肠道菌群在神经和心理疾病中作用的研究进展
Research Progress of Gut Microbiota’s Function in Neurological and Psychological Diseases
DOI: 10.12677/OJNS.2023.113040, PDF, HTML, XML, 下载: 250  浏览: 438  科研立项经费支持
作者: 范锦博, 孙 卓:西安市病原微生物与肿瘤免疫重点实验室,陕西 西安;刘丽君:西安医学院基础医学部病原生物学教研室,陕西 西安
关键词: 肠道菌群神经疾病心理疾病Gut Microbiota Neurological Disorders Psychological Illnesses
摘要: 肠道菌群与人体的消化和营养物质吸收密切相关,除此之外,肠道菌群还在神经系统发育过程中发挥作用。在抑郁症、多发性硬化症、帕金森症、阿尔兹海默症等疾病的患者体内,肠道菌群组成和含量发生显著改变。肠道菌群和大脑的双向沟通途径,即“肠脑轴”,可以影响神经传递和神经精神疾病相关的行为。本文综述肠道菌群在神经和心理疾病中作用的研究进展,以期为相关疾病的预防及治疗提供新的思路。
Abstract: Gut microbiota is closely related to human digestion and nutrient absorption. Besides, Gut microbiota also plays an important role in neurological development. In patients with depression, multiple sclerosis, Parkinson’s disease, Alzheimer’s disease and other diseases, the composition and content of intestinal flora are significantly changed. The two-way communication pathway between the gut microbiota and the brain, known as the “gut-brain axis”, can influence neurotransmission and behaviors associated with neuropsychiatric disorders. This article reviews the research progress on the role of gut microbiota in neurological and psychological diseases, in order to provide new ideas for the prevention and treatment of related diseases.
文章引用:范锦博, 刘丽君, 孙卓. 肠道菌群在神经和心理疾病中作用的研究进展[J]. 自然科学, 2023, 11(3): 337-343. https://doi.org/10.12677/OJNS.2023.113040

1. 引言

人体中细菌的数量约为人类细胞的1.3倍 [1] ,其中肠道菌群(gutmicrobiota)是研究最为广泛的微生物。当婴儿通过母亲产道降生时,即获取了来自母体的菌群。在婴儿发育早期,肠道菌群的构成受多种因素制约,例如早产与否、顺产或剖腹产、母乳或奶粉喂养、抗生素的使用等因素 [2] 。人类随着年龄的增长,肠道菌群的构成和种类受基因、健康程度和环境的影响,而最重要的因素是饮食习惯和营养构成 [3] 。

研究表明,肠道菌群除了参与宿主营养物质的消化和吸收外,还具有影响神经发育生理功能的作用。肠道菌群失调会造成多种相关疾病,例如抑郁症、帕金森症、阿兹海默症等疾病。以往的研究大多为观察性病例对照研究,近年来人们更加关注肠道菌群如何参与疾病的发生,以及如何通过改良肠道菌群从而改善疾病的临床症状。本综述总结了神经和心理疾病患者肠道菌群的变化情况,肠道菌群参与疾病发生的相关机制研究,以及相关治疗方法的最新研究进展。

2. 肠道菌群在神经疾病、心理疾病中的作用

2.1. 肠脑轴的生理功能

肠道菌群的稳态以及宿主的肠道健康不仅会影响局部胃肠道状态,也会影响到包括脑在内的其他器官 [4] ,因此“肠脑轴”这个名词应运而生。肠脑轴是一个通过免疫、神经、内分泌等途径的双向互作系统,既可以使脑活动影响肠道菌群,又可以通过肠道菌群影响脑活动 [5] 。肠道菌群主要通过三类信号分子作用于中枢神经系统:食物代谢产物(SCFA等)、内源性分子的代谢物(次级胆汁酸等)和微生物胞壁成分(如LPS)。

