-484.
https://doi.org/10.1053/j.semperi.2018.09.013
[56] Wai, K.C., Keller, R.L., Lusk, L.A., et al. (2017) Characteristics of Extremely Low Gestational Age Newborns Undergoing Tracheotomy: A Secondary Analysis of the Trial of Late Sur-factant Randomized Clinical Trial. JAMA Otolaryngology—Head & Neck Surgery, 143, 13-19.
https://doi.org/10.1001/jamaoto.2016.2428
[57] Klingenberg, C., Wheeler, K.I., McCallion, N., et al. (2017) Vol-ume-Targeted versus Pressure-Limited Ventilation in Neonates. Cochrane Database of Systematic Reviews, 10, CD003666.
https://doi.org/10.1002/14651858.CD003666.pub4
[58] De Jaegere, A.P., Deurloo, E.E., van Rijn, R.R., et al. (2016) Individualized Lung Recruitment during High-Frequency Ventilation in Preterm Infants Is Not Associated with Lung Hyperinflation and Air Leaks. European Journal of Pediatrics, 175, 1085-1090.
https://doi.org/10.1007/s00431-016-2744-4
[59] Lin, H.Z., Lin, W.H., Lin, S.H., et al. (2022) Application of High-Frequency Oscillation Ventilation Combined with Volume Guarantee in Preterm Infants with Acute Hypoxic Res-piratory Failure after Patent Ductus Arteriosus Ligation. The Heart Surgery Forum, 25, E709-E714.
https://doi.org/10.1532/hsf.4825
[60] Rodríguez Sánchez de la Blanca, A., Sánchez, L.M., González, P.N., Ramos, N.C., et al. (2020) New Indicators for Optimal Lung Recruitment during High Frequency Oscillator Ventilation. Pediat-ric Pulmonology, 55, 3525-3531.
https://doi.org/10.1002/ppul.25084