pH响应型克菌丹递送载体的制备及其对禾谷镰刀菌的抗菌活性
Preparation of pH Responsive Carbendan Delivery Vector and Its Antibacterial Activity against Fusarium Graminearum
DOI: 10.12677/BR.2023.123018, PDF, HTML, XML, 下载: 236  浏览: 338  科研立项经费支持
作者: 王佳旭*, 王敬营, 于秀敏, 王秀平#:河北科技师范学院河北省作物逆境生物学重点实验室,河北 秦皇岛
关键词: 中空介孔二氧化硅克菌丹壳聚糖纳米农药pH响应Hollow Mesoporous Silica Carbendan Chitosan Nanometer Pesticide pH Response
摘要: 传统农药制剂存在实际利用率低的问题,农药精准控释是农业可持续发展的关键。本论文制备了中空介孔二氧化硅(Hollow Mesoporous Silica Nanoparticles, HMSNs/H)装载克菌丹(Captan, Cap/C)并用壳聚糖(Chitosan, Chi)包覆作为克菌丹的递送体系,并研究了其对禾谷镰刀菌(Gibberella zeae (Schwein.) Petch)的杀菌活性。通过一锅法制备了装载克菌丹的中空介孔二氧化硅,并用壳聚糖对已经装载克菌丹的中空介孔二氧化硅进行包覆,使其具有pH响应功能。C/H@Chi粒径在250 nm左右,电位−18.64 mv。C/H@Chi在不同pH值(5.0, 6.0, 7.0)条件下,均表现出较好缓释性能。此外,C/H@Chi对禾谷镰刀菌表现出优异的抗菌活性,室内毒力测定试验表明Cap对禾谷镰刀菌菌丝生长抑制的EC50是2.21 mg/L,C/H@Chi对禾谷镰刀菌菌丝生长抑制的EC50是1.08 mg/L。安全性试验证明C/H@Chi对植物具有良好的生物安全性。
Abstract: There is a problem of low actual utilization rate of traditional pesticide preparations, and the precise and controlled release of pesticides is the key to the sustainable development of agriculture. In this paper, hollow mesoporous silica (Hollow Mesoporous Silica Nanoparticles, H) loaded with Captan (Captan, C) and coated with Chitosan (Chitosan, Chi) was prepared as the delivery system of captan, and its bioactivity against Fusarium graminearum (Gibberella zeae (Schwein.) Petch). the bactericidal activity of Petch. The hollow mesoporous silica loaded with captan was prepared by one-pot method, and the hollow mesoporous silica loaded with captan was coated with chitosan to make it have pH response function. The particle size of C/H@Chi is about 250 nm and the potential is −18.64 mv. C/H@Chi showed good sustained release performance at different pH values (5.0, 6.0, 7.0). In addition, C/H@Chi showed excellent antibacterial activity against Fusarium graminearum. Indoor toxicity test showed that the EC50 of Cap on mycelium growth of Fusarium graminearum was 2.21 mg/L, C/H@Chi, and the EC50 of Fusarium graminearum on mycelium growth was 1.08 mg/L. The safety test shows that C/H@Chi has good biosafety to plants.
文章引用:王佳旭, 王敬营, 于秀敏, 王秀平. pH响应型克菌丹递送载体的制备及其对禾谷镰刀菌的抗菌活性[J]. 植物学研究, 2023, 12(3): 130-141. https://doi.org/10.12677/BR.2023.123018

1. 引言

农药在现代农业生产中起着不可或缺的作用,几乎是必备的生产资料。它们在防治病、虫、草、鼠害和提高作物产量方面正在变得越来重要。根据粮农组织估计,农药的使用可以弥补世界作物总产量的30%到40% ‎[1] 。到2050年,全球农业生产需要扩大约70%,到2100年需要扩大二倍或三倍才能满足不断增长的需求 ‎[2] 。就目前传统的农药制剂使用而言,已经对我们的生存环境造成了巨大的影响,这是因为大多数农药在喷洒过程中通过淋滤、蒸发和漂移直接流失到环境中,或者被光、温度和微生物等分解,尤其是遇到酸碱环境 ‎[3] ‎[4] 。并且经飘移和雨水淋溶后,靶标生物对的农药实际利用率极低,并严重威胁非靶标生物的安全。

克菌丹主要用作保护性杀菌剂,对大麦、小麦、燕麦、水稻、小麦、棉花、蔬菜、果树、瓜类、烟草等作物的许多病害均有良好的防治效果,例如对小麦赤霉病、小麦腥黑穗病、小麦根腐病、苹果黑星病、柑橘沙皮病、柑橘树脂病、小麦镰孢穗腐病、马铃薯枯萎病、桃流胶病、桃褐腐病都有很好的防治效果 ‎[5] - ‎[12] 。但克菌丹也暴露出了诸多问题例如在土壤中降解慢、在水果蔬菜中残留量大、导致呼吸道和皮肤过敏、生殖毒性以及对土壤和水生生物毒性大等 ‎[13] ‎[14] ‎[15] ‎[16] 。