2.1.1. 脑发育

下丘脑–垂体–肾上腺轴(hypothalamic-pituitary-adrenal axis, HPA)是神经内分泌系统的重要组成部分,并且在调节压力反应和消化,免疫等多种生理活动中具有重要作用。无菌小鼠的HPA发育异常,且对压力的反应发生变化 [6] 。植入了正常小鼠菌群或者特定益生菌如婴儿双歧杆菌(Bifidobacterium infantis)可以逆转以上异常现象。以上数据证明肠道菌群在HPA发育以及神经系统发育中的重要作用。

肠道菌群可影响中枢神经系统中小胶质细胞的成熟和功能。无菌小鼠小胶质细胞发育不完全,且数目发生变化,进而造成免疫应答缺陷和阿尔兹海默症等神经疾病 [7] 。维持健康的肠道菌群对于保证脑功能和发育正常具有重要作用。

2.1.2. 认知行为

肠道菌群的最初定植对于脑功能至关重要,而缺乏肠道菌群的定植会导致血脑屏障受损,突触可塑性改变以及社交行为缺陷 [8] 。无菌小鼠和抗生素处理的小鼠学习和对于危险已经消除的认知比对照组小鼠显著缓慢 [9] 。

肠道菌群和认知行为之间具有显著的相关性 [10] 。一个月氨苄青霉素处理的断奶大鼠肠道菌群被破坏,血清皮质酮升高,焦虑样行为增加,空间记忆力下降。食用发酵乳杆菌(Lactobacillus fermentum) NS9后,氨苄青霉素引发的生理和心理异常都趋向正常 [11] 。瑞士乳杆菌(Lactobacillus helveticus) NS8可以显著减轻在大鼠中由于长期拘束应激引起的认知功能障碍 [12] 。高氨血症模型大鼠在水迷宫测试中学习和记忆力显著下降,在食用瑞士乳杆菌NS8后可以显著改善以上认知行为异常 [13] 。

一项对健康女性受试者的研究显示,食用含有益生菌的发酵乳制品可以影响大脑中与情绪和感觉的处理相关的区域的活动 [14] 。与此相似,食用含有瑞士乳杆菌R0052和长双歧杆菌(Bifidobacterium longum) R0175可以显著提升健康受试者对外界刺激的认知行为反应 [15] 。

2.2. 肠道菌群在心理疾病、精神疾病中的病理作用

研究表明,在多种神经疾病和心理疾病患者中肠道菌群构成发生显著改变(表1)。这些疾病包括抑郁症,自闭症 [16] ,中风 [17] [18] ,多发性硬化症(Multiple Sclerosis, MS),帕金森症,阿尔兹海默症等。

Table 1. Alterations of gut microbiota in neurological and psychological disorders

表1. 神经和心理疾病中肠道菌群的变化情况

2.2.1. 抑郁症

在一个母婴分离的大鼠抑郁症模型中,研究者们观察到了促炎细胞因子的升高以及肠道菌群多样性的降低 [19] 。在一项人类抑郁症的研究中,对46名抑郁症患者和30个正常个体的肠道菌群测序后发现,相比于正常个体,抑郁症患者肠道中拟杆菌,变形杆菌,放线菌数量升高,而厚壁菌门数量显著降低 [20] 。相比于移植了正常个体肠道菌群的大鼠,移植了抑郁症患者肠道菌群的大鼠也会出现行为学和免疫学上的抑郁相关症状 [21] 。

2.2.2. 多发性硬化症MS

一项针对日本MS患者的研究显示,MS患者与健康人群相比有21个种属的肠道细菌含量发生显著变化,并且这种变化在一段时间后的调查中也继续维持。其中14种属于梭菌属,并且都在MS患者样本中显著降低 [22] 。

