胞内自组装纳米材料及其生物医学应用
Intracellularly Self-Assembled Nanomaterials and Their Biomedical Applications
DOI: 10.12677/MS.2023.135042, PDF, HTML, XML, 下载: 217  浏览: 349 
作者: 侯德隆, 徐 勇, 陈 意, 范浩军*:四川大学轻工科学与工程学院,成都
关键词: 胞内自组装生物医学应用靶向治疗细胞成像 Intracellular Self-Assembly Biomedical Application Targeted Therapy Cell Imaging
摘要: 近年来,通过模仿自然界中生物大分子基元的自组装行为,科学家将人造基元送入细胞内部并原位构筑出一系列胞内自组装纳米材料。这类材料不易被细胞外排,可在细胞内长时保留,在靶向治疗、细胞成像及传感等生物医学领域具有广阔的应用前景。本文分类概述了目前常见胞内自组装纳米材料的基元类型、设计方法、组装机制及生物医学应用,并对这类材料未来的发展方向进行了展望。
Abstract: Inspired by natural self-assembly of biomacromolecules, a range of synthetic building units have been developed in recent years, with the goal of constructing non-natural assemblies inside living cells. These materials are not easy to be exocytosed by the cells, and thus have long intracel-lular retention time, holding great potential for various biomedical applications such as targeted therapy and cell imaging. This review summarizes common intracellularly self-assembled nano-materials, introduces their biomedical applications, and prospects their development in future.
文章引用:侯德隆, 徐勇, 陈意, 范浩军. 胞内自组装纳米材料及其生物医学应用[J]. 材料科学, 2023, 13(5): 379-386. https://doi.org/10.12677/MS.2023.135042

1. 概述

在自然界中,生物分子基元通过胞内自组装,形成了多种天然微纳结构,是支撑细胞生命活动的基础 [1] [2] [3] 。例如,DNA单链间可通过碱基互补配对,进而自组装生成有序的双螺旋结构,成为储存和传递遗传信息的主要载体;微管蛋白二聚体沿纵向自组装形成细胞内微管、微丝,在细胞有丝分裂、胞内物质运输中发挥重要作用;磷脂分子经自组装排列成细胞膜双分子层,以有效维持细胞内环境的稳定。近年来,科学家设计、制备了一系列人造基元并将其送入细胞内部,通过模仿上述天然自组装过程,原位构筑出一系列胞内自组装纳米材料。这类材料的成功开发对人类在分子层面探索亚细胞结构形成原理、解释生物体内分子聚集相关疾病(如阿兹海默症、帕金森症和亨廷顿舞蹈症等)的发病机制有着重要意义 [4] [5] [6] 。更为重要的是,由于自组装后材料尺寸显著增大,这类材料搭载小分子诊断治疗药物后,可增强其胞内保留时间,改善其药代动力学,可用于解决癌细胞耐药性问题 [7] [8] [9] 。此外,部分胞内自组装纳米材料甚至本身可选择性杀死癌细胞,极大地拓展了人工材料在生物医学领域的研究内容与策略。

胞内自组装纳米材料的设计流程一般为:其一,自组装基元的构建。一般情况下,组装基元需要具有生物相容性,组装可控性,目前常见基元包括多肽 [10] [11] [12] [13] [14] 、芳香族化合物 [15] [16] 、金属纳米颗粒 [9] [17] [18] 等;其二,自组装基元的细胞摄取。此过程既要避免基元在未进入细胞前自发自组装,又要保证基元不被溶酶体等细胞器分解;其三,自组装的触发。这一过程是通过细胞内Ph [19] [20] [21] 、酶 [22] [23] [24] 、活性氧 [25] [26] [27] ,或细胞外光 [28] [29] 、热 [16] 等条件,使进入细胞内预定位置的基元发生刺激响应,随后完成组装过程。

2. 胞内自组装纳米材料的分类及应用

目前,国内外已有多个课题组通过设计具有不同自组装机制的基元,成功原位构筑了胞内自组装纳米材料。按其形状分类,可大致分为一维(1D)自组装材料(纤维)、零维(0D)自组装材料(颗粒)、二维(2D)自组装材料(膜状)三类。