纳米材料具有良好的物理化学性质,已有很多运用到农药递送系统。如聚合物基纳米材料、固体脂质纳米材料颗粒、超分子囊泡和许多无机纳米材料都已被应用到纳米农药的载体中去 ‎[17] ‎[18] ‎[19] ‎[20] 。其中,中空介孔二氧化硅因为其具有表面积大、尺寸可调、稳定性高、生物相容性好等特点,已经被广泛的应用于医药、农药等领域 ‎[21] ‎[22] ‎[23] 。已经报道的将中空介孔二氧化硅作为农药载体的有很多,如中国农科院植物保护研究所曹立冬研究员利用碳量子点修饰的双壳层中空介孔二氧化硅作为农药载体,可高效负载杀菌剂吡唑醚菌酯,对芦笋茎枯病原菌展示出良好的生物活性,提高了药剂的利用率 ‎[24] 。中国农科院环境发展规划研究所崔海信团队制备了功夫菊酯纳米悬浮剂和纳米水分散粒剂,纳米剂型的毒力效应是常规剂型的2~3倍 ‎[25] 。华中农业大学李建洪团队利用介孔二氧化硅作为阿维菌素的载体,制备了pH响应性释放农药剂型。该剂型可显著提高阿维菌素的光稳定性,在水稻叶片上具有良好的润湿性和粘附性,并且对水稻生长无毒害作用 ‎[26] 。这充分说明纳米材料可以对农药有效成分进行物理或化学的包覆或结合,对农药具有提高稳定性、调节释放、减少土壤淋滤、降低毒性等优良特性 ‎[27] ‎[28] ‎[29] 。为了解决现有农药制剂使用问题并拓展纳米农药使用谱,本研究中将壳聚糖包覆在已经装载进克菌丹的中空介孔二氧化硅外围,形成一层具有pH响应释放的薄膜。

2. 材料和方法

2.1. 材料

中空介孔二氧化硅由江苏先丰纳米材料科技有限公司提供,平均粒径为200 nm (纯度为 ≥ 99.9 wt%)。壳聚糖由阿拉丁试剂(上海)有限公司提供。克菌丹由上海富氏达生物科技有限公司提供。

2.2. 小麦品种和菌株

试验小麦(Triticum aestivum L.)种子选用百农4199 (豫审麦2017003),购自河南中种联丰种业有限公司。禾谷镰刀菌来源于中国农业科学院油料作物研究所。

2.3. Cap@HMSNs的制备

利用一锅法将Cap和HMSNs按2:1的质量比制备中空介孔二氧化硅装载克菌丹(Cap@HMSNs)。具体制备方法如下:将对应质量的Cap分散在2 mL二氯甲烷、Tween 20 (DT, 1:1:98, v/v)的混合水溶液中,然后加入对应比例的HMSNs溶液,将混合溶液在60℃的水浴条件下搅拌6 h,使HMSNs充分吸附和装载克菌丹。随后敞口搅拌,使乙醇慢慢挥干,使HMSNs呈湿润状态,再用5 mL的热乙醇溶液洗涤HMSNs表面的克菌丹,然后用去离子水洗涤乙醇,此步骤重复3次,最后将洗涤干净的HMSNs载药颗粒放入冷冻干燥机中进行真空冷冻干燥,最后得到干燥的HMSNs载药颗粒,即为Cap@HMSNs,并将其置于−20℃下保存备用 ‎[30] 。

2.4. C/H@Chi的制备

本研究中利用的离子凝胶法制备了壳聚糖微球。首先制备以2% (v/v)的乙酸为溶剂将3% (w/v)壳聚糖溶液加入其中,搅拌至完全溶解 ‎[31] ‎[32] 。将此壳聚糖溶液缓慢逐滴加入到正在快速搅拌的等量Cap@HMSNs纳米颗粒溶液中混合,为了提高壳聚糖包覆率,先在避光条件下搅拌12 h,然后室温孵育12 h,制成壳聚糖包覆的Cap@HMSNs (C/H@Chi)。

2.5. 表征

采用场发射扫描电镜(SEM, Zeiss, GeminiSEM 300, Germany)和透射电子显微镜(TEM, H-7650, Hitachi, Japan)研究C/H@Chi的纳米农药的形貌,并在傅里叶变换红外(FT-IR)光谱仪(Bruker, TENSOR-27, Karlsruhe, Germany)上收集红外吸收光谱,以及在紫外可见分光光度计(U-4100, Hitachi, Japan)检测特征峰。采用Malvern Zetasizer Nano ZS90纳米粒径电位分析仪检测HMSNs和C/H@Chi纳米农药的粒径和电位变化。

2.6. C/H@Chi pH响应试验

本试验为评价C/H@Chi在不同pH下的释放动力学行为,采用透析袋法 ‎[33] 测定C/H@Chi纳米农药中Cap的累计释放量。具体的方法:首先将透析袋剪成长度一致的、足以容下5 mL溶液的若干段,然后将透析袋在超纯水中煮沸15 min,将煮沸的透析袋取出用超纯水反复冲洗3次后保存于超纯水中,以防干瘪。在截留相对分子质量为3500 Da的透析袋中加入5 mL 600 μg/mL的C/H@Chi纳米农药分散液,透析袋两端用绳子系紧。用0.1 mol/L的HCL和NaOH将60%甲醇–水缓释溶液的pH值分别调节为5.0,6.0和7.0,将系好的透析袋装入后,置于室温(25 ± 2)℃下的摇床中。所有离心管以200 r/min的速度进行体外模拟释放,分别于0 h、2 h、4 h、8 h、12 h、24 h、36 h、48 h、72 h、96 h、120 h、144 h、168 h后用移液枪取2 mL的缓释液,并立即补充2 mL甲醇–水溶液(6:4, v/v)以保持释放介质总体积不变。将样品溶液过0.1 μm的滤膜,通过紫外分光光度计测定Cap吸光度。然后以相应的标准曲线为基础,计算每个时间点的Cap的浓度,按公式1计算并绘制Cap随时间变化的累计释放百分率曲线。