在中国人群中,MS患者(治疗或未经治疗)的肠道菌群中变形菌门的假单胞菌(Pseudomonas)和枝动杆菌(Mycoplana),厚壁菌门的布劳特氏菌属(Blautia)和多尔氏菌属(Dorea),拟杆菌门的地杆菌属(Pedobacter)含量较高。而健康对照个体肠道菌群中放线菌门的柯林斯菌属(Collinsella),厚壁菌门的乳酸杆菌属和拟杆菌门的副拟杆菌属(Parabacteroides)含量较高 [23] 。一项针对欧洲双胞胎的研究并未发现MS个体与健康个体肠道菌群分类学上的不同 [24] 。实验性自身免疫性脑脊髓炎(Experimental Autoimmune Encephalomyelitis, EAE)是MS最主要的动物模型。MS患者的粪菌移植到EAE模型小鼠后,会引起比健康个体粪菌移植更严重的EAE症状 [24] [25] 。

Treg细胞和Th17细胞数量平衡的破坏会造成包括MS在内的多种自身免疫疾病 [26] ,而肠道菌群可以影响Treg细胞和Th17细胞的激活和增殖 [27] 。有研究表明肠道菌群代谢产生的SCFA可以协助维持血脑屏障的完整性 [28] ,而血脑屏障在MS发病中具有重要作用 [29] 。

目前已有多项临床试验探索通过改变患者肠道菌群治疗MS。这些临床试验分别使用抗生素、益生菌、肠道菌群代谢产物、FMT和饮食控制的方法改变患者肠道菌群的构成 [30] 。临床试验中得到了一些改变肠道菌群可以改善中枢神经系统炎症反应的结果,然而有些研究结果仍然具有争议,且尚缺乏大规模随机对照试验,所以目前还不足以支持使用上述疗法进行临床治疗。

2.2.3. 帕金森症

越来越多的数据显示帕金森症患者的肠道菌群构成与正常人群不同 [31] [32] [33] [34] 。然而是否存在帕金森疾病的特定的菌群构成还不甚明确。当小鼠被移植帕金森患者的肠道菌群后,也会出现帕金森症的两个典型症状:运动功能缺陷和神经炎症 [35] 。神经退行性疾病患者肠道菌群中普雷沃氏菌科(Prevotellaceae) [32] [36] 和抗炎菌种如粪球菌属(Coprococcus) [31] 的减少,以及促炎菌种如变形菌门 [31] ,肠球菌科 [37] 的增加。

α-核突触蛋白在脑中的聚集是帕金森症病理学的重要指标,研究发现在帕金森综合征患者的肠道粘膜和粘膜下层的神经纤维和神经节中α-核突触蛋白也可以被检测到 [38] [39] ,并且有一些证据证明肠道中的α-核突触蛋白可以通过迷走神经传递至大脑 [40] 。

2.2.4. 阿尔兹海默症

研究发现,阿尔兹海默症患者的粪便样本中埃希氏菌属和志贺菌属含量升高,而这两种菌都参与介导炎症反应 [41] 。患者肠道菌群的变化还伴随着血液中促炎性细胞因子浓度的增加。肠道菌群的失调以及系统性炎症反应可能会引发或加剧患者脑内的神经退行性病变。以上研究样本量较小,而且缺乏长时期的监测,所以尚且无法为肠道菌群在阿尔兹海默症的发生发展中作用提供充分的证据。

虽然研究者们还没能在人体内证明肠道菌群与阿尔兹海默症神经炎症和神经退行之间的关系,一些动物实验显示肠道菌群构成和产物可能是导致阿尔兹海默症的一个因素 [42] [43] 。阿尔兹海默症转基因小鼠模型肠道菌群与正常小鼠相比发生改变 [44] [45] [46] 。