2.1. 胞内一维自组装纳米材料

2007年,Xu Bing教授团队以酶响应多肽为基元,构建了首类胞内自组装纳米材料 [30] 。在这项开创性的研究中,他们设计并合成了一种由疏水及亲水两部分氨基酸残基构成的两亲性多肽基元,并将该基元一端采用酯基进行保护。当处于细胞外培养基环境时,上述基元的自组装被酯基抑制,与细胞共培养时可依靠扩散方式进入细胞内部;进入细胞后,该基元的酯基迅速被细胞内酯酶所分解,基元的疏水残基随即发生相互作用,进而形成纤维。实验发现,当自组装在细胞内部发生后,原本贴壁健康生长的细胞在一天后大面积出现漂浮、死亡的现象。将这些漂浮细胞收集、破碎后,可在电子显微镜下观察到大量微米级别的纤维成分,证实了细胞内多肽基元的成功自组装。虽然上述细胞的死亡机理在该项工作中未得到确切证实,但Xu Bing等猜测可能是由于细胞内自组装形成的多肽聚集体会使细胞胞浆凝胶化,进而影响细胞的正常生命活动。

在该工作的基础上,Xu Bing等考虑到由于酯酶在大多数细胞中均有表达,他们进一步采用磷酸基代替酯基。由于磷酸基的脱除依赖碱性磷酸酶,而这种酶一般在HeLa细胞等癌细胞中高度表达,故而以磷酸基为保护基的自组装基元相比酯基在触发自组装时具有更强的癌细胞选择性 [31] 。此外,碱性磷酸酶诱导的脱磷酸过程还具有反应动力学高度可控的特点。利用这一特点,即便两类癌细胞均能表达碱性磷酸酶,只要表达水平有差异,便可通过调节多肽基元浓度及自组装时间等手段,在特定细胞内诱导自组装发生,从而选择性杀死特定癌细胞。例如,Saos-2细胞与HepG2细胞均能表达碱性磷酸酶,而前者的表达水平较高。当某种特定浓度的磷酸基多肽基元分别与这两种细胞共培养并诱发自组装后,接近所有的Saos-2细胞被杀死,而HepG2细胞可存活60%以上 [32] 。

上述工作中,多肽基元发生自组装的胞内位点均为胞浆。由于胞浆体积占据整个细胞体积二分之一以上,因此只有当多肽基元的浓度足够高时(通常需要大于500 μM),其组装体才能有效引起胞浆凝胶化从而杀死细胞。为解决这一问题,受小分子靶向药物启发,Xu Bing教授团队希望将组装体富集于特定细胞器上,以增强其抑癌能力。为实现上述设想,2016年,他们设计了一类具有三苯基磷的多肽基元。由于三苯基磷可特异性定位线粒体,在自组装反应发生后,多肽聚集体可在细胞内线粒体上成功富集 [33] 。该过程破坏了线粒体的整体稳态,导致其释放细胞色素c,从而诱导细胞凋亡。同时,细胞耐药性实验结果还证实,上述过程并不会导致细胞产生耐药性。这是由于以线粒体为靶标的传统小分子药物在富集于线粒体后,往往与线粒体上特定蛋白、核酸等位点结合从而破坏线粒体结构,这些位点较为单一,易通过基因突变而发生变化,使细胞获得耐药性。而多肽组装体的破坏线粒体的过程并不依赖这些特殊位点,因此不会产生耐药性。此后,Xu Bing教授团队采用相似的思路,开发出了一系列可定位包括内质网 [34] 、细胞核 [35] 等不同细胞器的多肽自组装体,进一步拓宽了酶响应多肽自组装的应用场景。