E r = V e i = 0 v n 1 C i + V 0 C n m p e s t c i d e × 100 % (1)

其中Er是Cap的累积释放量(%);Ve为在预定时间间隔的取样量(1 mL);Cn为n时刻释放介质中Cap的浓度(μg/mL);V0为释放介质体积(50 mL);pestcide (μg)是指负载在HMSNs上的Cap总量。

2.7. C/H@Chi的稳定性研究

根据国家农药稳定性的标准,GB/T19137-2003《农药低温稳定性测定方法》和GB/T19136-2003《农药热贮稳定性测定方法》,对C/H@Chi溶液在不同温度下的贮藏稳定性进行分析与评价 ‎[34] 。将C/H@Chi分散在PBS中,通过Malvern Zetasizer Nano ZS90纳米粒径电位分析仪测定粒径和电位的变化。测定0℃时7天内C/H@Chi粒径和电位的变化,以及54℃时14天内C/H@Chi粒径和电位的变化。

2.8. C/H@Chi对禾谷镰刀菌的杀菌活性

将禾谷镰刀菌菌饼接种到含有不同浓度的Cap和C/H@Chi的固体PDA上,以不含杀菌剂的等量去离子水作为对照。在(24 ± 2)℃培养7天后,观察禾谷镰刀菌的菌丝生长 ‎[35] 。分别为采用完全随机设计,设4个重复。

2.9. C/H@Chi的安全性研究

以小麦为模式作物研究纳米载体和纳米农药对其种子萌发和幼苗生长的影响。首先,小麦种子(百农4199),用70%乙醇浸泡2 min,然后用无菌水清洗干净。将表面灭菌的小麦种子放入培养皿中,每个种子之间的距离为1 cm。将含有HMSNs纳米载体和C/H@Chi纳米农药的5 mL溶液加入不同浓度(浓度:0 mg/L~20 mg/L)的溶液中。用胶带盖住并密封好盘子,然后放入人工气候箱(25℃,24 h黑暗)中5天。记录每组种子发芽率,以评价HMSNSs米载体和C/H@Chi纳米农药对种子发芽率的影响。再将已发芽的小麦继续培养3天(25℃,14 h光照/10 h黑暗)后,将小麦幼苗取出并清洗,记录其鲜重和干重 ‎[36] 。

2.10. 统计分析

采用SPSS version 11.5 (SPSS Inc., ChicaHMSNs, IL, USA)进行统计分析。每个重复的处理重复四次,有三个重复。数据以均数 ± 标准差表示,采用单因素方差分析。采用Tukey’s HSD检验显著性。p < 0.05认为与对照组有统计学差异。

3. 结果与讨论

3.1. C/H@Chi的扫描电镜和透射电镜表征

首先将克菌丹(Cap)装载入中空介孔二氧化硅(HMSNs)中得到Cap@HMSNs,然后Cap@HMSN外围包覆壳聚糖,最终得到C/H@Chi。为了表征C/H@Chi的结构特征,利用扫描电镜(SEM)和透射电镜(TEM)测定了C/H@Chi的形貌。如图1(a)和图1(b)所示,C/H@Chi为中空介孔的球形结构,并且能看出外部有一层明显的薄膜结构,这是由于壳聚糖的包覆所致。

Figure 1. Morphological characterization of C/H@Chi; (a) Scanning electron microscope image of C/H@Chi; (b) Transmission electron microscope images of C/H@Chi

图1. C/H@Chi的形貌表征;(a) C/H@Chi的扫描电镜图像;(b) C/H@Chi的透射电镜图像

3.2. Cap、HMSNs和C/H@Chi的红外光谱表征

为了探究Cap是否在HMSNs上成功装载,对Cap、HMSNs、Cap@HMSNs和C/H@Chi进行了傅里叶红外光谱分析,如图2所示,HMSNs组,在460 cm−1、848 cm−1等处出现了Si-O键的特征峰,在1093处出现了Si-O-Si反对称伸缩振动。对于Cap而言,在766 cm−1处有明显的C-Cl键红外吸收峰,在1636 cm−1和1736 cm−1处有明显的C=O红外吸收峰,在556 cm−1和691 cm−1有明显的S-C键红外吸收峰。显然,C/H@Chi的光谱包含了Cap和HMSNs的所有特征峰,这表明Cap在HMSNs上成功装载并且没有改变其物理化学性质。

Figure 2. FTIR of Cap, HMSNs and C/H@Chi

图2. Cap、HMSNs和C/H@Chi的红外光谱表征

3.3. Cap、HMSNs和C/H@Chi的紫外吸收峰

为了探究Cap是否成功装载进HMSNs以及是否成功包覆上壳聚糖,利用紫外可见分光光度计检测了Cap、HMSNs、Cap@HMSNs和C/H@Chi的紫外吸收特征峰,如图3所示,Cap在227 nm处有明显的特征吸收峰,Cap@HMSNs的紫外图谱中也能观察到227 nm有特征吸收峰,证明Cap成功装载到HMSNs上,其中C/H@Chi的吸收峰不明显是因为在已装载Cap的HMSNs外围壳聚糖薄膜对紫外可见幅射光有一定遮挡作用。