几项研究表明阿尔兹海默症小鼠模型中使用抗生素造成的肠道菌群的改变影响Aβ淀粉样蛋白的沉积 [45] [46] [47] 。无菌Aβ前体蛋白(Amyloid Precursor Protein, APP)转基因小鼠模型与对照组含有肠道菌群的APP转基因小鼠相比脑内Aβ淀粉样蛋白减少 [46] 。抗生素处理的阿尔兹海默症小鼠模型(APPSWE/PS1ΔE9)中产生的肠道菌群多样性的改变会影响宿主免疫功能并减少脑内淀粉样β蛋白(Aβ)斑块沉积 [47] 。该实验室在之后的研究中发现,在另一个Aβ淀粉样变性小鼠模型(APPPS1-21)中,抗生素处理后失调的肠道菌群和Aβ病变减少以及小神经胶质细胞形态学改变相关 [45] 。将APPPS1-21雄性小鼠粪菌移植到抗生素处理的APPPS1-21雄性小鼠后可使其肠道菌群恢复,并部分恢复Aβ病变和小神经胶质细胞形态,表明肠道菌群和以上变化的因果关系。

2.3. 精神益生菌(Psychobiotics)对心理健康的积极作用

发酵食品在多种文化中都有重要的地位,而发酵食品对于肠道健康的益处也被人们所共识。近年来随着肠脑轴研究的发展,发酵食品在降低抑郁、焦虑等方面的潜在作用也逐渐被认识,精神益生菌这个词汇应运而生 [48] 。精神益生菌指一些在食入后可以对宿主产生积极心理健康效应的一些细菌,也包括可以促进这些益生菌生长的益生元,如低聚半乳糖、低聚果糖等。最近的关于一项益生元的研究中发现,进食益生元的健康受试者比进食安慰剂的对照组的晨起皮质醇反应显著降低,并且对于负性情绪反应更低 [49] 。而进食含有精神益生菌的发酵食品可以对社会性焦虑遗传风险较高的人群有所帮助。

3. 结语

动物模型和患者样本中的各项研究体现了肠道菌群在神经和心理疾病中的重要性,但目前肠道菌群与这些疾病之间的关系主要是相关性。人体疾病受多个因素的影响,而且肠道菌群的构成本身也受到众多因素制约,例如地域和人种、饮食结构、环境因素、药物使用情况等。益生菌这类产品在神经和心理疾病治疗中具有良好的前景,但若想把现有的研究成果转化为诊断和治疗方案,还需要更多的研究支撑,进一步明确肠道菌群在疾病中的作用。

基金项目

陕西省教育厅专项科研计划项目(21JK0896, 21JK0886);西安医学院博士启动基金(2020DOC14, 2020DOC17);西安医学院科技创新团队基金(2021TD01);西安医学院首届教师教育改革与教师发展研究项目(2022JFY-10)。