在Xu Bing教授团队上述系列工作启发下,更多科研工作者投入到了以多肽为核心的胞内一维自组装纳米材料的研发中,并对该类材料的生物医学功能、组装响应条件等进行了深入挖掘与探究。例如,Gao等 [36] 制备了一种带有四苯基乙烯的多肽基元,该基元的胞内一维自组装同样由碱性磷酸酶触发。更为重要的是,上述基元发生自组装后,由于其结构中四苯基乙烯具有聚集诱导发光效应(AIE),可使组装体发出强烈的荧光,从而实现特异性细胞成像。Yamamoto等 [37] 设计并制备了一种尾部带有3个谷氨酸残基的两亲性多肽基元。与酶响应多肽基元不同,触发该基元自组装的条件为pH的改变,即在pH > 7的中性条件下,谷氨酸残基的羧基带有负电荷,多肽间存在电荷排斥,难以发生自组装;而在pH小于7的弱酸性条件下,上述羧基不带电,多肽间可通过氢键与疏水作用发生组装形成纤维。由于癌细胞的胞内pH (约6.7左右)往往低于正常细胞(约7.4左右),上述pH响应的多肽基元在进入癌细胞后,可自发形成纤维从而杀死癌细胞。与上述工作类似,Pieszka等 [38] 设计了一种可“多步”自组装的多肽基元,该基元可先后响应细胞内pH及过氧化氢酶,最终在细胞内完成一维自组装形成纤维,并诱导细胞凋亡。除利用pH诱发多肽自组装形成纤维外,目前科学家也开发出利用细胞内活性氧 [13] [39] [40] 、谷胱甘肽 [41] [42] [43] 等多种条件响应的多肽基元,极大地丰富了以多肽为核心的胞内一维自组装材料的实际应用范围。

2.2. 胞内零维自组装纳米材料

相较于纤维状材料,球形材料在用于荧光探针、药物等癌症诊断治疗物的搭载及缓释时更具优势 [7] 。因此,开发一类通过胞内零维自组装而构筑的球状材料对于推动胞内自组装纳米材料在生物医药领域的发展具有重要意义。

2012年,中国科学技术大学的梁高林教授团队开发了一类可通过π-π堆叠作用进行自组装的芳香族基元 [44] 。该基元预先被一段可在弗林蛋白酶(一种在癌细胞内高度表达的碱性氨基酸蛋白酶)作用下断裂的多肽链保护。在扩散进入癌细胞内部后,多肽链与芳香族基元之间的连接被迅速切断,基元形成大环状二聚体,该二聚体随后发生π-π堆叠作用并零维自组装形成球状材料。同时,梁高林等通过实验对比了基元本身及组装体的细胞内保留时间,结果发现相比基元本身,组装体在细胞内的保留时间延长了16倍。这是因为组装体的尺寸较大,而细胞外排大尺寸材料需要的能量大、时间也相对较长。由于生物成像领域荧光探针所需最重要性能便是快速进入成像细胞并在细胞内长效保留,上述基元可作为细胞成像的理想载体。

此外,梁高林教授团队还探索了球形细胞内自组装纳米材料在药物缓释领域的应用。在一项具有代表型的工作中,他们将紫杉醇与上述芳香族基元以酯键形式偶联 [45] 。该偶联物在进入细胞后,亦能在弗林蛋白酶作用下自组装形成球状材料,且此时紫杉醇排列于球状材料表面。在细胞内酯酶的作用下,紫杉醇与球状材料间酯键逐步断裂,最终实现紫杉醇的缓释。由于目前耐紫杉醇癌细胞的耐药性主要是来源于外排机制,而该药物缓释系统可显著增强紫杉醇在癌细胞内的保留时间,因此可明显提升紫杉醇药物的抑癌性能。小鼠肿瘤种植实验表明,在肿瘤种植20天后,服用紫杉醇药物缓释系统的小鼠比直接服用紫杉醇的小鼠肿瘤体积小近4倍。利用与此相似的原理,负载阿霉素、奥沙利铂等药物的球形细胞内自组装纳米材料也被成功制备 [10] [17] [46] 。

2017年,德国马普所的Tanja Weil教授团队设计了一种两亲性吡啶组装基元,该基元经受体介导的内吞作用进入细胞后,会进入线粒体内部 [16] 。此时,若加入细胞内物质传递抑制剂巴佛洛霉素A,进入线粒体的基元无法从线粒体运输至其他细胞器,最终基元可在线粒体内富集。当环境温度由37℃调整至4℃时,基元可在线粒体内部原位发生自组装进而形成颗粒状材料,可用于细胞线粒体的实时成像与追踪。虽然这种自组装的原理尚不明确,但该基元的组装是对温度这一细胞外部环境条件响应,这与上述所有自组装体系的触发机制均不同。由于细胞外响应条件的人为可控性及普适性相较于细胞内响应条件更强,这项工作为细胞内自组装纳米材料的设计提供了新思路。