Figure 3. Ultraviolet absorption spectra of Cap, HMSNs, C/H and C/H@Chi

图3. Cap、HMSNs、C/H和C/H@Chi的紫外吸收图谱

3.4. HMSNs和C/H@Chi粒径表征

利用马尔文粒径分析仪检测HMSNs和C/H@Chi的粒径,如图4所示,HMSNs和C/H@Chi的DLS分析结果表明,HMSNsi的粒径较为集中在,均分布在200 nm左右,其中C/H@Chi的粒径较集中分布在250 nm左右,说明装载克菌丹并包覆壳聚糖薄膜后粒径变大,这也侧面说明壳聚糖包覆成功。

Figure 4. Particle size distribution of HMSNs and C/H@Chi

图4. HMSNs和C/H@Chi的粒径分布图

3.5. Cap、HMSNs和C/H@Chi的电位表征

Cap、HMSNs和C/H@Chi的电位分析结果如图5所示,三者均为负电荷,其中C/H@Chi的电荷值最小,这是由于中空介孔硅表面包覆上了带负电荷壳聚糖所致。

Figure 5. Potential distribution diagrams of Cap, HMSNs and C/H@Chi; the average value was ±SE; the error bar represents SE (N = 3), and different lowercase letters indicate significant differences between treatments (p < 0.05)

图5. Cap、HMSNs和C/H@Chi的电位分布图;数据为平均值±SE;误差条表示SE (N = 3),不同小写字母表示处理间差异显著(p < 0.05)

3.6. C/H@Chi的载药率

图6分别是克菌丹在10 mg/L、5 mg/L、2.5 mg/L、1.25 mg/L、0.625 mg/L的紫外吸收图谱。取在227 nm处五组浓度的吸光度最终计算推导出载药率为20.94%。

Figure 6. Ultraviolet absorption spectra of Cap at different concentrations

图6. Cap在不同浓度下紫外吸收图谱

3.7. C/H@Chi的pH响应功能

Figure 7. The release kinetics of C/H@Chi nanometer pesticide at different pH in vitro

图7. C/H@Chi纳米农药在不同pH下的累计释放曲线将黄色曲线变成其他颜色

图7,在室温下测定了C/H@Ch在不同pH值(5.0,6.0和7.0)下的释放行为。在pH值分别为5.0,6.0和7.0的缓释溶液中,C/H@Chi纳米农药在72 h的累计释放率分别为75.08%,52.57%,17.87%,之后基本维持不变。结果表明,C/H@Chi纳米农药在不同pH下缓释效果差异较大,其累计释放率随pH的减小而增加。因此C/H@Chi纳米农药具有良好的pH响应功能。

3.8. C/H@Chi纳米农药的高低温稳定性

为了研究C/H@Chi高低温稳定性,我们测定了0℃时7天内C/H@Chi粒径和电位的变化,以及54℃时14天内C/H@Chi粒径和电位的变化。如图8(a)-(d)所示,C/H@Chi纳米农药在0℃和54℃时电位和粒径均较为稳定,0℃时电位稳定在−18.5 mv,粒径稳定在200 nm左右,54℃时电位稳定在−20 mv,粒径稳定在200 nm左右。

Figure 8. Stability study of C/H@Chi: (a) Potential change diagram at 0˚C; (b) Particle size change diagram at 0˚C; (c) Potential change diagram at 54˚C; (d) Particle size change diagram at 54˚C

图8. C/H@Chi的稳定性研究:(a) 0℃电位变化图;(b) 0℃粒径变化图;(c) 54℃电位变化图;(d) 54℃粒径变化图

3.9. 不同浓度药剂对禾谷镰刀菌的菌丝生长的抑制作用

Cap和C/H@Chi对禾谷镰刀菌的室内毒力测定结果如图9所示,其中C/H@Chi纳米农药在0.25 mg/L、0.5 mg/L、1 mg/L、1.5 mg/L和2 mg/L的浓度下对禾谷镰刀菌的菌丝生长的抑制率分别为为15.79%、22.81%、37.72%、61.40%和80.70%,Cap在0.25 mg/L、0.5 mg/L、1 mg/L、1.5 mg/L和2 mg/L的浓度下对禾谷镰刀菌的菌丝生长的抑制率为10.71%、16.96%、25.00%、40.18%和63.39%,C/H@Chi对禾谷镰刀菌的菌丝生长的抑制作用均优于Cap。如表1所示,Cap对禾谷镰刀菌菌丝生长抑制的EC50是2.21 mg/L,而C/H@Chi纳米农药对禾谷镰刀菌菌丝生长抑制的EC50是1.08 mg/L,低于Cap。C/H@Chi纳米农药对于禾谷镰刀菌的抑制效果要优于Cap。

Figure 9. The inhibitory effect of different agents on mycelial growth of Fusarium graminearum under different concentrations; data are mean ±SE; error bars indicate SE (N = 4), and different lowercase letters indicate significant differences between treatments (p < 0.05)

图9. 各药剂在不同浓度时对禾谷镰刀菌菌丝生长速率的抑制作用;数据为平均值±SE;误差条表示SE (N = 4),不同小写字母表示处理间差异显著(p < 0.05)

Table 1. Inhibitory activity of Cap and C/H@Chi nanocomposites on mycelial growth rate of Fusarium graminearum

表1. Cap和C/H@Chi纳米农药对禾谷镰刀菌菌丝生长速率抑制活性

注:a为线性方程斜率 ± 标准误,b为EC50值和95%置信区间。

3.10. C/H@Chi的安全性研究

为了研究C/H@Chi实际应用的安全性,以小麦为模式作物,以Cap处理组为对照,研究了C/H@Chi对小麦的发芽率,小麦幼苗的鲜重和干重的影响。如图10(a)所示,给予不同浓度的Cap和C/H@Chi小麦幼苗发芽率无明显影响。如图10(b)和图10(c),表明在同浓度下,C/H@Chi处理组对于小麦幼苗的鲜重和干重的增长要优于Cap处理组,这主要是C/H@Ch对农药缓释的缘故,其中高浓度的Cap对小麦幼苗生长有抑制作用。