参考文献

[1] Sender, R., Fuchs, S. and Milo, R. (2016) Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLOS Biology, 14, e1002533.
https://doi.org/10.1371/journal.pbio.1002533
[2] Codagnone, M.G., Spichak, S., et al. (2019) Programming Bugs: Microbiota and the Developmental Origins of Brain Health and Disease. Bio-logical Psychiatry, 85, 150-163.
https://doi.org/10.1016/j.biopsych.2018.06.014
[3] Sandhu, K.V., Sherwin, E., et al. (2017) Feeding the Microbiota-Gut-Brain Axis: Diet, Microbiome, and Neuropsychiatry. Translational Research, 179, 223-244.
https://doi.org/10.1016/j.trsl.2016.10.002
[4] Sommer, F. and Bäckhed, F. (2013) The Gut Microbiota—Masters of Host Development and Physiology. Nature Reviews Microbiology, 11, 227-238.
https://doi.org/10.1038/nrmicro2974
[5] Rhee, S.H., Pothoulakis, C. and Mayer, E.A. (2009) Principles and Clinical Implications of the Brain-Gut-Enteric Microbiota Axis. Nature Reviews Gastroenterology & Hepatology, 6, 306-314.
https://doi.org/10.1038/nrgastro.2009.35
[6] Sudo, N., Chida, Y., et al. (2004) Postnatal Microbial Colonization Programs the Hypothalamic-Pituitary-Adrenal System for Stress Response in Mice. The Journal of Physiology, 558, 263-275.
https://doi.org/10.1113/jphysiol.2004.063388
[7] Erny, D., Hrabě de Angelis, A.L., et al. (2015) Host Mi-crobiota Constantly Control Maturation and Function of Microglia in the CNS. Nature Neuroscience, 18, 965-977.
https://doi.org/10.1038/nn.4030
[8] Sampson, T.R. and Mazmanian, S.K. (2015) Control of Brain Devel-opment, Function, and Behavior by the Microbiome. Cell Host & Microbe, 17, 565-576.
https://doi.org/10.1016/j.chom.2015.04.011
[9] Chu, C., Murdock, M.H., et al. (2019) The Microbiota Reg-ulate Neuronal Function and Fear Extinction Learning. Nature, 574, 543-548.
https://doi.org/10.1038/s41586-019-1644-y
[10] Hu, X., Wang, T. and Jin, F. (2016) Alzheimer’s Disease and Gut Microbiota. Science China Life Sciences, 59, 1006-1023.
https://doi.org/10.1007/s11427-016-5083-9
[11] Wang, T., Hu, X., et al. (2015) Lactobacillus Fermentum NS9 Restores the Antibiotic Induced Physiological and Psychological Abnormalities in Rats. Beneficial Microbes, 6, 707-717.
https://doi.org/10.3920/BM2014.0177
[12] Liang, S., Wang, T., et al. (2015) Administration of Lactobacillus helveticus NS8 Improves Behavioral, Cognitive, and Biochemical Aberrations Caused by Chronic Restraint Stress. Neuroscience, 310, 561-577.
https://doi.org/10.1016/j.neuroscience.2015.09.033
[13] Luo, J., Wang, T., et al. (2014) Ingestion of Lacto-bacillus Strain Reduces Anxiety and Improves Cognitive Function in the Hyperammonemia Rat. Science China Life Sciences, 57, 327-335.
https://doi.org/10.1007/s11427-014-4615-4
[14] Tillisch, K., Labus, J., et al. (2013) Consumption of Fermented Milk Product with Probiotic Modulates Brain Activity. Gastroenterology, 144, 1394-1401, 1401.e1-4.
https://doi.org/10.1053/j.gastro.2013.02.043
[15] Messaoudi, M., Lalonde, R., et al. (2011) Assessment of Psychotropic-Like Properties of a Probiotic Formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in Rats and Human Subjects. British Journal of Nutrition, 105, 755-764.
https://doi.org/10.1017/S0007114510004319
[16] Tomova, A., Husarova, V., et al. (2015) Gastrointestinal Microbiota in Children with Autism in Slovakia. Physiology & Behavior, 138, 179-187.
https://doi.org/10.1016/j.physbeh.2014.10.033
[17] Benakis, C., Brea, D., et al. (2016) Commensal Microbiota Affects Ischemic Stroke Outcome by Regulating Intestinal γδ T Cells. Nature Medicine, 22, 516-523.
https://doi.org/10.1038/nm.4068