除有机基元外,金属纳米颗粒等无机物也能作为基元实现细胞内零维自组装。Chen等 [47] 将芳香族基元接枝于金纳米颗粒上,上述金纳米颗粒进入细胞后,可通过π-π堆叠作用发生自组装。形成的金纳米颗粒聚集体除具有更大的体积及细胞内保留时间外,其光热转化效率也得到显著提升。小鼠实验证明,聚集体在808 nm近红外光照射下,可将肿瘤局部温度提升至近60℃,相比金纳米颗粒本身提升了近20℃,显著提升了金纳米颗粒的光热治疗能力。此外,相似的原理也可用于制备磁性纳米四氧化三铁聚集体,该聚集体可显著提升纳米四氧化三铁的磁共振成像能力 [48] [49] 。

对比上述工作可以发现,虽然胞内零维自组装材料的具体应用领域各不相同,包含细胞成像、药物递送、光热治疗等,但构建这类材料的基元核心多为芳香族化合物,且其组装原理较为相似,均由芳香族化合物间π-π堆叠作用驱动。

2.3. 胞内二维自组装纳米材料

相较于零维及一维材料,二维材料的独特片层结构赋予了其较大的面厚比,因此具有极高的药物负载率 [50] [51] [52] [53] [54] 。此外,有研究表明在相同体积的上述三类材料中,二维材料最难被细胞膜包裹并排出细胞外,在细胞内的保留时间最长 [55] [56] 。因此,若能实现基元的胞内二维自组装,便可进一步提升胞内自组装纳米材料在靶向治疗、细胞成像等领域的应用效果。

2021年,本课题组首次报道了一种通过细胞内原位自组装构筑二维材料的策略 [29] 。在该项工作中,我们以大环化合物葫芦 [6] 脲为核心,在其外壁赤道位接枝了多个光致变色化合物螺吡喃,获得了葫芦 [6] 脲–螺吡喃(CB [6] SP)自组装基元。该基元可在可见光照射下经细胞膜穴样凹陷介导的内吞作用进入细胞并从核内体中逃逸,最终在细胞质内富集。在黑暗条件下,基元上螺吡喃发生构象转变,开环成为可与二价离子发生配位作用的部花菁。由于该配位作用具有很强的方向性,上述基元可在细胞质中丰富游离镁离子的帮助下,完成平面自组装并形成尺寸为0.8~1.2 μm的二维材料。上述策略弥补了细胞内二维材料原位构筑方法的空白,进一步丰富了胞内自组装纳米材料的种类。此外,该策略所用的光控组装触发条件也为进一步提升胞内自组装纳米材料构筑的时空可控性提供了参考。

作为上述工作的延续,本课题组进一步研究了上述原位生成的二维材料对细胞活性的影响,并最终证实该二维材料是通过阻碍细胞质内物质输送,从而诱使细胞凋亡 [28] 。鉴于该二维材料具有此种本征杀死细胞的能力,我们利用葫芦 [6] 脲的主客体化学特性,将HeLa癌细胞特异性识别分子叶酸与上述基元结合,并将结合物用于HeLa癌细胞的选择性杀灭。流式细胞分选及细胞鉴定结果显示,上述结合物可高效杀灭共培养体系中的HeLa癌细胞,而对体系中正常细胞无毒。由于上述叶酸分子可替换为其他癌细胞特异性识别分子,该材料有望作为一种新型靶向治疗平台。

最后,本文将上述各类胞内自组装纳米材料所用基元、组装触发方式、应用领域等信息总结与表1

Table 1. A summary of intracellular self-assembly nanomaterials

表1. 胞内自组装纳米材料分类汇总

3. 总结与展望

通过基元在细胞内原位自组装所构筑的人工材料兼具高效进入细胞与胞内长时保留的特点,可用于搭载荧光探针、药物从而提升其效果;部分胞内自组装纳米材料甚至本身便具有抑癌能力,在癌细胞诊断与治疗应用前景广阔。然而,目前胞内自组装纳米材料在设计与应用时仍面临着几大问题,亟待研究人员解决。