Figure 10. Study on the safety of Cap and C/H@Chi to wheat at different concentrations: (a) Germination percentage; (b) Fresh weight; (c) Dry weight; the average value was ±SE; The error bar represents SE (N = 4), and different lowercase letters indicate significant differences between treatments (p < 0.05)

图10. HMSNs和C/H@Chi在不同浓度时对小麦安全性研究:(a) 发芽率; (b) 鲜重; (c) 干重;数据为平均值±SE;误差条表示SE (N = 4),不同小写字母表示处理间差异显著(p < 0.05)

4. 结论

本研究开发了一种基于中空介孔二氧化硅装载克菌丹并包覆壳聚糖的纳米农药载体。所制备的C/H@Chi纳米农药在SEM和TEM观察下其形态具有中空介孔并包覆薄膜的形态,在FT-IR中,通过对不同波段变化的观察,可知中空介孔二氧化硅的物理装载并未改变原材料的化学特征。C/H@Chi具有良好的pH响应缓释功能,pH值越小C/H@Chi纳米农药缓释效果越明显。C/H@Chi相较于Cap对禾谷镰刀菌有更优异的杀菌活性,是因为C/H@Chi的缓释效果和禾谷镰刀菌生存环境双重影响下,使得纳米农药可以在酸性条件下缓慢释放Cap,禾谷镰刀菌生存环境为酸性这样可以调控释放,在病害侵染时释放,病害不侵染时不释放得以保护和保存Cap。C/H@Chi在对小麦种子发芽率和对小麦幼苗鲜重干重的影响上表现出良好的安全性。此外,C/H@Chi具有对克菌丹装载并包覆薄膜,这使得对克菌丹具有一定的保护和缓释作用。由于制备简单,抗真菌活性高,且不使用有毒有机溶剂和添加剂,以中空介孔二氧化硅为纳米载体的农药输送系统在未来的植物保护和可持续农业中有很大的前景。