[18] Singh, V. and Roth, S. (2016) Microbiota Dysbiosis Controls the Neu-roinflammatory Response after Stroke. Journal of Neuroscience, 36, 7428-7440.
https://doi.org/10.1523/JNEUROSCI.1114-16.2016
[19] O’Mahony, S.M., Marchesi, J.R., et al. (2009) Early Life Stress Alters Behavior, Immunity, and Microbiota in Rats: Implications for Irritable Bowel Syndrome and Psychiatric Illnesses. Biological Psychiatry, 65, 263-267.
https://doi.org/10.1016/j.biopsych.2008.06.026
[20] Jiang, H., Ling, Z., et al. (2015) Altered Fecal Microbiota Composition in Patients with Major Depressive Disorder. Brain, Behavior, and Immunity, 48, 186-194.
https://doi.org/10.1016/j.bbi.2015.03.016
[21] Kelly, J.R., Borre, Y., et al. (2016) Transferring the Blues: Depression-Associated Gut Microbiota Induces Neurobehavioural Changes in the Rat. Journal of Psychiatric Re-search, 82, 109-118.
https://doi.org/10.1016/j.jpsychires.2016.07.019
[22] Miyake, S., Kim, S., et al. (2015) Dysbiosis in the Gut Microbiota of Patients with Multiple Sclerosis, with a Striking Depletion of Species Belonging to Clostridia XIVa and IV Clusters. PLOS ONE, 10, e0137429.
https://doi.org/10.1371/journal.pone.0137429
[23] Chen, J., Chia, N., et al. (2016) Multiple Sclerosis Patients Have a Distinct Gut Microbiota Compared to Healthy Controls. Scientific Reports, 6, Article No. 28484.
https://doi.org/10.1038/srep28484
[24] Berer, K., Gerdes, L.A., et al. (2017) Gut Microbiota from Multiple Sclerosis Patients Enables Spontaneous Autoimmune Encephalomyelitis in Mice. Proceedings of the National Academy of Sciences of the United States of America, 114, 10719-10724.
https://doi.org/10.1073/pnas.1711233114
[25] Cekanaviciute, E., Yoo, B.B., et al. (2017) Gut Bacteria from Multiple Sclerosis Patients Modulate Human T Cells and Exacerbate Symptoms in Mouse Models. Proceedings of the National Academy of Sciences of the United States of America, 114, 10713-10718.
https://doi.org/10.1073/pnas.1711235114
[26] Cheng, H., Guan, X., et al. (2019) The Th17/Treg Cell Balance: A Gut Microbiota-Modulated Story. Microorganisms, 7, Article No. 583.
https://doi.org/10.3390/microorganisms7120583
[27] Yokote, H., Miyake, S., et al. (2008) NKT Cell-Dependent Amelioration of a Mouse Model of Multiple Sclerosis by Altering Gut Flora. The American Journal of Pathology, 173, 1714-1723.
https://doi.org/10.2353/ajpath.2008.080622
[28] Braniste, V., Al-Asmakh, M., et al. (2014) The Gut Microbiota Influences Blood-Brain Barrier Permeability in Mice. Science Translational Medicine, 6, 263ra158.
https://doi.org/10.1126/scitranslmed.3009759
[29] Koh, A., De Vadder, F., et al. (2016) From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165, 1332-1345.
https://doi.org/10.1016/j.cell.2016.05.041
[30] Ghezzi, L., Cantoni, C., et al. (2021) Targeting the Gut to Treat Multiple Sclerosis. Journal of Clinical Investigation, 131, e143774.
https://doi.org/10.1172/JCI143774
[31] Keshavarzian, A., Green, S.J., et al. (2015) Colonic Bacterial Com-position in Parkinson’s Disease. Movement Disorders, 30, 1351-1360.
https://doi.org/10.1002/mds.26307
[32] Scheperjans, F., Aho, V., et al. (2015) Gut Microbiota Are Related to Parkinson’s Disease and Clinical Phenotype. Movement Disorders, 30, 350-358.
https://doi.org/10.1002/mds.26069
[33] Heintz-Buschart, A., Pandey, U., et al. (2018) The Nasal and Gut Microbiome in Parkinson’s Disease and Idiopathic Rapid Eye Movement Sleep Behavior Disorder. Movement Disorders, 33, 88-98.
https://doi.org/10.1002/mds.27105