首先,现有触发基元细胞内原位自组装的响应条件通常是细胞内生理条件,这些条件虽能有效利用各类细胞及亚细胞结构的不同生理条件进行定向组装,但相较于胞外环境条件,这些条件的人工可控及普适性稍差,因此,可响应光、磁、声等胞外环境条件的基元及其组装体系仍有待进一步开发;其次,由于细胞内环境复杂,基元在细胞内的组装动力学监测及控制方法有限,造成胞内自组装纳米材料的数量及尺寸可控性均较差,有待深入研究予以优化;最后,构建胞内自组装纳米材料的基元一般需要冗杂的步骤及昂贵的原料,若要大规模用于生物医学领域,仍需进一步缩短合成步骤并降低成本。

NOTES

*通讯作者。

参考文献

[1] Chagri, S., Ng, D. and Weil, T. (2022) Designing Bioresponsive Nanomaterials for Intracellular Self-Assembly. Nature Reviews Chemistry, 6, 320-338.
https://doi.org/10.1038/s41570-022-00373-x
[2] Deng, Y., Zhan, W. and Liang, G. (2021) Intracellular Self-Assembly of Peptide Conjugates for Tumor Imaging and Therapy. Advanced Healthcare Materials, 10, Article ID: 2001211.
https://doi.org/10.1002/adhm.202001211
[3] Hai, Z. and Liang, G. (2018) In-tracellular Self-Assembly of Nanoprobes for Molecular Imaging. Advanced Biosystems, 2, Article ID: 1800108.
https://doi.org/10.1002/adbi.201800108
[4] Shen, Q., Grome, M.W., Yang, Y., et al. (2019) Engineering Lipid Membranes with Programmable DNA Nanostructures. Advanced Biosystems, 4, Article ID: 1900215.
https://doi.org/10.1002/adbi.201900215
[5] Li, L.L., Qiao, Z.Y., Wang, L., et al. (2018) Programmable Construc-tion of Peptide-Based Materials in Living Subjects: From Modular Design and Morphological Control to Theranostics. Advanced Materials, 31, Article ID: 1804971.
https://doi.org/10.1002/adma.201804971
[6] Zhang, Y., Tu, J., Wang, D., et al. (2018) Programmable and Multi-functional DNA-Based Materials for Biomedical Applications. Advanced Materials, 30, Article ID: 1703658.
https://doi.org/10.1002/adma.201703658
[7] Zhang, X., Chen, X., Song, J., et al. (2020) Size-Transformable Nanostructures: From Design to Biomedical Applications. Advanced Materials, 32, Article ID: 2003752.
https://doi.org/10.1002/adma.202003752
[8] Wang, Y., Li, S., Wang, X., et al. (2021) Smart Transformable Na-nomedicines for Cancer Therapy. Biomaterials, 271, Article ID: 120737.
https://doi.org/10.1016/j.biomaterials.2021.120737
[9] Li, X., Montague, E.C., Pollinzi, A., et al. (2022) Design of Smart Size-, Surface-, and Shape-Switching Nanoparticles to Improve Therapeutic Efficacy. Small, 18, Article ID: 2104632.
https://doi.org/10.1002/smll.202104632
[10] Zhou, Z., Maxeiner, K., Moscariello, P., et al. (2022) In Situ Assembly of Platinum(II)-Metallopeptide Nanostructures Disrupts Energy Homeostasis and Cellular Metabolism. Jour-nal of the American Chemical Society, 144, 12219-12228.
https://doi.org/10.1021/jacs.2c03215
[11] Zheng, R., Yang, J., Mamuti, M., et al. (2021) Controllable Self-Assembly of Peptide-Cyanine Conjugates in Vivo as Fine-Tunable Theranostics. Angewandte Chemie International Edition, 60, 7809-7819.
https://doi.org/10.1002/anie.202015126
[12] Yang, J., An, H. and Wang, H. (2021) Self-Assembled Peptide Drug Delivery Systems. ACS Applied Bio Materials, 4, 24-46.
https://doi.org/10.1021/acsabm.0c00707
[13] Jin, S., Jeena, M.T., Jana, B., et al. (2020) Spatiotemporal Self-Assembly of Peptides Dictates Cancer-Selective Toxicity. Biom-acromolecules, 21, 4806-4813.
https://doi.org/10.1021/acs.biomac.0c01000
[14] Levin, A., Hakala, T.A., Schnaid-er, L., et al. (2020) Biomimetic Peptide Self-Assembly for Functional Materials. Nature Reviews Chemistry, 4, 615-634.