基金项目

河北省高等学校科学技术研究项目ZD2020306。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Beketov, M.A., Kefford, B.J., Schäfer, R.B. and Liess, M. (2013) Pesticides Reduce Regional Biodiversity of Stream Invertebrates. Proceedings of the National Academy of Sciences, 110, 11039-11043.
https://doi.org/10.1073/pnas.1305618110
[2] Crist, E., Mora, C. and Engelman, R. (2017) The Interaction of Human Population, Food Production and Biodiversity Protection. Science, 356, 260-264.
https://doi.org/10.1126/science.aal2011
[3] Xu, C., Cao, L., Cao, C., et al. (2023) Fungicide Itself as a Trigger to Facilely Construct Hymexazol-Encapsulated Polysaccharide Supramolecular Hydrogels with Controllable Rheological Properties and Reduced Environmental Risks. Chemical Engineering Journal, 452, 139-195.
https://doi.org/10.1016/j.cej.2022.139195
[4] Yang, D., Li, G., Yan, X., et al. (2014) Controlled Release Study on Microencapsulated Mixture of Fipronil and Chlorpyrifos for the Management of White Grubs (Holotrichia parallela) in Peanuts (Arachis hypogaea L.). Journal of Agricultural and Food Chemistry, 62, 10632-10637.
https://doi.org/10.1021/jf502537x
[5] 王长青, 韩玉江, 曾泉, 等. 克菌丹∙叶菌唑防治小麦赤霉病效果试验[J]. 湖北植保, 2018(3): 10-11.
[6] 任武, 王天龙. 克菌丹、甲基托布津防治小麦腥黑穗病效果好[J]. 宁夏农业科技, 1980(5): 15.
[7] 张普选, 韩小平, 柴文玉, 等. 防治小麦根腐菌药剂效果的测试评价[J]. 农药, 1990, 25(5): 59-60.
[8] 郭健, 任维超, 李保华. 苹果黑星病有效防治药剂筛选及施药适期研究[J]. 中国果树, 2022(3): 54-58.
[9] 宋晓兵, 彭埃天, 凌金锋, 等. 克菌丹∙啶氧菌酯对柑橘沙皮病的防治效果评价[J]. 植物保护, 2021, 47(2): 254-257.
[10] 郝俊杰, 刘佳中, 孙静, 等. 杀菌剂种子处理对镰孢菌侵染玉米的影响[J]. 玉米科学, 2013, 21(5): 120-126.
[11] 洪莉, 陈令会, 王会福. 克菌丹、嘧菌酯等药剂组合防治桃主要病害药效试验[J]. 现代农药, 2018, 17(3): 52-54.
[12] 邓光宙, 阳廷密, 张素英, 等. 几种农药对金柑黑点型柑橘树脂病的田间药效评价[J]. 南方园艺, 2018, 29(5): 18-20.
[13] 陈红雨, 杨再会, 卢平, 等. 影响克菌丹在土壤中降解的因素研究[J]. 辽宁化工, 2015, 44(4): 357-360.
[14] 邵永源, 修长泽, 吴会进. 高效液相色谱法同时测定水果中克菌丹和灭菌丹残留量[J]. 预防医学论坛, 2007, 13(9): 827-829.
[15] 许建宁, 王全凯, 胡洁, 等. 克菌丹致人支气管上皮细胞染色体损伤的研究[J]. 农药, 2010, 49(9): 666-668, 691.
[16] 许建宁, 董琳, 王全凯, 等. 克菌丹诱导人支气管上皮细胞转化[J]. 农药, 2011, 50(4): 266-270, 277.
[17] Gao, C., Kwong, C.H.T., Sun, C., et al. (2020) Selective Decoating-Induced Activation of Supramolecularly Coated Toxic Nanoparticles for Multiple Applications. ACS Applied Materials & Interfaces, 12, 25604-25615.
https://doi.org/10.1021/acsami.0c05013
[18] Guan, H., Chi, D., Yu, J. and Li, X. (2008) A Novel Photodegradable Insecticide: Preparation, Characterization and Properties Evaluation of Nano-Imidacloprid. Pesticide Biochemistry and Physiology, 92, 83-91.
https://doi.org/10.1016/j.pestbp.2008.06.008
[19] Gao, Y., Kaziem, A.E., Zhang, Y., et al. (2017) A Hollow Mesoporous Silica and Poly (Diacetone acrylamide) Composite with Sustained-Release and Adhesion Properties. Microporous and Mesoporous Materials, 255, 15-22.
https://doi.org/10.1016/j.micromeso.2017.07.025
[20] Frederiksen, H.K., Kristensen, H.G. and Pedersen, M. (2003) Solid Lipid Microparticle Formulations of the Pyrethroid Gamma-Cyhalothrin—Incompatibility of the Lipid and the Pyrethroid and Biological Properties of the Formulations. Journal of Controlled Release, 86, 243-252.
https://doi.org/10.1016/S0168-3659(02)00406-6
[21] Ablikim, M., Achasov, M.N., Ahmed, S., et al. (2018) Amplitude Analysis of the KSKS System Produced in Radiative J/ψ Decays. Physical Review D, 98, 072003.
https://doi.org/10.1103/PhysRevD.98.072003
[22] Cheng, X., Huang, L., Yang, X., et al. (2019) Rational Design of a Stable Peroxidase Mimic for Colorimetric Detection of H2O2 and Glucose: A Synergistic CeO2/Zeolite Y Nanocomposite. Journal of Colloid and Interface Science, 535, 425-435.
https://doi.org/10.1016/j.jcis.2018.09.101
[23] Wen, J., Yang, K., Liu, F., et al. (2017) Diverse Gatekeepers for Mesoporous Silica Nanoparticle Based Drug Delivery Systems. Chemical Society Reviews, 46, 6024-6045.
https://doi.org/10.1039/C7CS00219J
[24] Cao, L., Zhang, H., Zhou, Z., et al. (2018) Fluorophore-Free Luminescent Double-Shelled Hollow Mesoporous Silica Nanoparticles as Pesticide Delivery Vehicles. Nanoscale, 10, 20354-20365.
https://doi.org/10.1039/C8NR04626C
[25] Wang, C., Cui, B., Zhao, X., et al. (2019) Optimization and Characterization of Lambda-Cyhalothrin Solid Nanodispersion by Self-Dispersing Method. Pest Management Science, 75, 380-389.
https://doi.org/10.1002/ps.5122
[26] Gao, Y., Zhang, Y., He S, et al. (2019) Fabrication of a Hollow Mesoporous Silica Hybrid to Improve the Targeting of a Pesticide. Chemical Engineering Journal, 364, 361-369.
https://doi.org/10.1016/j.cej.2019.01.105
[27] Zhang, D., Du, J., Wang, R., et al. (2021) Core/Shell Dual-Responsive Nanocarriers via Iron-Mineralized Electrostatic Self-Assembly for Precise Pesticide Delivery. Advanced Functional Materials, 31, Article ID: 2102027.