[34] Sun, M.F., Zhu, Y.L., et al. (2018) Neuropro-tective Effects of Fecal Microbiota Transplantation on MPTP-Induced Parkinson’s Disease Mice: Gut Microbiota, Glial Reaction and TLR4/TNF-α Signaling Pathway. Brain, Behavior, and Immunity, 70, 48-60.
https://doi.org/10.1016/j.bbi.2018.02.005
[35] Sampson, T.R., Debelius, J.W., et al. (2016) Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell, 167, 1469-1480.e12.
https://doi.org/10.1016/j.cell.2016.11.018
[36] Bedarf, J.R., Hildebrand, F., et al. (2017) Functional Implica-tions of Microbial and Viral Gut Metagenome Changes in Early Stage L-DOPA-Naïve Parkinson’s Disease Patients. Genome Medicine, 9, Article No. 39.
https://doi.org/10.1186/s13073-017-0428-y
[37] Hopfner, F., Künstner, A., et al. (2017) Gut Microbiota in Parkinson Disease in a Northern German Cohort. Brain Research, 1667, 41-45.
https://doi.org/10.1016/j.brainres.2017.04.019
[38] Forsyth, C.B., Shannon, K.M., et al. (2011) Increased In-testinal Permeability Correlates with Sigmoid Mucosa Alpha-Synuclein Staining and Endotoxin Exposure Markers in Early Parkinson’s Disease. PLOS ONE, 6, e28032.
https://doi.org/10.1371/journal.pone.0028032
[39] Hilton, D., Stephens, M., et al. (2014) Accumulation of α-Synuclein in the Bowel of Patients in the Pre-Clinical Phase of Parkinson’s Disease. Acta Neuropathologica, 127, 235-241.
https://doi.org/10.1007/s00401-013-1214-6
[40] Holmqvist, S., Chutna, O., et al. (2014) Direct Evidence of Parkinson Pathology Spread from the Gastrointestinal Tract to the Brain in Rats. Acta Neuropathologica, 128, 805-820.
https://doi.org/10.1007/s00401-014-1343-6
[41] Cattaneo, A., Cattane, N., et al. (2017) Asso-ciation of Brain Amyloidosis with Pro-Inflammatory Gut Bacterial Taxa and Peripheral Inflammation Markers in Cognitively Impaired Elderly. Neurobiology of Aging, 49, 60-68.
https://doi.org/10.1016/j.neurobiolaging.2016.08.019
[42] Itzhaki, R.F., Lathe, R., et al. (2016) Microbes and Alzheimer’s Disease. Journal of Alzheimer’s Disease, 51, 979-984.
https://doi.org/10.3233/JAD-160152
[43] Friedland, R.P. (2015) Mechanisms of Molecular Mimicry Involving the Microbiota in Neurodegeneration. Journal of Alzheimer’s Disease, 45, 349-362.
https://doi.org/10.3233/JAD-142841
[44] Zhang, L., Wang, Y., et al. (2017) Altered Gut Microbiota in a Mouse Model of Alzheimer’s Disease. Journal of Alzheimer’s Disease, 60, 1241-1257.
https://doi.org/10.3233/JAD-170020
[45] Dodiya, H.B., Kuntz, T. and Shaik, S.M. (2019) Sex-Specific Effects of Microbiome Perturbations on Cerebral Aβ Amyloidosis and Microglia Phenotypes. Journal of Experimental Medicine, 216, 1542-1560.
https://doi.org/10.1084/jem.20182386
[46] Harach, T., Marungruang, N., et al. (2017) Reduction of Abeta Amyloid Pathology in APPPS1 Transgenic Mice in the Absence of Gut Microbiota. Scientific Reports, 7, Article No. 41802.
https://doi.org/10.1038/srep41802
[47] Minter, M.R., Hinterleitner, R., et al. (2017) Antibiotic-Induced Perturbations in Microbial Diversity during Post-Natal Development Alters Amyloid Pathology in an Aged APP(SWE)/PS1(ΔE9) Murine Model of Alzheimer’s Disease. Scientific Reports, 7, Article No. 10411.
https://doi.org/10.1038/s41598-017-11047-w
[48] Dinan, T.G., Stanton, C. and Cryan, J.F. (2013) Psychobi-otics: A Novel Class of Psychotropic. Biological Psychiatry, 74, 720-726.
https://doi.org/10.1016/j.biopsych.2013.05.001
[49] Schmidt, K., Cowen, P.J., et al. (2015) Prebiotic Intake Reduces the Waking Cortisol Response and Alters Emotional Bias in Healthy Volunteers. Psychopharmacology (Berlin), 232, 1793-1801.
https://doi.org/10.1007/s00213-014-3810-0