https://doi.org/10.1038/s41570-020-0215-y
[15] Chen, Z., Chen, M., Cheng, Y., et al. (2020) Exploring the Con-densation Reaction between Aromatic Nitriles and Amino Thiols to Optimize in Situ Nanoparticle Formation for the Im-aging of Proteases and Glycosidases in Cells. Angewandte Chemie International Edition, 59, 3272-3279.
https://doi.org/10.1002/anie.201913314
[16] Ng, D.Y.W., Vill, R., Wu, Y., et al. (2017) Directing Intracellular Su-pramolecular Assembly with N-heteroaromatic Quaterthiophene Analogues. Nature Communications, 8, Article No. 1850.
https://doi.org/10.1038/s41467-017-02020-2
[17] Xie, F., Wang, M., Chen, Q., et al. (2022) Endogenous Stimu-li-Responsive Nanoparticles for Cancer Therapy: From Bench to Bedside. Pharmacological Research, 186, Article ID: 106522.
https://doi.org/10.1016/j.phrs.2022.106522
[18] Yuan, Y., Raj, P., Zhang, J., et al. (2021) Furin-Mediated Self-Assembly of Olsalazine Nanoparticles for Targeted Raman Imaging of Tumors. Angewandte Chemie International Edition, 60, 3923-3927.
https://doi.org/10.1002/anie.202014839
[19] Rahimi, S., Stumpf, S., Grimm, O., et al. (2020) Dual Photo- and pH-Responsive Spirooxazine-Functionalized Dextran Nanoparticles. Biomacromolecules, 21, 3620-3630.
https://doi.org/10.1021/acs.biomac.0c00642
[20] Mai, B.T., Fernandes, S., Balakrishnan, P.B., et al. (2018) Nanosystems Based on Magnetic Nanoparticles and Thermo- or pH-Responsive Polymers: An Update and Future Per-spectives. Accounts of Chemical Research, 51, 999-1013.
https://doi.org/10.1021/acs.accounts.7b00549
[21] Feng, N., Han, G., Dong, J., et al. (2014) Nanoparticle Assem-bly of a Photo- and pH-Responsive Random Azobenzene Copolymer. Journal of Colloid and Interface Science, 421, 15-21.
https://doi.org/10.1016/j.jcis.2014.01.036
[22] Yang, S., Yao, D., Wang, Y., et al. (2018) En-zyme-Triggered Self-Assembly of Gold Nanoparticles for Enhanced Retention Effects and Photothermal Therapy of Prostate Cancer. Chemical Communications, 54, 9841-9844.
https://doi.org/10.1039/C8CC05136D
[23] Gao, Y., Kuang,Y., Guo, Z., et al. (2009) Enzyme-Instructed Molecular Self-Assembly Confers Nanofibers and a Supramolecular Hydrogel of Taxol Derivative. Journal of the American Chem-ical Society, 131, 13576-13577.
https://doi.org/10.1021/ja904411z
[24] Toledano, S., Williams, R.J., Jayawarna, V., et al. (2006) En-zyme-Triggered Self-Assembly of Peptide Hydrogels via Reversed Hydrolysis. Journal of the American Chemical Soci-ety, 128, 1070-1071.
https://doi.org/10.1021/ja056549l
[25] Cheng, D., Zhang, X., Gao, Y., et al. (2019) Endoge-nous Reactive Oxygen Species-Triggered Morphology Transformation for Enhanced Cooperative Interaction with Mito-chondria. Journal of the American Chemical Society, 141, 7235-7239.
https://doi.org/10.1021/jacs.8b07727
[26] Wu, L., Sedgwick, A.C., Sun, X., et al. (2019) Reaction-Based Fluores-cent Probes for the Detection and Imaging of Reactive Oxygen, Nitrogen, and Sulfur Species. Accounts of Chemical Re-search, 52, 2582-2597.
https://doi.org/10.1021/acs.accounts.9b00302
[27] Khaing Oo, M.K., Yang, Y., Hu, Y., et al. (2012) Gold Nano-particle-Enhanced and Size-Dependent Generation of Reactive Oxygen Species from Protoporphyrin IX. ACS Nano, 6, 1939-1947.