https://doi.org/10.1002/adfm.202102027
[28] Sikder, A., Pearce, A.K., Parkinson, S.J., et al. (2021) Recent Trends in Advanced Polymer Materials in Agriculture Related Applications. ACS Applied Polymer Materials, 3, 1203-1217.
https://doi.org/10.1021/acsapm.0c00982
[29] Khandelwal, N., Barbole, R.S., Banerjee, S.S., et al. (2016) Budding Trends in Integrated Pest Management Using Advanced Micro-and Nano-Materials: Challenges and Perspectives. Journal of Environmental Management, 184, 157-169.
https://doi.org/10.1016/j.jenvman.2016.09.071
[30] 沈殿晶, 张铭瑞, 陈小军, 等. 基于介孔二氧化硅的鱼藤酮纳米颗粒的制备及其性能研究[J]. 农药学学报, 2020, 22(6): 1061-1068.
[31] Hezma, A.M., Elkhooly, T.A. and El-Bahy, G.S. (2020) Fabrication and Characterization of Bioactive Chitosan Microspheres Incorporated with Mesoporous Silica Nanoparticles for Biomedical Applications. Journal of Porous Materials, 27, 555-562.
https://doi.org/10.1007/s10934-019-00837-4
[32] Li, Z.Z., Xu, S.A., Wen, L.X., et al. (2006) Controlled Release of Avermectin from Porous Hollow Silica Nanoparticles: Influence of Shell Thickness on Loading Efficiency, UV-Shielding Property and Release. Journal of Controlled Release, 111, 81-88.
https://doi.org/10.1016/j.jconrel.2005.10.020
[33] Su, S., Tian, Y., Li, Y., et al. (2015) “Triple-Punch” Strategy for Triple Negative Breast Cancer Therapy with Minimized Drug Dosage and Improved Antitumor Efficacy. ACS Nano, 9, 1367-1378.
https://doi.org/10.1021/nn505729m
[34] Song, S., Wan, M., Feng, W., et al. (2021) Graphene Oxide as the Potential Vector of Hydrophobic Pesticides: Ultrahigh Pesticide Loading Capacity and Improved Antipest Activity. ACS Agricultural Science & Technology, 1, 182-191.
https://doi.org/10.1021/acsagscitech.1c00002
[35] Wang, X., Zheng, K., Cheng, W., et al. (2021) Field Application of Star Polymer-Delivered Chitosan to Amplify Plant Defense against Potato Late Blight. Chemical Engineering Journal, 417, 129327.
https://doi.org/10.1016/j.cej.2021.129327
[36] Wu, W., Wan, M., Fei, Q., et al. (2021) PDA@Ti3C2Tx as a Novel Carrier for Pesticide Delivery and Its Application in Plant Protection: NIR-Responsive Controlled Release and Sustained Antipest Activity. Pest Management Science, 77, 4960-4970.
https://doi.org/10.1002/ps.6538
[37] Beketov, M.A., Kefford, B.J., Schäfer, R.B. and Liess, M. (2013) Pesticides Reduce Regional Biodiversity of Stream Invertebrates. Proceedings of the National Academy of Sciences, 110, 11039-11043.
https://doi.org/10.1073/pnas.1305618110
[38] Crist, E., Mora, C. and Engelman, R. (2017) The Interaction of Human Population, Food Production and Biodiversity Protection. Science, 356, 260-264.
https://doi.org/10.1126/science.aal2011
[39] Xu, C., Cao, L., Cao, C., et al. (2023) Fungicide Itself as a Trigger to Facilely Construct Hymexazol-Encapsulated Polysaccharide Supramolecular Hydrogels with Controllable Rheological Properties and Reduced Environmental Risks. Chemical Engineering Journal, 452, 139-195.
https://doi.org/10.1016/j.cej.2022.139195
[40] Yang, D., Li, G., Yan, X., et al. (2014) Controlled Release Study on Microencapsulated Mixture of Fipronil and Chlorpyrifos for the Management of White Grubs (Holotrichia parallela) in Peanuts (Arachis hypogaea L.). Journal of Agricultural and Food Chemistry, 62, 10632-10637.
https://doi.org/10.1021/jf502537x
[41] 王长青, 韩玉江, 曾泉, 等. 克菌丹∙叶菌唑防治小麦赤霉病效果试验[J]. 湖北植保, 2018(3): 10-11.
[42] 任武, 王天龙. 克菌丹、甲基托布津防治小麦腥黑穗病效果好[J]. 宁夏农业科技, 1980(5): 15.
[43] 张普选, 韩小平, 柴文玉, 等. 防治小麦根腐菌药剂效果的测试评价[J]. 农药, 1990, 25(5): 59-60.
[44] 郭健, 任维超, 李保华. 苹果黑星病有效防治药剂筛选及施药适期研究[J]. 中国果树, 2022(3): 54-58.
[45] 宋晓兵, 彭埃天, 凌金锋, 等. 克菌丹∙啶氧菌酯对柑橘沙皮病的防治效果评价[J]. 植物保护, 2021, 47(2): 254-257.
[46] 郝俊杰, 刘佳中, 孙静, 等. 杀菌剂种子处理对镰孢菌侵染玉米的影响[J]. 玉米科学, 2013, 21(5): 120-126.
[47] 洪莉, 陈令会, 王会福. 克菌丹、嘧菌酯等药剂组合防治桃主要病害药效试验[J]. 现代农药, 2018, 17(3): 52-54.
[48] 邓光宙, 阳廷密, 张素英, 等. 几种农药对金柑黑点型柑橘树脂病的田间药效评价[J]. 南方园艺, 2018, 29(5): 18-20.
[49] 陈红雨, 杨再会, 卢平, 等. 影响克菌丹在土壤中降解的因素研究[J]. 辽宁化工, 2015, 44(4): 357-360.
[50] 邵永源, 修长泽, 吴会进. 高效液相色谱法同时测定水果中克菌丹和灭菌丹残留量[J]. 预防医学论坛, 2007, 13(9): 827-829.
[51] 许建宁, 王全凯, 胡洁, 等. 克菌丹致人支气管上皮细胞染色体损伤的研究[J]. 农药, 2010, 49(9): 666-668, 691.
[52] 许建宁, 董琳, 王全凯, 等. 克菌丹诱导人支气管上皮细胞转化[J]. 农药, 2011, 50(4): 266-270, 277.
[53] Gao, C., Kwong, C.H.T., Sun, C., et al. (2020) Selective Decoating-Induced Activation of Supramolecularly Coated Toxic Nanoparticles for Multiple Applications. ACS Applied Materials & Interfaces, 12, 25604-25615.
https://doi.org/10.1021/acsami.0c05013