https://doi.org/10.1021/nn300327c
[28] Hou, D., Xu, Y., Yan, J., et al. (2023) Intracellularly Self-Assembled 2D Materials Induce Apoptotic Cell Death by Impeding Cytosolic Transport. ACS Nano, 17, 3055-3063.
https://doi.org/10.1021/acsnano.2c11876
[29] Hou, D., Pu, L., Zhou, S., et al. (2021) Spiropyran-Appended Cu-curbituril Enabling Direct Generation of 2D Materials inside Living Cells. Small, 17, Article ID: 2102392.
https://doi.org/10.1002/smll.202102392
[30] Yang, Z.M., Xu, K.M., Guo, Z.F., et al. (2007) Intracellular Enzy-matic Formation of Nanofibers Results in Hydrogelation and Regulated Cell Death. Advanced Materials, 19, 3152-3156.
https://doi.org/10.1002/adma.200701971
[31] Zhou, J., Du, X., Yamagata, N., et al. (2016) Enzyme-Instructed Self-Assembly of Small d-Peptides as a Multiple-Step Process for Selectively Killing Cancer Cells. Journal of the Amer-ican Chemical Society, 138, 3813-3823.
https://doi.org/10.1021/jacs.5b13541
[32] Zhou, J., Du, X. and Xu, B. (2016) Regulating the Rate of Molecular Self-Assembly for Targeting Cancer Cells. Angewandte Chemie International Edition, 55, 5770-5775.
https://doi.org/10.1002/anie.201600753
[33] Wang, H., Feng, Z., Wang, Y., et al. (2016) Integrating Enzymatic Self-Assembly and Mitochondria Targeting for Selectively Killing Cancer Cells without Acquired Drug Resistance. Journal of the American Chemical Society, 138, 16046-16055.
https://doi.org/10.1021/jacs.6b09783
[34] Feng, Z., Wang, H., Wang, S., et al. (2018) Enzymatic Assemblies Disrupt the Membrane and Target Endoplasmic Reticulum for Selective Cancer Cell Death. Journal of the American Chemical Society, 140, 9566-9573.
https://doi.org/10.1021/jacs.8b04641
[35] Cai, Y., Shen, H., Zhan, J., et al. (2017) Supramolecular “Trojan Horse” for Nuclear Delivery of Dual Anticancer Drugs. Journal of the American Chemical Society, 139, 2876-2879.
https://doi.org/10.1021/jacs.6b12322
[36] Gao, Y., Shi, J., Yuan, D., et al. (2012) Imaging Enzyme-Triggered Self-Assembly of Small Molecules inside Live Cells. Nature Communications, 3, Article No. 1033.
https://doi.org/10.1038/ncomms2040
[37] Yamamoto, S., Nishimura, K., Morita, K., et al. (2021) Microenviron-ment pH-Induced Selective Cell Death for Potential Cancer Therapy Using Nanofibrous Self-Assembly of a Peptide Amphiphile. Biomacromolecules, 22, 2524-2531.
https://doi.org/10.1021/acs.biomac.1c00267
[38] Pieszka, M., Han, S., Volkmann, C., et al. (2020) Controlled Su-pramolecular Assembly Inside Living Cells by Sequential Multistaged Chemical Reactions. Journal of the American Chemical Society, 142, 15780-15789.
https://doi.org/10.1021/jacs.0c05261
[39] Guo, R., Zhang, X., Ji, L., et al. (2020) Recent Progress of Therapeutic Peptide Based Nanomaterials: From Synthesis and Self-Assembly to Cancer Treatment. Biomaterials Science, 8, 6175-6189.
https://doi.org/10.1039/D0BM01358G
[40] Wang, H., Feng, Z. and Xu, B. (2017) Bioinspired As-sembly of Small Molecules in Cell Milieu. Chemical Society Reviews, 46, 2421-2436.
https://doi.org/10.1039/C6CS00656F
[41] Palamà, I., Di Maria, F., Viola, I., et al. (2011) Live-Cell-Permeant Thi-ophene Fluorophores and Cell-Mediated Formation of Fluorescent Fibrils. Journal of the American Chemical Society, 133, 17777-17785.