[54] Guan, H., Chi, D., Yu, J. and Li, X. (2008) A Novel Photodegradable Insecticide: Preparation, Characterization and Properties Evaluation of Nano-Imidacloprid. Pesticide Biochemistry and Physiology, 92, 83-91.
https://doi.org/10.1016/j.pestbp.2008.06.008
[55] Gao, Y., Kaziem, A.E., Zhang, Y., et al. (2017) A Hollow Mesoporous Silica and Poly (Diacetone acrylamide) Composite with Sustained-Release and Adhesion Properties. Microporous and Mesoporous Materials, 255, 15-22.
https://doi.org/10.1016/j.micromeso.2017.07.025
[56] Frederiksen, H.K., Kristensen, H.G. and Pedersen, M. (2003) Solid Lipid Microparticle Formulations of the Pyrethroid Gamma-Cyhalothrin—Incompatibility of the Lipid and the Pyrethroid and Biological Properties of the Formulations. Journal of Controlled Release, 86, 243-252.
https://doi.org/10.1016/S0168-3659(02)00406-6
[57] Ablikim, M., Achasov, M.N., Ahmed, S., et al. (2018) Amplitude Analysis of the KSKS System Produced in Radiative J/ψ Decays. Physical Review D, 98, 072003.
https://doi.org/10.1103/PhysRevD.98.072003
[58] Cheng, X., Huang, L., Yang, X., et al. (2019) Rational Design of a Stable Peroxidase Mimic for Colorimetric Detection of H2O2 and Glucose: A Synergistic CeO2/Zeolite Y Nanocomposite. Journal of Colloid and Interface Science, 535, 425-435.
https://doi.org/10.1016/j.jcis.2018.09.101
[59] Wen, J., Yang, K., Liu, F., et al. (2017) Diverse Gatekeepers for Mesoporous Silica Nanoparticle Based Drug Delivery Systems. Chemical Society Reviews, 46, 6024-6045.
https://doi.org/10.1039/C7CS00219J
[60] Cao, L., Zhang, H., Zhou, Z., et al. (2018) Fluorophore-Free Luminescent Double-Shelled Hollow Mesoporous Silica Nanoparticles as Pesticide Delivery Vehicles. Nanoscale, 10, 20354-20365.
https://doi.org/10.1039/C8NR04626C
[61] Wang, C., Cui, B., Zhao, X., et al. (2019) Optimization and Characterization of Lambda-Cyhalothrin Solid Nanodispersion by Self-Dispersing Method. Pest Management Science, 75, 380-389.
https://doi.org/10.1002/ps.5122
[62] Gao, Y., Zhang, Y., He S, et al. (2019) Fabrication of a Hollow Mesoporous Silica Hybrid to Improve the Targeting of a Pesticide. Chemical Engineering Journal, 364, 361-369.
https://doi.org/10.1016/j.cej.2019.01.105
[63] Zhang, D., Du, J., Wang, R., et al. (2021) Core/Shell Dual-Responsive Nanocarriers via Iron-Mineralized Electrostatic Self-Assembly for Precise Pesticide Delivery. Advanced Functional Materials, 31, Article ID: 2102027.
https://doi.org/10.1002/adfm.202102027
[64] Sikder, A., Pearce, A.K., Parkinson, S.J., et al. (2021) Recent Trends in Advanced Polymer Materials in Agriculture Related Applications. ACS Applied Polymer Materials, 3, 1203-1217.
https://doi.org/10.1021/acsapm.0c00982
[65] Khandelwal, N., Barbole, R.S., Banerjee, S.S., et al. (2016) Budding Trends in Integrated Pest Management Using Advanced Micro-and Nano-Materials: Challenges and Perspectives. Journal of Environmental Management, 184, 157-169.
https://doi.org/10.1016/j.jenvman.2016.09.071
[66] 沈殿晶, 张铭瑞, 陈小军, 等. 基于介孔二氧化硅的鱼藤酮纳米颗粒的制备及其性能研究[J]. 农药学学报, 2020, 22(6): 1061-1068.
[67] Hezma, A.M., Elkhooly, T.A. and El-Bahy, G.S. (2020) Fabrication and Characterization of Bioactive Chitosan Microspheres Incorporated with Mesoporous Silica Nanoparticles for Biomedical Applications. Journal of Porous Materials, 27, 555-562.
https://doi.org/10.1007/s10934-019-00837-4
[68] Li, Z.Z., Xu, S.A., Wen, L.X., et al. (2006) Controlled Release of Avermectin from Porous Hollow Silica Nanoparticles: Influence of Shell Thickness on Loading Efficiency, UV-Shielding Property and Release. Journal of Controlled Release, 111, 81-88.
https://doi.org/10.1016/j.jconrel.2005.10.020
[69] Su, S., Tian, Y., Li, Y., et al. (2015) “Triple-Punch” Strategy for Triple Negative Breast Cancer Therapy with Minimized Drug Dosage and Improved Antitumor Efficacy. ACS Nano, 9, 1367-1378.
https://doi.org/10.1021/nn505729m
[70] Song, S., Wan, M., Feng, W., et al. (2021) Graphene Oxide as the Potential Vector of Hydrophobic Pesticides: Ultrahigh Pesticide Loading Capacity and Improved Antipest Activity. ACS Agricultural Science & Technology, 1, 182-191.
https://doi.org/10.1021/acsagscitech.1c00002
[71] Wang, X., Zheng, K., Cheng, W., et al. (2021) Field Application of Star Polymer-Delivered Chitosan to Amplify Plant Defense against Potato Late Blight. Chemical Engineering Journal, 417, 129327.
https://doi.org/10.1016/j.cej.2021.129327
[72] Wu, W., Wan, M., Fei, Q., et al. (2021) PDA@Ti3C2Tx as a Novel Carrier for Pesticide Delivery and Its Application in Plant Protection: NIR-Responsive Controlled Release and Sustained Antipest Activity. Pest Management Science, 77, 4960-4970.
https://doi.org/10.1002/ps.6538