https://doi.org/10.1021/ja2065522
[42] Guo, W., Zhang, Z., Wei, Q., et al. (2020) Intracellular Restructured Re-duced Glutathione-Responsive Peptide Nanofibers for Synergetic Tumor Chemotherapy. Biomacromolecules, 21, 444-453.
https://doi.org/10.1021/acs.biomac.9b01202
[43] Qiao, S., Ma, Y., Wang, Y., et al. (2017) General Approach of Stimuli-Induced Aggregation for Monitoring Tumor Therapy. ACS Nano, 11, 7301-7311.
https://doi.org/10.1021/acsnano.7b03375
[44] Miao, Q., Bai, X., Shen, Y., et al. (2012) Intracellular Self-Assembly of Nanoparticles for Enhancing Cell Uptake. Chemical Communications, 48, 9738.
https://doi.org/10.1039/c2cc34899c
[45] Yuan, Y., Wang, L., Du, W., et al. (2015) Intracellular Self-Assembly of Taxol Nanoparticles for Overcoming Multidrug Resistance. Angewandte Chemie, 127, 9836-9840.
https://doi.org/10.1002/ange.201504329
[46] Li, X. and Liu, P. (2021) Acid-Triggered Degradable Polyprodrug with Drug as Unique Repeating Unit for Long-Acting Drug Delivery with Minimal Leakage. Materials Science and En-gineering: C, 128, Article ID: 112317.
https://doi.org/10.1016/j.msec.2021.112317
[47] Chen, J., Ma, Y., Du, W., et al. (2020) Furin-Instructed Intracel-lular Gold Nanoparticle Aggregation for Tumor Photothermal Therapy. Advanced Functional Materials, 30, Article ID: 2001566.
https://doi.org/10.1002/adfm.202001566
[48] Ding, Z., Sun, H., Ge, S., et al. (2019) Furin-Controlled Fe3O4 Nanoparticle Aggregation and 19F Signal “Turn-On” for Precise MR Imaging of Tumors. Advanced Functional Materials, 29, Article ID: 1903860.
https://doi.org/10.1002/adfm.201903860
[49] Yuan, Y., Ding, Z., Qian, J., et al. (2016) Casp3/7-Instructed Intra-cellular Aggregation of Fe3O4 Nanoparticles Enhances T2 MR Imaging of Tumor Apoptosis. Nano Letters, 16, 2686-2691.
https://doi.org/10.1021/acs.nanolett.6b00331
[50] Shen, H., Zhang, L., Liu, M., et al. (2012) Biomedical Applica-tions of Graphene. Theranostics, 2, 283-294.
https://doi.org/10.7150/thno.3642
[51] Lin, J., Chen, X. and Huang, P. (2016) Graphene-Based Nanomaterials for Bioimaging. Advanced Drug Delivery Reviews, 105, 242-254.
https://doi.org/10.1016/j.addr.2016.05.013
[52] Sun, X., Liu, Z., Welsher, K., et al. (2008) Nano-Graphene Oxide for Cellular Imaging and Drug Delivery. Nano Research, 1, 203-212.
https://doi.org/10.1007/s12274-008-8021-8
[53] Liu, J., Cui, L. and Losic, D. (2013) Graphene and Graphene Oxide as New Nanocarriers for Drug Delivery Applications. Acta Biomaterialia, 9, 9243-9257.
https://doi.org/10.1016/j.actbio.2013.08.016
[54] Khan, K., Tareen, A.K., Aslam, M., et al. (2020) Recent Devel-opments in Emerging Two-Dimensional Materials and Their Applications. Journal of Materials Chemistry C, 8, 344-387.
https://doi.org/10.1039/C9TC04187G
[55] Wang, Z., Tiruppathi, C., Minshall, R.D., et al. (2009) Size and Dy-namics of Caveolae Studied Using Nanoparticles in Living Endothelial Cells. ACS Nano, 3, 4110-4116.
https://doi.org/10.1021/nn9012274
[56] Li, Y., Kröger, M. and Liu, W.K. (2015) Shape Effect in Cellular Uptake of PEGylated Nanoparticles: Comparison between Sphere, Rod, Cube and Disk. Nanoscale, 7, 16631-16646.
https://doi.org/10.1039/C5NR02970H